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Perturbation theory for domain walls in the parametric Ginzburg-Landau equation
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We demonstrate that in the parametrically driven Ginzburg-Landau equation arbitrarily small nongradient
corrections lead to qualitative differences in the dynamical properties of domain walls in the vicinity of the
transition from rest to motion. These differences originate from singular rotation of the eigenvector governing
the transition. We present analytical results on the stability of Ising walls, deriving explicit expressions for the
critical eigenvalue responsible for the transition from rest to motion. We then develop a weakly nonlinear
theory to characterize the singular character of the transition and analyze the dynamical effects of spatial
inhomogeneities.
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I. INTRODUCTION

The analytical description of the dynamics of localiz
structures in nonlinear fields close to an instability thresh
or under the action of perturbations is important in the u
derstanding and application of such structures. Such a
scription is often obtained through the reduction of an in
nitely dimensional partial differential equation to an ordina
differential equation for the order parameter. The latter is
amplitude of the critical, i.e., least damped, eigenvector
the spectrum of the localized structure.

One of the primary results of the present work is to de
onstrate that a singular rotation of the critical eigenvec
takes place when going from a gradient@1# to a nongradient
system of equations by smooth variation of a control para
eter. This singularity leads to a qualitative change in
dynamical equation for the order parameter and has dra
effects on the dynamics of the systems close to the instab
threshold. The example considered is the parametric
driven Ginzburg-Landau equation~PGL!, which is one of the
prototype models used in nonlinear field theories. Our res
demonstrate that approximate description of~even weakly!
nongradient systems by a gradient model requires great c

An energy functional of the formE5*2`
1`dX@ u]XFu2

1V(F,F* )# defines a gradient system whose evolution
described by the equation]tF52dE/dF* . If the potential
energyV is taken in the formVgl52guFu21 1

2 uFu4, then the
we obtain the Ginzburg-Landau equation, which descri
the evolution of a system in the vicinity of a supercritic
Hopf bifurcation atg50. Note thatVgl is invariant with
respect to the gauge~phase rotation! symmetry F→Feif.
The onlystateof the system invariant under such phase
tations isF50, and it loses its stability forg.0. This indi-
cates that any asymptotic state forg.0 has a broken gaug
symmetry. If this system is now subjected to parametric fo
ing with frequency twice that of the Hopf oscillation, the
Vgl is replaced byVpgl5Vgl2m(F21F* 2)/2. The gauge

*Present address: Department of Physics, University of B
Bath BA2 7AY, U.K.
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symmetry is now intrinsically broken, and replaced by t
discrete symmetryF→2F. Any nontrivial solution of this
PGL necessarily has a counterpart flipped by ap phase shift.
Perturbations breaking the latter symmetry can also be
sented and induce interesting dynamics@2#.

It is often important to include nongradient terms,
which case no energy functionalE exists. The simplest cor
rection of this type appears when the frequency of the pa
metric driving is detuned from the doubled Hopf frequenc
This leads to the followingnongradientPGL:

]tF5mF* 1~g1 id!F2uFu2F1]X
2F, ~1!

which is the basic model we analyze. Hered is ~half! the
frequency detuning. Note that Eq.~1! is not of gradient form
if d5” 0 ~which makes physical sense only ifm is finite!.
Equation ~1! has recently been derived for pulsed optic
parametric oscillators with spectral filtering@3# and lasers
with intracavity parametric amplification@4#. Its further gen-
eralizations, by inclusion, for example, of nonlinear fr
quency shift, dispersion, or second space dimension, are
known, not only in optics, but also in the contexts of surfa
water waves@5#, ferromagnets@6,7#, and liquid crystals@8,9#.

Equation ~1! is invariant under the joint transformatio
F→Fe2 ic/2 andm→umu, wherec is the phase ofm. There-
fore, for concreteness and without restriction of general
we assume below thatm is real and positive. It is known
@6,5,7# that Eq. ~1! has a family of domain walls of Ising
type, connecting the two stable spatially homogeneous st
with p phase difference. These stable states are given bF
5Akeif I, where k5g1Am22d2 and f I is found from
sin 2fI5d/m. The existence of nontrivial homogeneous sta
requiresk.0 and therefore

udu,m, g.2Am22d2. ~2!

The Ising walls~or fronts! connecting these states are th
given by

FI5Akg~X!eif I, g~X!5tanh~Ak/2X!. ~3!
h,
©2001 The American Physical Society18-1
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A characteristic feature of the Ising walls is that they a
symmetricwith respect to the change (F,X)→(2F,2X).
As was shown in@6,7#, Ising walls can become unstable an
bifurcate to Bloch walls. This bifurcation is of pitchfor
type, where the unstable Ising wall coexists with a pair
Bloch walls which are transformed into each other under
change (F,X)→(2F,2X). A formal difference between
Ising and Bloch walls is that the real and imaginary parts
F pass through zero at the same point in space for Ising w
and at slightly different points for Bloch walls. The spec
cased50, in which the PGL is a gradient system, is the on
case in which analytic expressions for Bloch walls have
far been found~see, e.g.,@6,7,3#!. One important feature o
the Bloch walls is that wheneverd5” 0 they exhibit sponta-
neous motion@7#. For d close to zero their velocity has bee
calculated explicitly@10#. Walls that are symmetry partner
under (F,X)→(2F,2X) move in opposite directions.

In Sec. II we demonstrate that, while the Ising-Blo
threshold of the PGL varies smoothly withd, the mode re-
sponsible for the instability is drastically different in the gr
dient (d50) and nongradient (d5” 0) cases. The gradien
limit is thus, in a dynamical sense, a singular one. We a
find explicit expressions for the critical eigenvalue and
genvector in the neighborhood of the transition. The eig
value is smooth ind, while the eigenvector is singular.

In Sec. III we demonstrate some qualitative differenc
between the dynamics of gradient and nongradient syste
We derive approximate dynamical equations for the or
parameter close to the Ising-Bloch transition of the PGL. W
show that the transition is a pitchfork bifurcation with th
front velocity as the order parameter, and find an anal
expression for the velocity of stable Bloch fronts as a fu
tion of a bifurcation parameter. By considering slow spa
variations of a parameter we find dynamical equations g
erning front dynamics, and demonstrate that gradient
nongradient PGL systems respond to perturbations in qu
tatively different ways. For example, we predict oscillatio
of Bloch walls in a weak parabolic potential ford5” 0,
whereas oscillatory dynamics is forbidden in the gradi
case. We demonstrate very satisfactory agreement betw
our approximate analytic and numerical results in this and
all other cases analyzed.

In Sec. IV we conclude with a summary of our results a
a brief discussion of their experimental implications.

II. LINEAR STABILITY ANALYSIS OF THE ISING WALLS

The singularity of the gradient limit of the PGL is ass
ciated with the eigenvector responsible for the transit
from Ising to Bloch walls. Therefore a linear stability anal
sis of the Ising walls is a natural starting point. In the proc
we will show that the stability threshold and critical eige
value for the Ising walls can be found in a closed analyti
form for any value ofd. These were previously known onl
for d50 @7,10#,

We look for solutions of Eq.~1! in the form of a perturbed
Ising wall,

F~x,t !5Ak@ tanh~x!1ũ~x,t !1 iw̃~x,t !#eif I, ~4!
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where we have introduced the convenient space-time s
ings t5kt/2, x5Ak/2X, and whereũ and w̃ are real. The
resulting equations forũ and w̃ are

] tUW 5L̂UW 1NW , ~5!

whereUW 5(ũ,w̃)T,

L̂5F D̂1 24d/k

0 D̂22314g/k
G ,

D̂15]x
21226 tanh2~x!,

D̂25]x
21122 tanh2~x!,

NW 522 tanh~x!F3ũ21w̃2

2ũw̃
G22F ũ31ũw̃2

w̃31w̃ũ2G .

The following linearly independent solutions ofD̂1z150 and
D̂2z250 are important in our analysis:

z115sech2~x!,
~6!

z125sinh~x!cosh~x!1
3

2
sech~x!$sinh~x!1x sech~x!%,

and

z215sech~x!, z225sinh~x!1x sech~x!. ~7!

Assuming that ũ5u(x)elt1u* (x)el* t, w̃5w(x)elt

1w* (x)el* t, whereu andw are small, we linearize and find
that the stability of the Ising walls is determined by the
genvalue problemL̂jW5ljW , wherejW5(u,w)T. The Ising wall
is stable provided thatL̂ has no eigenvalue with positive rea
part.

It follows from the translational symmetry ofL̂ that it
possesses a Goldstone mode everywhere in the regio
existence of the Ising walls. This mode is given by

jW x5„sech2~x!,0…T, ~8!

which obeys the neutral mode equationL̂jW x50W. It is clear
thatjW x is just the gradient of the Ising wall, and so excitatio
of this neutral mode results in motion of the wall. The Isin
Bloch transition is characterized by an eigenvaluel ib that
changes sign. Thus exactly at threshold we might exp
there to be a second null eigenvectorjW ib of L̂. As we will
see, the actual behavior is generally more complex and
teresting.
8-2



m
ly
th

g

or

d
sh

,

ra
n-

e

a

n
a
s

l
st

r

se

lf-
ent

a
a
to
rs
ic
t-
be
en
was

all
ion

f

.
m

PERTURBATION THEORY FOR DOMAIN WALLS IN THE . . . PHYSICAL REVIEW E 64 056618
A. Gradient case: dÄ0

For d50 our system is gradient and thereforeL̂ is self-
adjoint. The vector eigenvalue problemL̂jW5ljW splits now
into two scalar eigenvalue problems for the Schro¨dinger op-
erators with tanh2 potentials. Both discrete and continuu
parts of the spectra for such problems can be found ana
cally @11#. The eigenvector and eigenvalue governing
Ising-Bloch transition are

jW ib
(g)5„0,sech~x!…T, l ib

(g)5
g23m

g1m
, ~9!

respectively. ~The superscript stands forgradient.! The
Ising-Bloch transition takes place atm5m ib

(g)5g/3 @6,7#.
Note that the inner product of the translational and Isin
Bloch modes is zero, i.e.,^jW ib

(g)ujW x&50, where^•••u•••& de-
notes the scalar product inL2. This is not surprising, since
the eigenfunctions of a self-adjoint operator form an
thogonal basis.

B. Nongradient case:dÄ” 0

1. Instability threshold and singular rotation
of the critical eigenvector

For d5” 0 the eigenvalue problem is more complicate
We first consider the system exactly at the bifurcation thre
old with l ib50. Knowing that ford5” 0 Bloch walls move
@7#, we assume that the Ising-Bloch transition ford5” 0 is
caused by an eigenvectorparallel to the translational mode
i.e., we will make the assumptionjW ib5jW x and verify its cor-
rectnessa posteriori. This assumption seems rather pa
doxical, given that in the gradient limit the Ising-Bloch tra
sition is caused by an eigenvectororthogonal to the
translational mode. One might expect small nongradient
fects to cause only a small rotation ofjW ib , which would thus
acquire only a small projection alongjW x . Instead we are
proposing that, as soon asd becomes nonzero, there is
discontinuous rotation ofjW ib in function space, from or-
thogonal to parallel tojW x .

One alternative scenario is that ford5” 0 a secondary bi-
furcation takes place in the vicinity ofm5m ib

(g) , very close to
the gradient limit. In other words, perhaps the transitio
from Ising to Bloch walls and from rest to motion are sep
rate bifurcations. However, this turns out not to be the ca

The conditionjW ib5jW x implies that the critical Ising-Bloch
eigenmodejW ib of L̂ exactly coincides with the translationa
mode at threshold, as a double zero eigenvalue with ju
single eigenvector. This happens if and only if@11# the op-
eratorL̂ possesses aroot vectoror generalized eigenvecto

jW r . This vector, which plays an important role in the sub
quent derivations, is a solution of the equation

L̂jW r1jW x50W . ~10!
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The solvability condition of Eq.~10! requiresjW x to be
orthogonal to the corresponding eigenvectoraW x of the adjoint

operatorL̂†, defined byL̂†aW x50:

^jW xuaW x&50. ~11!

Note that this condition can never be fulfilled for a se
adjoint operator, and in particular cannot hold in the gradi
limit of the PGL.

We assert that the condition~11! can be considered as
criterion for the transition from an Ising wall at rest to
Bloch wall in motion. Indeed, it has previously been found
identify similar bifurcations of localized structures in lase
@12# and polarization fronts in intracavity second harmon
generation@13#. The crucial point here is that in the parame
ric Ginzburg-Landau model the Ising-Bloch threshold can
continued to the gradient limit, and the interplay betwe
gradient and nongradient effects can be analyzed. This
not possible in the models of Refs.@13,12#. The gradient
limit is the exceptional case of a transition from an Ising w
at rest to a Bloch wall that is also at rest, and the criter
~11! does not apply.

The components of the vectoraW x5(ax1 ,ax2)T obey the
system of equations

D̂1ax150, ~D̂22314g/k!ax254dax1 /k. ~12!

As follows from Eqs.~6!, the only nontrivial spatially local-
ized solution ofD̂1ax150 is

ax15Q sech2~x!, ~13!

whereQ is a constant. Thereforea1x coincides, up to a con-
stant, with the first component of the translational modejW x .
Thus the only possibility foraW x to be both different from
zero and orthogonal tojW x is that Q50 and the equation
(D̂22314g/k)ax250 has a nontrivial spatially localized
solution. It is clear from Eqs.~7! that such a solution exists i
k5k ib54g/3, or equivalentlym5m ib , where

3m ib5A9d21g2. ~14!

If this condition holds, we can setaW x5„0,sech(x)…T, and can
proceed to solve Eq.~10!, which takes the form

D̂2j r250, D̂1j r15g1 , ~15!

whereg1(x)53dj r2 /g2sech2(x). From Eqs.~7! it is clear
that j r25R sech(x), whereR is a constant to be determined
The solvability condition of the second equation of syste
~15! requires orthogonality ofg1 to z11, yielding R
58g/(9pd) and
8-3
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jW r5F 8

3p
I 11~x!2I 12~x!

8g

9pd
sech~x!

G , ~16!

where

I mn~x!5
1

Wm
Fzm2~x!E

x0

x

sechn~x8!zm1~x8!dx8

2zm1~x!E
x0

x

sechn~x8!zm2~x8!dx8G ,
m51,2, n51,2, andW154, W252. ~The general definition
of I mn will be used at several places in the later develo
ment.!

There is a corresponding degeneracy forL̂† with a single
corresponding eigenvector

aW x5aW ib5~aib1 ,aib2!T5„0,sech~x!…T. ~17!

We have now shown that Eq.~14! implies a bifurcation,
but not that it is an Ising-Bloch transition. We will do s
below, when we derive the explicit form ofjW ib in the neigh-
borhood of the transition, but note that this bifurcati
threshold coincides precisely with the Ising-Bloch transiti
in the gradient limitd50.

Comparing Eq.~14! and the existence conditions~2!, one
can conclude that an Ising-Bloch transition is possible o
for g.0, i.e., when there is linear gain in the system. In t
three-parameter space (m,g,d) the critical surface defined b
Eq. ~14! is a half cone separating regions of stability
Bloch and Ising walls. Figure 1 shows a cross section of

FIG. 1. Threshold of the Ising-Bloch transition in the pla
(d,m) for g51. Full line corresponds to Eq.~14!. Diamonds cor-
respond to the numerically found locations of the double deg

eracy of the translational modejW x , L̂jW x50W . The circleS schemati-
cally indicates the region of validity of the asymptotic theo
developed in Sec. II B.
05661
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cone for fixedd.
The singularity of the gradient limit of the PGL with re

gard to the Ising-Bloch transition is now clear. Everywhe
on the critical surface the critical Ising-Bloch mode is o
thogonal to its adjoint mode, except on the intersection of

cone with the planed50, whereL̂ becomes self-adjoint, and
thus the critical mode is necessarily parallel to its adjoi
Specifically, in Fig. 1^jW ibuaW ib& is zero everywhere on the
critical parabola, except precisely at its lowest point~where it
is equal to 2!.

We found excellent agreement between Eq.~14! and the

numerical solutions of the eigenvalue problemL̂jW5ljW ; see
Fig. 1. Detailed numerical studies of the eigenvalue probl

L̂jW5ljW have confirmed that the conditionm5m ib gives the
only instability threshold for the Ising walls. These facts e
clude the existence of secondary bifurcations in the nei
borhood of the gradient limit. We can conclude that ar
trarily small deviations from the variational limit result in th
rotation of the critical eigenvector governing the Ising-Blo
transition from being perpendicular to being parallel to t
translational mode. This rotation is not just a mathemati
curiosity but can have drastic effects on the dynamics
scribed by Eq.~1! as proved below.

2. Critical eigenvalue and eigenvector

At any point close to the Ising-Bloch threshold the critic
eigenvaluel ib is small~of ordere). It is readily verified that
to lowest order ine, i.e., close enough to the surface o
which Eq.~14! is satisfied,

jW ib5jW x2ljW r1O~e2! ~18!

is an eigenvector ofL̂ with eigenvaluel ib . On the critical
surface (e50) this eigenvalue goes to zero, and the eige
vector coincides withjW x , exactly as described above. Usin
our explicit expression for the second component ofjW r , we
can now see directly from Eq.~18! that we are indeed deal
ing with an Ising-Bloch transition, withw(x) finite in the
perturbation that distorts the Ising wall. Exactly as for t
gradient case, the effect of finitew(x) is to split the points at
which the real and imaginary parts ofF pass through zero
turning the Ising wall into a Bloch wall.

Expression~18! is valid within a sphereS of radius of
order ueu, in the three-dimensional parameter space (m,g,d)
~see Fig. 1!. S is centered on a chosen bifurcation point
the critical surface, i.e., for parameter values specified by
condition Eq.~14!, andjW r is to be evaluated at that point, o
at any point on the critical surface lying withinS.

Taking the scalar product of both sides ofL̂jW5ljW with aW x
it follows that

^ljW uaW x&50 ~19!

for any eigenvectorjW within the entire range of existence o
the domain walls. Using Eq.~18! we find that up to the
second order of perturbation, i.e., withinS, Eq. ~19! implies,
to lowest order,

-

8-4
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l^jW xuaW x&5l2^jW r uaW ib&, ~20!

where the right side has to be evaluated on the critical
face. The trivial root of this quadratic equation,l5lx50,
corresponds to the translational mode, while the other de
mines the critical Ising-Bloch eigenvalue

l5l ib5
^jW xuaW x&

^jW r uaW ib&
~21!

corresponding to the Ising-Bloch mode. The numerator
this expression can be evaluated anywhere withinS, and the
denominator anywhere on the part of the threshold surf
insideS.

Using Eqs. ~16! and ~17! we can calculatê jW r uaW ib&
5*2`

1`dxj r2aib2516g/(9pd). Thus to calculate an explici
expression forl ib we need to find a first order approximatio
for aW x within S. We considerm as the bifurcation paramete
and set k(m)5k ib1em1]mk1O(e2), where em15m
2m ib . We now write

aW x5aW ib1ebW 1O~e2!. ~22!

HerebW 5(b1 ,b2)T andb1,2 obey

D̂1b150, D̂2b25g2 , ~23!

where g253db1 /g127m ibm1 /(4g2)sech(x), the second

term arising from thek dependence ofL̂. It follows from
Eqs.~6! thatb15Q sech2(x), consistent with Eq.~13!. How-
ever, the amplitudeQ has now to be determined from th
solvability condition of the second equation of~23!. The
latter requires orthogonality ofg2 to z21 and providesQ
529m ibm1 /(pgd). Completing the solution, we obtain

aW x5F 29m1m ib /~pgd!sech2~x!

sech~x!127m1m ib /~4g2!H I 21~x!2
4

p
I 22~x!J G

1O~e2!. ~24!

Thus ^jW xuaW x&5*2`
1`dxjx1b11O(e2)54Q/31O(e2) and fi-

nally

l ib5
27~m ib2m!m ib

4g2
1O~e2!. ~25!

Equation~25! explicitly shows that Ising walls are stable fo
m.m ib . Figure 2 shows excellent agreement between
merical and analytical results forl ib . Note that Fig. 2 shows
no evidence of singular behavior asd→0. There is no sin-
gularity: in the gradient limitm ib5g/3 the general expres
sion ~25! reduces to precisely that was found forl ib

(g) @see
Eq. ~9! and @6,7##.

As already remarked, the singular behavior ind is asso-
ciated with the critical eigenvectorjW ib . The extreme sensi
tivity of the eigenmodes tod is illustrated in Fig. 3, which
05661
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shows the dependence of the normalized scalar pro
z^jW xuaW x& z/(^jW xujW x&^aW xuaW x&)

1/2 on m for different values ofd.
The magnitude of the scalar product is close to unity, i.e.,
translational mode and its adjoint are nearly parallel, eve
where except within a valley close tom5m ib ~at which the
scalar product goes through zero!. The decreasing width o
the valley ford→0 indicates that the scalar product chang
very rapidly for small udu. In the limit d→0 the change
becomes critical and it takes place suddenly at a single po
i.e., it has zero measure. The singularity also shows itse
jW r , as a consequence of which the first order term in
expansion forjW ib has coefficient;l ib /d. This implies that

FIG. 2. Eigenvaluel ib governing the Ising-Bloch transition v
the parametric pumpm for g51. Numerically found eigenvalues o

L̂ with maximal real part are shown by diamonds, while the so
lines are calculated from the analytic formula presented in Eq.~25!.
The numbers near the curves indicate the corresponding va
of d.

FIG. 3. Normalized scalar productz^jW xuaW x& z/(^jW xujW x&^aW xuaW x&)
1/2

vs m: g51. Numbers near the curves indicate corresponding va
of d. Variations of the scalar product become faster when the lin
detuningd approaches zero.
8-5
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D. V. SKRYABIN et al. PHYSICAL REVIEW E 64 056618
the region of validity of the asymptotic expansion~18! for
jW ib shrinks in the gradient limit and disappears ford50,
where one needs to use Eq.~9! for the critical eigenvector.

III. WEAKLY NONLINEAR THEORY AND ROLE
OF SPATIAL INHOMOGENEITIES

In real systems the translational invariance of Eq.~1! is
often, if not invariably, broken by inhomogeneities of th
medium, pump, and boundary conditions and by defects
such situations one expects that domain walls should d
toward the nearest minimum of an effective potential crea
by the inhomogeneities, leading to a pinning effect. If we
far from the Ising-Bloch threshold and inhomogeneities
weak, they act directly on the velocity of the wall, and t
effective gradient~Aristotelian! ‘‘force’’ acting on the do-
main wall is easily calculated by projecting the inhomoge

ities onto the translational mode ofL̂ by taking its scalar
product withaW x .

If, however, we are close to an Ising-Bloch transitio
then the dynamics become less trivial because the tran
tional degree of freedom is now coupled to the dynamics
the amplitude of the critical mode. In particular, we w
show below that the singular rotation of the critical mo
described in the previous section has a profound influenc
the wall dynamics. To this end, we derive the dynami
equations for the order parameters of domain walls clos
the Ising-Bloch transition for both the gradient and nong
dient cases and demonstrate their qualitative difference.

The presence of inhomogeneities leads to a drift of
domain wall. Therefore we assume that its positionx0 is an
adiabatic function of time,x05x0(e3t). For convenience we
switch to the frame of coordinates moving with the w
center,x→x1x0 @previously we implicitly assumedx050,
e.g., in Eq.~3!#. We assume that the parametric pump in E
~1! is a function ofX and make the following substitution:

m→m1
e3k ib

2
m3~Ak ib/2X!e2if I. ~26!

Below we restrict ourselves to the following form ofm3(x):

m35~ar1 iai !x1~br1 ibi !x
2. ~27!

The term linear inx describes any inhomogeneities of grad
ent type while the quadratic term approximates, e.g.
smooth Gaussian pump of an optical resonator. We allow
complex perturbations tom, because the global symmetr
that allowed us to assumem real is ~weakly! violated by
these weak inhomogeneities.

We can rewrite Eq.~1! in the form

] tUW 5L̂UW 1] tx0~jW x1]xUW !1NW 1e3B̂~GW 1UW !, ~28!

whereGW 5„tanh(x),0…T, and

B̂5FRem3~x1x0! Im m3~x1x0!

Im m3~x1x0! 2Rem3~x1x0!
G . ~29!
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We analyze this equation by making suitable expansions
its terms, first for the gradient and then for the nongradi
case.

A. Gradient case: dÄ0

Assuming that the deviation ofk from k ib is second order

in the perturbation we can setL̂5L̂01L̂2 , L̂05L̂(k

5k ib
(g)), where L̂2[(L̂2L̂0);e2. We now introduce the

slowly varying amplitude of the critical mode, i.e., the ord
parameter,A5A(e2t);e and search for solutions of Eq
~28! of the form

UW 5AjW ib
(g)1A2jW21A3jW31•••. ~30!

At first order we have L̂0jW ib
(g)50. The equation

for the second order is L̂0jW252NW 2, where NW 2

522 tanh(x)„sech2(x),0…T and thus jW25(j21,j22)
T

5„2 1
2 x sech2(x),0…T.

The main information, as usual, is obtained from the th
order equation

2e3L̂0jW35A3NW 31] tx0jW x1e3B̂GW 2~] tA2AL̂2!jW ib
(g) ,

~31!

where NW 352 sech3(x)„0,x tanh(x)21…T. The solvability
conditions of Eq.~31! give a system of equations forA and
x0:

2] tA5
9~m ib

(g)2m!

2g
A22A31pai12pbix0 , ~32!

4

3
] tx01ar12brx050. ~33!

These are the dynamical equations we seek. In this grad
case there are separate equations governing the Ising-B
transition and the wall motion. As expected, the location
the wall is unaffected by the amplitudeA of the critical
mode. Any real positive gradient of the pump, i.e.,ar.0,
br50, results in motion of the tanh(x)-like domain wall with
negative velocity23ar /4 and of the2tanh(x)-like domain
wall with positive velocity 3ar /4. If br5” 0 andarbr,0 then
the wall will be pinned at the pointx052ar /(2br). The
pinning position is stable ifbr.0 and unstable otherwise.

In the absence of perturbations the equation forA de-
scribes a classic pitchfork bifurcation.A couples only to the
imaginary part of the spatially dependent perturbation whi
if present, makes the Ising-Bloch transition an imperfe
pitchfork bifurcation. A spatially uniform perturbation ha
previously been shown to render the pitchfork imperfe
leading to interesting interaction dynamics of front pairs@2#.

B. Nongradient case:dÄ” 0

For arbitrary small deviations from the gradient limit th
critical mode collapses onto the translational one and th
fore the order parameter evolution is expected to be
8-6
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PERTURBATION THEORY FOR DOMAIN WALLS IN THE . . . PHYSICAL REVIEW E 64 056618
scribed by a single equation for the position of the wall.
this case it is more convenient to proceed along the line
the method applied in Sec. II B, which does not require

asymptotic expansion of the operatorL̂. We simply assume
that the system parameters are sufficiently close to the Is
Bloch transition. The distance from the transition bound
can be conveniently measured by the value of^jW xuaW x&, which
should be taken to be of ordere2. Thus the weakly nonlinea
theory developed below has narrower region of validity th
the linear theory of Sec. II B. In order to guarantee cons
tency with the rest of the expansion, we introduce additio
assumptions about the time derivatives of the position, tak
] tx0;e and ] t

2x0;e3. To solve Eq. ~28! we insert the
asymptotic expansion

UW 5] tx0jW r1~] tx0!2jW21~] tx0!3jW31••• ~34!

and find

2L̂@] tx0jW r1~] tx0!2jW21~] tx0!3jW3#

52] t
2x0jW r1] tx0@jW x1] tx0]xjW r1~] tx0!2]xjW2#

1~] tx0!2NW 21~] tx0!3NW 31e3B̂GW 1O~e4!,

~35!

whereNW 2 andNW 3 are second and third order nonlinear term
The qualitative difference in the leading order terms

Eqs. ~30! and ~34! indicates that no smooth transition b
tween weakly nonlinear dynamical theories for gradient a
nongradient cases can be expected. This is again becau
the nongradient case there is in fact only one, though deg
erate, critical mode, while in the gradient case there are
different and mutually orthogonal modes.

SinceL̂ is a singular operator, we must impose a solvab
ity condition, by requiring the right hand side of Eq.~35! to
be orthogonal toaW x . Using symmetry arguments it is pos
sible to demonstrate that all terms of ordere2 are equal to
zero so that we are left with a single differential equation
the wall position:

^jW r uaW x&] t
2x05^jW xuaW x&] tx01^]xjW21NW 3uaW x&~] tx0!3

1^B̂GW uaW x&, ~36!

where NW 35(n31,n32)
T, jW25(j21,j22)

T, n32

524 tanh(x)(j r1j221j21j r2)22j r2
3 22j r2j r1

2 , j225(8g/
9pd) f 1(x), j215 f 2(x)2(x/2)(8g/9pd)2 sech2(x), and
f 1,2 solve the parameter independent equationsD̂2f 1

5tanh(x)sech(x)(114j r1) and D̂1f 25(8/3p) f 12]xj r1

16 tanh(x)j r1
2 . After some algebra one can find that Eq.~36!

transforms into the desired equation governing the front
namics in the vicinity of a nongradient Ising-Bloch trans
tion:
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2] t
2x05

27~m ib2m!m ib

2g2
] tx02S 2F 8g

9pdG2

1CD ~] tx0!3

1F9pd

8g Gp~ai12x0bi !, ~37!

whereC.0.72 is a constant that can be evaluated num
cally.

This is a fully explicit amplitude equation governing th
dynamics of the domain walls in the vicinity of the Ising
Bloch transition and in the presence of spatial inhomoge
ities. The complex calculations leading to the manifes
negative coefficient of (] tx0)3 are amply repaid, because w
obtain the important result that the Ising-Bloch transition
the parametric Ginzburg-Landau equation is always sup
critical.

The next important consequence of Eq.~37! results if we
ignore spatial inhomogeneities and look for a stationary
lution, i.e., constant front velocity. We find that the equili
rium velocity v of the Bloch walls in the vicinity of the
Ising-Bloch transition obeys

v25
27~m ib2m!m ib

2g2~2@8g/9pd#21C!
. ~38!

This expression is characteristic of a pitchfork bifurcatio
with v as the order parameter. Expressions for the velocity
the Bloch walls obtained previously@7,10# are valid only for
small d and far from the Ising-Bloch transition, since the
were derived under the assumption of small deviations fr
the gradient limit. Our expression Eq.~38! is instead valid
only in the vicinity of the transition, but arbitrarily far from
the gradient limit. It thus represents a substantial extens
of previous results. Note that in the original coordinatesX
andt Eq. ~38! should be replaced bykv2/2. Taking this into
account, we can compare the two expressions for the w
velocity, our Eq.~38! and Eq.~22! from Ref. @10#, in the

FIG. 4. Comparison between numerical~diamonds! and analyti-
cal results~full line! given by Eq.~38! for velocity of the Bloch
wall. g51, d50.3.
8-7
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limit udu!1, um ib2mu!1 where both formulas are valid
Making the appropriate expansions and substitutions we
precise correspondence between the two expressions@14#.
Comparison of Eq.~38! with values of the velocity compute
by the direct modelling of Eq.~1! is shown in Fig. 4.

Considering now the response to spatial inhomogenei
we note that in the nongradient case the wall motion
driven by phase perturbations tom, again in complete con
trast to the gradient limit in which it is the real part ofm that
induces motion—see Eq.~33!. It follows from Eq. ~37! that
where the Ising wall is stable a phase gradient perturba
causes it to drift in the direction determined by the sign
the productaid. Figure 5 shows examples from numeric
simulations of Eqs.~1! and ~27! that confirm and illustrate
this prediction. Ifbi5” 0 then Eq.~37! has a time independen
solutionx052ai /(2bi), i.e., a pinning point. Stability of the
pinning point is determined by the roots of the characteri
equationl25l ibl1bip@9pd/8g#. If bid,0 and l ib,0,
then the domain wall relaxes to its pinning position eith
monotonically or, for l ib

2 ,4bip@9pd/8g#, with oscilla-
tions. Thus, sufficiently close to the Ising-Bloch transitio
the Ising walls exhibit damped oscillations, a dynamics t
is impossible in the gradient limit of the PGL. When crossi
the transition point at whichl ib50, the wall becomes Hop
unstable, leading to undamped oscillations of its posit
near the pinning point~see Fig. 6!. If bid.0 then the domain
walls cannot be pinned by the inhomogeneity. Note that
cillating fronts in the vicinity of the transition from rest t
motion have also been previously reported in the special c
of a reaction diffusion system@15#.

By comparing the results of Secs. III A and III B we ca
conclude that arbitrarily small nongradient effects lead to
appearance of time periodic dynamics of a pinned dom
wall, which is instead prohibited in the gradient limit. Th
origin of this effect is the singular rotation of the critic
eigenvector, which leads to a qualitatively differe
asymptotic expansion to be used in the two cases.

FIG. 5. Spatiotemporal evolution of the Ising wall in the pre
ence of a positive linear gradient for opposite signs of the detun
d: ~a! d520.4, ~b! d50.4. Other parameters areg51, m50.5,
ar5br5bi50, ai50.0055. The darkest areas correspond to
smallest values ofuFu.
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IV. SUMMARY

We have considered dynamical and stability properties
domain walls in the vicinity of the Ising-Bloch transition an
have demonstrated that the critical eigenvector respons
for the transition undergoes a singular rotation when a
trarily small nongradient effects are included. We show
that the Ising-Bloch threshold and critical eigenvalue va
smoothly between the gradient and nongradient cases,
we derived explicit analytic expressions for the threshold a
eigenvalue. Weakly nonlinear asymptotic theories have b
developed in the vicinity of the transition and in the presen
of spatial inhomogeneities. An explicit expression for t
velocity of Bloch walls, valid even far from the gradien
limit, has been derived. It was shown that an Ising w
trapped by a pinning potential may exhibit damped osci
tions on approach to the pinning point, while a Bloch w
may oscillate spontaneously around a pinning point. S
oscillatory dynamics is perhaps the clearest practical sig
ture of the singular Ising-Bloch dynamics identified in th
work. It should be practically accessible in experiments sim
lar to that described in@8,9# where spontaneous oscillation o
Bloch walls in a layer of liquid crystal were observed in th
presence of inhomogeneous magnetic fields. Suppressio
transverse instabilities@8,9# can be achieved in quasi-one
dimensional geometries.
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FIG. 6. Oscillations of the Bloch wall in the parabolic potentia
g51, m50.4, d50.25, ar5br5ai50, bi50.000 15. The darkes
areas correspond to the smallest values ofuFu.
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