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Perturbation theory for domain walls in the parametric Ginzburg-Landau equation
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We demonstrate that in the parametrically driven Ginzburg-Landau equation arbitrarily small nongradient
corrections lead to qualitative differences in the dynamical properties of domain walls in the vicinity of the
transition from rest to motion. These differences originate from singular rotation of the eigenvector governing
the transition. We present analytical results on the stability of Ising walls, deriving explicit expressions for the
critical eigenvalue responsible for the transition from rest to motion. We then develop a weakly nonlinear
theory to characterize the singular character of the transition and analyze the dynamical effects of spatial

inhomogeneities.
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[. INTRODUCTION symmetry is now intrinsically broken, and replaced by the

discrete symmetryr— —F. Any nontrivial solution of this

The analytical description of the dynamics of localized PGL necessarily has a counterpart flipped by phase shift.
structures in nonlinear fields close to an instability thresholdPerturbations breaking the latter symmetry can also be pre-
or under the action of perturbations is important in the un-sented and induce interesting dynanfiz$
derstanding and application of such structures. Such a de- It is often important to include nongradient terms, in
scription is often obtained through the reduction of an infi-Which case no energy functionBlexists. The simplest cor-
nitely dimensional partial differential equation to an ordinaryéction of this type appears when the frequency of the para-
differential equation for the order parameter. The latter is thén€tric driving is detuned from the doubled Hopf frequency.
amplitude of the critical, i.e., least damped, eigenvector in' NS 1eads to the followingiongradientPGL:
the spectrum of the localized structure.

One of the primary results of the present work is to dem- d,F=uF* +(7+i5)|:—||:|2|:+a>2(|:, (1)
onstrate that a singular rotation of the critical eigenvector
takes place when going from a gradi¢ht to a nongradient  which is the basic model we analyze. Hefes (half) the
system of equations by smooth variation of a control paramfrequency detuning. Note that E(.) is not of gradient form
eter. This singularity leads to a qualitative change in thaf §#0 (which makes physical sense only jif is finite).
dynamical equation for the order parameter and has drasti€quation (1) has recently been derived for pulsed optical
effects on the dynamics of the systems close to the instabilitparametric oscillators with spectral filterif@] and lasers
threshold. The example considered is the parametricallyvith intracavity parametric amplificatiop#]. Its further gen-
driven Ginzburg-Landau equati¢RGL), which is one of the eralizations, by inclusion, for example, of nonlinear fre-
prototype models used in nonlinear field theories. Our resultguency shift, dispersion, or second space dimension, are well
demonstrate that approximate description(@fen weakly known, not only in optics, but also in the qontexts of surface
nongradient systems by a gradient model requires great car&/ater waves5], ferromagnet$6,7], and liquid crystal$s,9].

An energy functional of the formE=[*ZdX[|dxF|? Equ§t|c7£1 (1) is invariant unde_r the joint transformation
+V(F,F*)] defines a gradient system whose evolution isF —F€ "2 and u—|u|, wherey is the phase ofe. There-
described by the equatiohF = — SE/SF*. If the potential fore, for concreteness apd without restr!gtlon of generality,
energyV is taken in the form/g,:—y|F|2+%|F|4, then the We assume below that is regl and positive. It is knoyvn
we obtain the Ginzburg-Landau equation, which describe8:2:7 that Eq.(1) has a family of domain walls of Ising
the evolution of a system in the vicinity of a supercritical YP€: connecting the two stable spatially homogeneous states
Hopf bifurcation aty=0. Note thatV,, is invariant with  With 7 phase difference. These stable states are giveR by
respect to the gaugéphase rotation symmetry F—Fe'®. :_\/;e“ﬁ" where x=y+yu°— 6" and ¢, is found from
The onlystateof the system invariant under such phase ro-Sin 2¢|=5/,u. The existence of nontrivial homogeneous states
tations isF=0, and it loses its stability foy>0. This indi-  "€quiresk>0 and therefore
cates that any asymptotic state fgr-0 has a broken gauge
symmetry. If this system is now subjected to pa_rametric forc- 16)<p, y>—Ju2— 2 @)
ing with frequency twice that of the Hopf oscillation, then

H _ _ 2 2
Vg1 is replaced byVyq=Vg—u(F*+F*%)/2. The gauge tq |sing walls(or fronts connecting these states are then
given by

*Present address: Department of Physics, University of Bath, _
Bath BA2 7AY, U.K. Fi=Vkg(X)e'?, g(X)=tanh x/2X). 3
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A characteristic feature of the Ising walls is that they arewhere we have introduced the convenient space-time scal-

Zymmetriﬁwith .rggr;(]eclt to theIIChang%:(X)_)(_F,t_b)l(). . ings t=k7/2, x=\Jk/2X, and whereu andw are real. The
s was shown if6,7], Ising walls can become unstable an ; : ~ =

bifurcate to Bloch walls. This bifurcation is of pitchfork resulting equations fou andw are
type, where the unstable Ising wall coexists with a pair of o
Bloch walls which are transformed into each other under the U=LU+N, (5)
change E,X)—(—F,—X). A formal difference between
Ising and Bloch walls is that the real and imaginary parts ofwherelj:(ﬁ,Vv)T,
F pass through zero at the same point in space for Ising walls
and at slightly different points for Bloch walls. The special
cased=0, in which the PGL is a gradient system, is the only 2
case in which analytic expressions for Bloch walls have so
far been foundsee, e.g.[6,7,3)). One important feature of
the Bloch walls is that whenevet+# 0 they exhibit sponta- .
neous motiorf7]. For § close to zero their velocity has been D,= 07)2(+2—6 tantf(x),
calculated explicithy{10]. Walls that are symmetry partners
under ,X)— (—F,—X) move in opposite directions. . )

In Sec. Il we demonstrate that, while the Ising-Bloch D,=dx+1-2 tani(x),
threshold of the PGL varies smoothly wi#h) the mode re-

f)l — 46/ k

3

0 D,-3+4ylk

sponsible for the instability is drastically different in the gra- 2402 T2
dient (6=0) and nongradient §#0) cases. The gradient N=—2 tanhx) umTweEpurruw _
limit is thus, in a dynamical sense, a singular one. We also 2Uw w3+ wu?

find explicit expressions for the critical eigenvalue and ei-
gelrlveptor in thhe_rflseighhl?lorhﬁ()d of the transition. Tlhe eigenThe following linearly independent solutions Bfz;=0 and
value is smooth ir9, while the eigenvector is singular. A : : .

In Sec. Ill we demonstrate some qualitative differencesDzZz_o are important in our analysis:
between the dynamics of gradient and nongradient systems.
We derive approximate dynamical equations for the order z;;,=secH(x),
parameter close to the Ising-Bloch transition of the PGL. We (6)
show that the transition is a pitchfork bifurcation with the 3
front ve!ocny as the order parameter, and find an analytic z,,=sinhx)coshx)+ > seclhix){sinh(x) + x seclix)},
expression for the velocity of stable Bloch fronts as a func-
tion of a bifurcation parameter. By considering slow spatial
variations of a parameter we find dynamical equations govf’Ind
erning front dynamics, and demonstrate that gradient and

nongradient PGL systems respond to perturbations in quali- Zo1=sechix), z,,=sinh(x)+x seclix). @)
tatively different ways. For example, we predict oscillations
of Bloch walls in a weak parabolic potential fa$#0, Assuming that U= u(x)e+ u*(x)em, w=w(x)eM

whereas oscillatory dynamics is forbidden in the gradient+w*(x)ex*t whereu andw are small. we linearize and find
case. We demonstrate very satisfactory agreement betwegi,; the stability of the Ising walls is determined by the ei-
our approximate analytic and numerical results in this and in envalue problerﬁtéz)\é whereZ=(u,w)T. The Ising wall

all other cases analyzed. 9 ) - . . o
In Sec. IV we conclude with a summary of our results andiS stable provided thaf has no eigenvalue with positive real

a brief discussion of their experimental implications. part. A
It follows from the translational symmetry of that it
II. LINEAR STABILITY ANALYSIS OF THE ISING WALLS possesses a Goldstone mode everywhere in the region of

_ _ _ o _ existence of the Ising walls. This mode is given by
The singularity of the gradient limit of the PGL is asso-

ciated with the eigenvector responsible for the transition .
from Ising to Bloch walls. Therefore a linear stability analy- &= (seck(x),0)", 8
sis of the Ising walls is a natural starting point. In the process .
we will show that the stability threshold and critical eigen- which obeys the neutral mode equatigg,=0. It is clear
value for the Ising walls can be found in a closed analyticakhat £, is just the gradient of the Ising wall, and so excitation
form for any value ofs. These were previously known only of this neutral mode results in motion of the wall. The Ising-
for 6=0 [7,10], Bloch transition is characterized by an eigenvalyg that

We look for solutions of Eq(1) in the form of a perturbed  changes sign. Thus exactly at threshold we might expect

Ising wall, there to be a second null eigenvecty of Z. As we will
~ ~ . see, the actual behavior is generally more complex and in-
F(x,t)= Vk[tanh(x) + U(x,t) +iw(x,t)]Je'¥,  (4) teresting.
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A. Gradient case: =0 The solvability condition of Eq(10) requiresé, to be
For =0 our system is gradient and therefoteis self-  orthogonal to the corresponding eigenveapof the adjoint

adjoint. The vector eigenvalue probled=\& splits now  operatorZ', defined byZ'a,=0:
into two scalar eigenvalue problems for the Schinger op-
erators with tanh potentials. Both discrete and continuum

parts of the spectra for such problems can be found analyti- (§lay=0. 11
cally [11]. The eigenvector and eigenvalue governing the
Ising-Bloch transition are Note that this condition can never be fulfilled for a self-

adjoint operator, and in particular cannot hold in the gradient
limit of the PGL.
, 9 We assert that the conditigd1) can be considered as a
Ytu criterion for the transition from an Ising wall at rest to a
Bloch wall in motion. Indeed, it has previously been found to
respectively. (The superscript stands fogradient) The identify similar bifurcations of localized structures in lasers
Ising-Bloch transition takes place a1=ui‘§)=7/3 [6,7]. [12] anq polarization fro_nts in intracavity se_cond harmonic
Note that the inner product of the translational and Ising-9eneratior13]. The crucial point here is that in the paramet-
Bloch modes is zero, i.e(Z®|Z,)=0, where(- - -|- - -) de- ric Ginzburg-Landau model the Ising-Bloch threshold can be
1 PEBID 1Sx/ T M L . continued to the gradient limit, and the interplay between
notes the scalar product in,. This is not surprising, since

the eigenfunct ¢ if-adioint tor f gradient and nongradient effects can be analyzed. This was
thgggfsnbggfslons ot a sefl-adjoint operator form an or-pq possible in the models of Refgl3,12. The gradient

limit is the exceptional case of a transition from an Ising wall
at rest to a Bloch wall that is also at rest, and the criterion

B. Nongradient case:5+0 (11) does not apply. )
The components of the vecter,=(a,;,a,,)" obey the
system of equations

- v—3u
&Y= (0,sechix))”, \P=

1. Instability threshold and singular rotation
of the critical eigenvector

For 6+#0 the eigenvalue problem is more complicated. N N
We first consider the system exactly at the bifurcation thresh- Diay =0, (Dy—=3+4ylx)ap=40a/k. (12
old with \;,=0. Knowing that for6#0 Bloch walls move
[7], we assume that the Ising-Bloch transition #®#0 is  As follows from Eqgs.(6), the only nontrivial spatially local-
caused by an eigenvectparallel Eo th:a translational mode, jzed solution ofD,a,,=0 is
i.e., we will make the assumptiahy, = &, and verify its cor-
rectnessa posteriori This assumption seems rather para-
doxical, given that in the gradient limit the Ising-Bloch tran- a, = Q seck(x), (13
sition is caused by an eigenvectarthogonal to the
translational mode. One might expect small nongradient efwhereQ is a constant. Therefor®,, coincides, up to a con-
fects to cause only a small rotation &f, , which would thus ~ stant, with the first component of the translational méde
acquire only a small projection along,. Instead we are Thus the only possibility foéx to be both different from
proposing that, as soon & becomes nonzero, there is a zero and orthogonal td, is that Q=0 and the equation
discontinuous rotation o€, in function space, from or- (D,—3+4y/«k)a,,=0 has a nontrivial spatially localized
thogonal to parallel td, . solution. It is clear from Eq<7) that such a solution exists if

One alternative scenario is that fé¥0 a secondary bi- &=k, =4v/3, or equivalentlyu = u;,, where
furcation takes place in the vicinity @f = M§g> , very close to
the gradient limit. In other words, perhaps the transitions
fromglsing to Bloch walls and from rgst to IC;notion are sepa- 3pip =95+ ¥*.
rate bifurcations. However, this turns out not to be the case. )

The conditioné;, = £ implies that the critical Ising-Bloch If this condition holds, we can set=(0,sechk))", and can
eigenmodeg,, of Z exactly coincides with the translational Proceed to solve Eq10), which takes the form
mode at threshold, as a double zero eigenvalue with just a
single eigenvector. This happens if and onlyIfl] the op-
erator possesses Boot vectoror generalized eigenvector

Er. This vector, which plays an important role in the subse
guent derivations, is a solution of the equation

(14)

D,£,=0, Di&1=01, (15)

‘Whereg;(x)=368¢,,/y—sech(x). From Eqgs.(7) it is clear
that&,,= R sechk), whereR is a constant to be determined.
The solvability condition of the second equation of system
(15 requires orthogonality ofg; to z;;, yielding R
LE+E=0. (100 =8v/(9w4) and
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1.2 ' ' ' cone for fixedd.

The singularity of the gradient limit of the PGL with re-
gard to the Ising-Bloch transition is now clear. Everywhere
on the critical surface the critical Ising-Bloch mode is or-
thogonal to its adjoint mode, except on the intersection of the

111

1,

0.9} N
08l cone with the plané=0, whereL becomes self-adjoint, and
‘ thus the critical mode is necessarily parallel to its adjoint.
=.0.71 Specifically, in Fig. 1(£y|a;,) is zero everywhere on the
o6k pritical parabola, except precisely at its lowest pgwibere it
is equal to 2.
0.51 We found excellent agreement between Egl) and the
0.4f numerical solutions of the eigenvalue probleﬂéz)\é; see
03l | Fig. 1. Detailed numerical studies of the eigenvalue problem
Bloch LE=\ have confirmed that the conditign= ;,, gives the
0.2, 205 0 05 1 only instability threshold for the Ising walls. These facts ex-
0 clude the existence of secondary bifurcations in the neigh-

FIG. 1. Threshold of the Ising-Bloch transition in the plane borhood of the.gr'adlent limit. We.cgn COOCI,Ude thgt arbi-
(8,1) for y=1. Full line corresponds to EqL4). Diamonds cor- tranly small devw_;\pons from the varlatlona_ll limit res_ult in the
respond to the numerically found locations of the double degenfOtation of the critical eigenvector governing the Ising-Bloch
transition from being perpendicular to being parallel to the
translational mode. This rotation is not just a mathematical
curiosity but can have drastic effects on the dynamics de-
scribed by Eq(1) as proved below.

eracy of the translational modg , £&,=0. The circleS schemati-
cally indicates the region of validity of the asymptotic theory
developed in Sec. Il B.

i' 12(X) = 1 15(X) 2. Critical eigenvalue and eigenvector

£ = 3m , (16) At any point close to the Ising-Bloch threshold the critical

eigenvalue\;, is small(of ordere). It is readily verified that
to lowest order ine, i.e., close enough to the surface on
which Eq.(14) is satisfied,

8y
97T(Ssecmx)

where L _
&b=&NE+O(€) (18)

X
Zma(X) L sechi(x")zmy (x")dx’ is an eigenvector of> with eigenvaluex;,. On the critical
° surface €=0) this eigenvalue goes to zero, and the eigen-
_Zml(X)JX sech(x)zp(x)dX' |, vector coincides witt’EX, exactly as described aboye. Using
Xo our explicit expression for the second componentaf we
can now see directly from E@18) that we are indeed deal-
m=1,2,n=1,2, andW;=4, W,=2. (The general definition ing with an Ising-Bloch transition, wittw(x) finite in the
of Iy Will be used at several places in the later developperturbation that distorts the Ising wall. Exactly as for the

1
I mn(X) = W_
m

ment) . gradient case, the effect of finite(x) is to split the points at
There is a corresponding degeneracy £orwith a single ~ which the real and imaginary parts Bfpass through zero,
corresponding eigenvector turning the Ising wall into a Bloch wall.
Expression(18) is valid within a sphereS of radius of
5\x=5ib=(aib1,aibz)T=(O,SECK]X))T- (17 order|el, in the three-dimensional parameter spagey d)

(see Fig. 1L Sis centered on a chosen bifurcation point on

We have now shown that E¢l4) implies a bifurcation, the critical surface, i.e., for parameter values specified by the
but not that it is an Ising-Bloch transition. We will do so condition Eq.(14), andé, is to be evaluated at that point, or
below, when we derive the explicit form gf, in the neigh- ~ at any point on the critical surface lying withif
borhood of the transition, but note that this bifurcation Taking the scalar product of both sidesZtﬁ=)\§with 5X
threshold coincides precisely with the Ising-Bloch transitionjt follows that
in the gradient limit6=0.

Comparing Eq(14) and the existence conditioii®), one ()\§|:§x)=o (29
can conclude that an Ising-Bloch transition is possible only
for y>0, i.e., when there is linear gain in the system. In thefor any eigenvectof within the entire range of existence of
three-parameter spacg (y, 6) the critical surface defined by the domain walls. Using Eq(18) we find that up to the
Eg. (14) is a half cone separating regions of stability of second order of perturbation, i.e., with#i Eq. (19) implies,
Bloch and Ising walls. Figure 1 shows a cross section of thigo lowest order,

056618-4



PERTURBATION THEORY FOR DOMAIN WALLS IN THE . .. PHYSICAL REVIEW E 64 056618

0.5

)\<§x|é}x>:)\2<ér|é}ib>r (20

where the right side has to be evaluated on the critical sur- 04y
face. The trivial root of this quadratic equatian=\,=0,
corresponds to the translational mode, while the other deter 0.3
mines the critical Ising-Bloch eigenvalue
0.2

<

)\:Mb:@—fw (21 0.1}

(&laip)

corresponding to the Ising-Bloch mode. The numerator of 0
this expression can be evaluated anywhere withiand the

denominator anywhere on the part of the threshold surface —9-1f
inside S.

Using Egs.(16) and (17) we can calculate(Z,|a;,) 033 025 03 m 0.35 0.4
= [T2dxé aip,=16y/(975). Thus to calculate an explicit
expression fok;, we need to find a first order approximation ~ FIG. 2. Eigenvalue\;, governing the Ising-Bloch transition vs

for a, within S. We considep as the bifurcation parameter, the parametric pump. for y=1. Numerically found eigenvalues of
and set x(u)=kijp+ €p1d, K+ 0(62), where eu;=u L with maximal real part are shown by diamonds, while the solid

— wip . We now write lines are calculated from the analytic formula presented in(£5).
The numbers near the curves indicate the corresponding values
a,=a;,+ eb+O(€?). (22) ofé.
Hereb= (by,b,)T andb, , obey shows the dependence of the normalized scalar product
) ) [(Ea)l (&4 EN(aya)) Y2 on u for different values ofs.
Dib;=0, Djby=0y, (23)  The magnitude of the scalar product is close to unity, i.e., the

5 translational mode and its adjoint are nearly parallel, every-
where g,=38by/y+27uipps/(4y7)sechk), the second \yhere except within a valley close fo=u;, (at which the
term arising from thex dependence of. It follows from  scalar product goes through zgrdhe decreasing width of
Egs.(6) thatb, = Q sech(x), consistent with Eq(13). How-  the valley for6— 0 indicates that the scalar product changes
ever, the amplitud&® has now to be determined from the very rapidly for small|§|. In the limit §—~0 the change
solvability condition of the second equation (3). The  becomes critical and it takes place suddenly at a single point,
latter requires orthogonality of, to z,; and providesQ i.e., it has zero measure. The singularity also shows itself in
= —puipp1/(7yd). Completing the solution, we obtain £ as a consequence of which the first order term in the
— Qi /(v 8)sech(x) expansion forg;, has coefficient-\;, /4. This implies that

>

= 4
SGCNX)+27M1Mib/(472):|21(X)—;|22(X)] ! " 001 — 002
0.9t
2 0.04
+0O(€). (29 0.8k
Thus (§a)=J T Zdxé&b; + O(€?)=4Q/3+O(€?) and fi-  § 07 0.08
nally % 0.6} 0.16
©
©
27(pip— 1) Kin ) 2 05
)\ib:4—y2+0(e ). (25 ;ﬂ; o4l
5 03
Equation(25) explicitly shows that Ising walls are stable for = \
w> i, - Figure 2 shows excellent agreement between nu-  92f \\'
merical and analytical results far,, . Note that Fig. 2 shows 0.1k J’
no evidence of singular behavior &-0. There is no sin- | ‘ . .
gularity: in the gradient limitu;,= y/3 the general expres- 82 0.3 0.4 0.5 0.6 0.7
sion (25) reduces to precisely that was found fioff [see H

Eq. (9) and[6,7]]. _ o FIG. 3. Normalized scalar produfitZ,|a)|/ (( £ &) (ayay)) 2
As already remarked, the singular behaviordins asso- vs u: y=1. Numbers near the curves indicate corresponding values

ciated with the critical eigenvecto}ib. The extreme sensi- of 6. Variations of the scalar product become faster when the linear
tivity of the eigenmodes t@ is illustrated in Fig. 3, which  detunings approaches zero.
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the region of validity of the asymptotic expansi¢iB) for
Eib shrinks in the gradient limit and disappears &0,

PHYSICAL REVIEW E 64 056618

We analyze this equation by making suitable expansions of
its terms, first for the gradient and then for the nongradient

where one needs to use H§) for the critical eigenvector.  case.

ll. WEAKLY NONLINEAR THEORY AND ROLE A. Gradient case: 6=0

OF SPATIAL INHOMOGENEITIES Assuming that the deviation af from «;;, is second order

In real systems the translational invariance of Ef.is in the perturbation we can sef=Ly+L,, Lo=L(x
often, if not invariably, broken by inhomogeneities of the = «(9)), where £,=(L—Lo)~ €% We now introduce the

medium, pump, and boundary conditions and by defects. I&jowly varying amplitude of the critical mode, i.e., the order

such situations one expects that domain walls should drifyarameter, A=A(€%)~e and search for solutions of Eq.
toward the nearest minimum of an effective potential creategpg) of the form

by the inhomogeneities, leading to a pinning effect. If we are
far from the Ising-Bloch threshold and inhomogeneities are
weak, they act directly on the velocity of the wall, and the
effective gradient(Aristotelian “force” acting on the do- A,
main wall is easily calculated by projecting the inhomogene-

ities onto the translational mode df by taking its scalar

product witha, .

If, however, we are close to an Ising-Bloch transition,
then the dynamics become less trivial because the transl
tional degree of freedom is now coupled to the dynamics o
the amplitude of the critical mode. In particular, we will
show below that the singular rotation of the critical mode
described in the previous section has a profound influence on
the wall dynamics. To this end, we derive the dynamical - .
equations ¥or the order parameters of domain wallg close tEﬂVherf"‘. N3=2 seci(x) (.O’X tanh) —1)". The. solvability
the Ising-Bloch transition for both the gradient and nongra-co_ndltlons of Eq(31) give a system of equations fér and
dient cases and demonstrate their qualitative difference. Xo-

The presence of inhomogeneities leads to a drift of the

U=AEQ+A2E,+ A&+ - - -. (30)

first order we have L,E@=0. The equation

or the second order isLyé,=—N,, where N,
=—2tanhk)(sech(x),007 and thus &=(&y.&0)"
=(—3xsech(x),0)".

The main information, as usual, is obtained from the third
?’rder equation

_632:053:A3N3+ ﬁtXOEX‘i‘ GSBé_(ﬁtA_Azz)gl(g) ,( )
31

domain wall. Therefore we assume that its positkgris an 20,A= WA_ 2A%+ ma;+27hixy, (32

adiabatic function of timex,=x,(€%t). For convenience we 2y

switch to the frame of coordinates moving with the wall

center,x— X+ Xq [previously we implicitly assumesl,=0, i& ot 24 2D Xa= 0 (33
A0 r rag— Ve

e.g., in Eq.(3)]. We assume that the parametric pump in Eq.

(1) is a function ofX and make the following substitution:

3

€3k .
m— Rt 2 pa(Vkip/2X)e? 1,

(26)

Below we restrict ourselves to the following form pg(x):

wa=(a,+ia;)x+ (b, +ib;)x2. (27

3

These are the dynamical equations we seek. In this gradient
case there are separate equations governing the Ising-Bloch
transition and the wall motion. As expected, the location of
the wall is unaffected by the amplitudé of the critical
mode. Any real positive gradient of the pump, i.a,>0,

b, =0, results in motion of the tank]-like domain wall with
negative velocity—3a,/4 and of the—tanh)-like domain

wall with positive velocity &,/4. If b, #0 anda,b, <0 then

The term linear inx describes any inhomogeneities of gradi- the wall will be pinned at the poink,=—a,/(2b,). The
ent type while the quadratic term approximates, €.g., inning position is stable ib,>0 and unstable otherwise.
smooth Gaussian pump of an optical resonator. We allow for | the absence of perturbations the equation Aode-
complex perturbations teu, because the global symmetry scripes a classic pitchfork bifurcatioA.couples only to the

that allowed us to assume real is (weakly) violated by
these weak inhomogeneities.
We can rewrite Eq(1) in the form

00= LU0+ axo(E+0,0)+N+eB(G+U), (28
whereG = (tanh(x),0)", and

. | Reus(x+xg)  Im ug(X+Xg) -

C[Impa(x+Xg)  —Reus(X+Xo) |’ @9

imaginary part of the spatially dependent perturbation which,
if present, makes the lIsing-Bloch transition an imperfect
pitchfork bifurcation. A spatially uniform perturbation has

previously been shown to render the pitchfork imperfect,
leading to interesting interaction dynamics of front pats

B. Nongradient case:6#0

For arbitrary small deviations from the gradient limit the
critical mode collapses onto the translational one and there-
fore the order parameter evolution is expected to be de-
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sqribed by a single equatio_n for the position of the wgll. In , 27 i — 1) fip 8y |2

this case it is more convenient to proceed along the lines of 29fxg=—"———"—3dXo—| 2 975 +C|(dx0)®
the method applied in Sec. II B, which does not require the 2y m

asymptotic expansion of the operatr We simply assume s

that the system parameters are sufficiently close to the Ising- + By (@ +2Xob;), (37)

Bloch transition. The distance from the transition boundary

can be conveniently measured by the valuegfa,), which  \yherec=0.72 is a constant that can be evaluated numeri-
should be taken to be of ordef. Thus the weakly nonlinear cally.

theory developed below has narrower region of validity than  Thjs js a fully explicit amplitude equation governing the
the linear theory of Sec. IIB. In order to guarantee consisyynamics of the domain walls in the vicinity of the Ising-
tency with the rest of the expansion, we introduce additional|och transition and in the presence of spatial inhomogene-
assumptions about the time derivatives of the position, takingjes The complex calculations leading to the manifestly

2 i . .. .
dXo~€ and dixo~€®. To solve Eq.(28) we insert the negative coefficient ofdx,)® are amply repaid, because we

asymptotic expansion obtain the important result that the Ising-Bloch transition in
- R . . the parametric Ginzburg-Landau equation is always super-
U= 0iXoér + (dXo)*Ep+ (91X0) 3Ea+ - - - (34 critical.
The next important consequence of Eg7) results if we
and find ignore spatial inhomogeneities and look for a stationary so-

lution, i.e., constant front velocity. We find that the equilib-
rium velocity v of the Bloch walls in the vicinity of the

—ﬁ[atx0§r+(atx0)2§2+(atxo)3§3] Ising-Bloch transition obeys
= _atzxoér“'ﬁtxo[gx“’ﬁtxoﬁxgr+(§txo)2§x§2] e 27( pip— ) fip 38
+(3X0)®Np+ (%) N3+ €3BG + O (%), 292(2[87/975]*+C)
(35

This expression is characteristic of a pitchfork bifurcation,
with v as the order parameter. Expressions for the velocity of

whereN, andNj; are second and third order nonlinear terms the Bloch walls obtained previously,10] are valid only for
The qualitative difference in the leading order terms inSmall 6 and far from the Ising-Bloch transition, since they
Egs. (30) and (34) indicates that no smooth transition be- Were derived under the assumption of small deviations from
tween weakly nonlinear dynamical theories for gradient andhe gradient limit. Our expression E(B8) is instead valid
nongradient cases can be expected. This is again becausedly in the vicinity of the transition, but arbitrarily far from
the nongradient case there is in fact only one, though degefbe gradient limit. It thus represents a substantial extension
erate, critical mode, while in the gradient case there are tw®f Previous results. Note that in the 20r|g|nallcoor<.j|n.a1@s
different and mutually orthogonal modes. and 7 Eq.(38) should be replaced biv /2. Taking this into
SinceL is a singular operator, we must impose a soIvabiI-account' we can compare the wo expressions for the wall

ity condition, by requiring the right hand side of E&5) to velocity, our Eq.(38) and Eq.(22) from Ref. [10], in the

be orthogonal t(ﬁx. Using symmetry arguments it is pos- 0.8—4—

sible to demonstrate that all terms of ord€rare equal to

zero so that we are left with a single differential equation for 0.7} ¢

the wall position:
0.6} .

(&la)dfxo=(&a) dxo+(9xéa+ Nalag (aixo)® 0.5¢ .
+(BGlay), (36) = 04 .

0.3f

where N3=(n31,n3gT, §2:(§21a§22)T1 N3 0zl

=—41anh§) (&1t €01€r2) =287, = 2612601, §20=(8Y/

9md) f1(X), &Ex="F,(X)—(x/2)(8y/975)?sech(x), and 01f

f,, solve the parameter independent equationsf,

=tanh{)sech&)(1+4¢,,) and 151f2=(8/377)f1—aX§,1 85 082 034 036 038, 04 042 044 046

+6 tanh) £2,. After some algebra one can find that E8f) H

transforms into the desired equation governing the front dy- FIG. 4. Comparison between numeri¢diamond$ and analyti-
namics in the vicinity of a nongradient Ising-Bloch transi- cal results(full line) given by Eq.(38) for velocity of the Bloch
tion: wall. y=1, 6=0.3.
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FIG. 5. Spatiotemporal evolution of the Ising wall in the pres-  FIG. 6. Oscillations of the Bloch wall in the parabolic potential:
ence of a positive linear gradient for opposite signs of the detuning’=1, #=0.4, 6=0.25,a,=b,=2a;=0, b;=0.000 15. The darkest
8 (@ 6=—-0.4, (b) 5=0.4. Other parameters ang=1, x=0.5, areas correspond to the smallest valuefFof
a,=b,=b;=0, a;=0.0055. The darkest areas correspond to the

smallest values dfF|. IV. SUMMARY

limit [6]<1, |uip—p|<1 where both formulas are valid.  we have considered dynamical and stability properties of
Making the appropriate expansions and substitutions we findomain walls in the vicinity of the Ising-Bloch transition and

precise correspondence between the two expres$ibfls  haye demonstrated that the critical eigenvector responsible
Comparison of Eq(38) with values of the velocity computed  {q the transition undergoes a singular rotation when arbi-

by the direct modelling of Eq(1) is shown in Fig. 4. trarily small nongradient effects are included. We showed

Considering now the response to spatial mhomogeneltlgsthat the Ising-Bloch threshold and critical eigenvalue vary

we note that in the nongradlent case .the wall mation ISsmoothly between the gradient and nongradient cases, and
driven by phase perturbations to, again in complete con-

trast to the gradient limit in which it is the real part pfthat we derived explicit analyt_ic expressions_for the 'Fhreshold and
induces motion—see E@33). It follows from Eg. (37) that elgenvalue._ Weakl_y_npnlmear asymp_totlc thepnes have been
where the Ising wall is stable a phase gradient perturbatioﬂeve'()pe‘j_In the V'Cm'tY.Of the tran5|t_|o_n and in th_e presence
causes it to drift in the direction determined by the sign ofof SPatial inhomogeneities. An explicit expression for the
the producta; 8. Figure 5 shows examples from numerical VéloCity of Bloch walls, valid even far from the gradient
simulations of Eqs(1) and (27) that confirm and illustrate IMit, has been derived. It was shown that an Ising wall
this prediction. Ifo;#0 then Eq(37) has a time independent trapped by a pinning potential may exhibit damped oscilla-
solutionxy= —a; /(2b;), i.e., a pinning point. Stability of the tions on approach to the pinning point, while a Bloch wall
pinning point is determined by the roots of the characteristidn@y oscillate spontaneously around a pinning point. Such
equation\?=\; A +b;7[975/87]. If b;6<0 and\;,<0, oscillatory dynamics is perhaps the clearest practical signa-
then the domain wall relaxes to its pinning position eitherture of the singular Ising-Bloch dynamics identified in this
monotonically or, for )\i2b<4bi77[9775/87]1 with oscilla-  work. It should be practically accessible in experiments simi-
tions. Thus, sufficiently close to the Ising-Bloch transition, lar to that described if8,9] where spontaneous oscillation of
the Ising walls exhibit damped oscillations, a dynamics thaBloch walls in a layer of liquid crystal were observed in the
is impossible in the gradient limit of the PGL. When crossingpresence of inhomogeneous magnetic fields. Suppression of
the transition point at which;,=0, the wall becomes Hopf transverse instabilitief8,9] can be achieved in quasi-one-
unstable, leading to undamped oscillations of its positiordimensional geometries.

near the pinning poinsee Fig. 6. If b; >0 then the domain

walls cannot be pinned by the inhomogeneity. Note that os-
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