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• We analyzed marine heatwaves based on
satellite and field, near-shore tempera-
tures.

• Satellites detect open ocean heatwaves
but overestimate near-shore ones.

• Alongshore upwelling prevents open
ocean marine heatwaves from reaching
the shore.

• We develop a method to clear satellite
biases and reconstruct near-shore
heatwaves.

• Half of the six-fold increase in marine
heatwaves seems related to ocean
warming.

• Accounting for sea warming reduces to
half the increasing trend in marine
heatwaves.
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 Analyses of long-term temperature records based on satellite data have revealed an increase in the frequency and in-
tensity of marine heatwaves (MHWs) in the world oceans, a trend directly associated with global change according to
climate model simulations. However, these analyses often target open ocean pelagic systems and rarely include local
scale, field temperature records that are more adequate to assess the impact of MHWs close to the land-sea interface.
Here, we compared the incidence and characteristics of open ocean MHWs detected by satellites with those observed
in thefield over two decades (1998–2019) at two temperate intertidal locations in the central Cantabrian Sea, southern
Bay of Biscay. Satellite retrievals tended to smooth out cooling events associated with intermittent, alongshore upwell-
ing, especially during summer. These biases propagated to the characterization of MHWs and resulted in an overesti-
mation of their incidence and duration close to the coast. To reconcile satellite and field records, we developed a
downscaling approach based on regressionmodeling that enabled the reconstruction of past temperatures and analyze
MHW trends. Despite the cooling effect due to upwelling, the temperature reconstructions revealed a six-fold increase
in the incidence of MHWs in the Cantabrian Sea over the last four decades. A comparison between static (no trend) vs.
dynamic (featuring a linear warming trend)MHWdetection thresholds allowed us to attribute over half of the increase
in MHW incidence to the ocean warming trend. Our results highlight the importance of local processes to fully char-
acterize the complexity and impacts of MHWs on marine coastal ecosystems and call for the conservation of climate
refugia associated with coastal upwelling to counter the impacts of climate warming.
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1. Introduction

Marine heatwaves (MHWs) are transient episodes of extreme water
temperatures that leave a detrimental and long-lasting impact on the struc-
ture and functioning of marine ecosystems (Hobday et al., 2016; Oliver
et al., 2021). Analyses of long-term satellite temperature records have re-
vealed an increase in the frequency, intensity and duration ofMHWs during
the last century (Oliver et al., 2018). Such trends parallel the gradual in-
crease in ocean temperature due to anthropogenic greenhouse gas emis-
sions (Gulev et al., 2021), which lies behind the dramatic increase in the
occurrence and intensity of MHWs in recent decades (Laufkötter et al.,
2020). In fact, projections under different socioeconomic development sce-
narios foresee a sustained increase in the likelihood and severity of MHWs
around the world in coming years (Frölicher et al., 2018; Fox-Kemper et al.,
2021).

Discrete events like MHWs often pose a more serious threat to marine
life than changes in mean state due to the sudden and long-lasting conse-
quences triggered by extreme perturbations (O’Leary et al., 2017). Fluctua-
tions and extremes in water temperature are an intrinsic component of
environmental variability that shapes the structure and functioning of ma-
rine ecosystems (Denny et al., 2009; Clarke, 2017). In practice, despite
growing concerns, analyzing the impact of MHWs becomes a complex
task. Temperature extremes leading to MHWs are by definition rare,
short-lived warming episodes above normal conditions that often last for
a few days. As a consequence, the detection and characterization of
MHWs remains challenging and demands sustained records of high-
frequency observations.

Long-term temperature records are necessary to define a meaningful
baseline and characterize extremes, while high-quality, frequent observa-
tions are important to avoid biases and ensure the proper detectability of
MHW events (Hobday et al., 2016; WMO, 2018). Such constraints become
more acute when attempting to characterize changes in the incidence and
intensity of MHWs. High data demands make that most MHW studies
tend to rely on satellite or model-based datasets, and to focus on open
ocean pelagic environments away from the coastline, where the presence
of land and local processes like river runoff and coastal upwelling limit in-
direct approaches (Smit et al., 2013; Stobart et al., 2016; Schlegel, 2017).
These biases may extend to the detection of small-scale variability and tem-
perature extremes (Smale andWernberg, 2009; Smit et al., 2013). In fact, it
has been recently shown that remotely-sensed products may overestimate
coastal SSTs in upwelling prone locations (Meneghesso et al., 2020) as a re-
sult of the differences between the warming rates in offshore vs. nearshore
waters (Varela et al., 2018), which may ultimately lead to the overestima-
tion of MHW trends (Varela et al., 2021). This raises concerns about the ac-
tual impact of MHWs in coastal areas.

Intertidal and shallow coastal areas disproportionately contribute valu-
able ecosystem services to humankind (Costanza et al., 2014). These highly
diverse and productive habitats control land erosion and buffer coastal pol-
lution through carbon sequestration and nutrient cycling (Barbier, 2017).
They also provide commodities ranging from fertilizers and foods to com-
pounds of industrial use, which are harvested from algae and fisheries or
collected from aquaculture. MHWs compromise the sustained provision of
these services and the restoration of currently degraded ecosystems
(Duarte et al., 2020), and represent a threat to blue carbon nature-based so-
lutions that may contribute to mitigate climate change (Macreadie et al.,
2021). Together, these issues call for an improved monitoring and assess-
ment of the impact of MHWs in coastal areas as a way to guide the sustain-
able use and conservation of living marine resources.

Here, we analyze the incidence of MHWs along the coasts of the central
Cantabrian Sea, in the Northeast Atlantic. This stretch covers a sharp bio-
geographical transition from cool to warm conditions where temperature
extremes have prompted abrupt changes in the structure of coastal marine
communities in recent years (Viejo et al., 2011; Fernández, 2011; Voerman
et al., 2013; Fernández, 2016). Taking advantage of high-frequency, two-
decade long temperature field records, we assessed the reliability of coarse
scale satellite data tomonitorMHWs in coastal areas. The analyses revealed
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important biases that resulted in the overestimation of the incidence of
MHWs by satellites during periods of intense upwelling. To reconcile satel-
lite and field measurements we developed a statistical downscaling ap-
proach, a technique often used to obtain finer-scale climate information
from coarse resolution products (see Wilby and Wigley, 1997). Such ap-
proach enabled us to account for the impact of upwelling on nearshore tem-
peratures, exploit the prolonged coverage of the satellite record and
hindcast the incidence ofMHWs during the last four decades.We character-
izedMHWs using two different baseline periods: static -based on the clima-
tological seasonal cycle- vs. dynamic-featuring a linear warming trend-. The
comparison of both approaches provides useful insight on the potential con-
tribution of climate warming to the increased incidence of MHW. Our re-
sults highlight the contribution of upwelling to buffer the impact of open
ocean MHWs in coastal areas, but in parallel reveal a concerning increase
in the incidence and intensity of MHWs due to climate warming.

2. Materials and methods

2.1. Study area

We analyzed the occurrence and intensity of MHWs in the central
Cantabrian Sea (Fig. 1), a narrow (30–40 km) temperate coastal shelf sea lo-
cated in the southern Bay of Biscay (NE Atlantic, Gil et al., 2002). To this
end, we combined data from large scale ocean reanalysis and satellite mon-
itoring of the temperature of the ocean surface with field measurements at
two selected coastal locations—Oleiros (6.200°W 43.575°N) and La Franca
(4.575°W 43.395°N)— which enabled us to assess and calibrate satellite
data (Fig. 1).

Large scale gradients in ocean conditions anticipate spatial variability in
the incidence and characteristics of MHWs along the entire Cantabrian Sea.
Water temperatures increase eastwards as climatic conditions become less
oceanic and more continental due to the proximity of the Eurasian land-
mass (Koutsikopoulos et al., 1998). Atmospheric circulation further pre-
sents a marked seasonality, with prevailing southwesterly winds during
autumn and winter, and northeasterly winds during spring and summer
that are more intense towards the west. The easterly component flows par-
allel to the coast and causes intermittent upwelling events that, especially
during summer, bring cool waters to the surface and erode the seasonal
thermal stratification of the upper layer (Gil et al., 2002), further contribut-
ing to accentuate the eastward gradient in temperature (Botas et al., 1990).

Oleiros and La Franca are representative of large-scale gradients in envi-
ronmental conditions in the Cantabrian Sea and their effect on marine life.
The two locations are separated by just ~100 kmof coast but, halfway amid
them, the presence of Cape Peñas alters the predominant east-west orienta-
tion of the coastline (Fig. 1). This headland juts 10 km into the sea, affecting
coastal circulation by deflecting internal waves and enhancing the gradient
towards more intense seasonal alongshore upwelling in the west (Lavín
et al., 2006; Llope et al., 2006). As a consequence, the cape marks the ap-
proximate location of a sharp biogeographical transition from cool to
warmadapted intertidal communities towards the interior of the Bay of Bis-
cay (Anadón and Niell, 1980). Both locations are otherwise similar; they
are rocky shores exposed to the open ocean, located away of any known an-
thropogenic heat source, and experiencingmoderate semidiurnal tideswith
a range of up to 4.5 m during the spring tides.

2.2. Temperature time series and ancillary datasets

The incidence of MHWs was analyzed based both on field and remote
sensing temperature time series data. To examine potential biases among
the two data sources, we further retrieved time series of alongshore upwell-
ing and of heat fluxes across the air-sea interface, which provided a proxy of
water column stratification.

2.2.1. Field temperature data
Daily field temperature measurements were collected at Oleiros and La

Franca from Jan. 1998 to Mar. 2019 (~21 years) using TidbiT V2 water



Fig. 1. Map of the Cantabrian Sea showing the study areas of Oleiros and La Franca, where the field observations were collected. Salmon-colored rectangles represent the
0.25° localities covering the spatial extent of the extended modelled temperature series (n = 25). The locations of Cape Estaca de Bares and the mouth of the Adour River
serve as reference to indicate the edges of the extended series. Bathymetry data were extracted from the GEBCO 2021 Grid (GEBCO Compilation Group, 2021).
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temperature dataloggers (Onset Computer Corp). The loggers were at-
tached to the rock and protected from wave action by a steel mesh. Tem-
perature data were retrieved with a HOBO Optic USB Base Station
reader and converted to text files using HOBOWare Pro v.3.7.10
(Onset Computer Corp). These devices have a maximum sustained tem-
perature range of 0°-30 °C in water and an accuracy of ±0.21 °C over 0°–
50 °C. The dataloggers were programmed to retrieve a single datum per
hour before attaching them at depths 0.3–0.6 m above the lowest astro-
nomical tide to ensure they were always submerged at high tide. The
time series was filtered to retain the two records per day that correspond
to water temperature at semidiurnal high tides. Then the average of
high tide values was calculated to estimate daily mean sea temperature
and applied a backward 5-day moving average to smooth out high
frequency noise. The resulting daily series was 21 years long but pre-
sented ~6% and ~ 18% missing data at Oleiros and La Franca, respec-
tively. Though time series with these features would be considered
sub-optimal according to Hobday et al. (2016) recommendations, they
remain suitable for MHW research (Schlegel et al., 2019).

2.2.2. Satellite temperature data
Sea surface temperature (SST) datawere retrieved for the entire coast of

the Cantabrian Sea from the NOAA Optimum interpolation 0.25° daily sea
surface temperature analysis (oiSST version 2, Sep. 1981–2019, see
Reynolds et al., 2007, Banzon et al., 2016 and www.ncdc.noaa.gov/oisst
for further details). The assessment with field observations used data for
the nearest pixel locations to the study sites (6.125°W 43.625°N for Oleiros;
4.625°W 43.625°N for La Franca). To ensure temporal homogeneity
(Reynolds and Chelton, 2010), we used the Advanced Very High-
Resolution Radiometer (AVHRR-only) product from the Pathfinder Version
5 dataset (Casey et al., 2010). This dataset includes an optimal interpolation
step to fill gaps and aggregate fine scale high resolution retrievals (~1 km)
that effectively smooths original observations and avoids biases inmeasure-
ments close to the land-sea interface. Therefore, satellite-based SSTs pro-
vide a reliable temperature record for monitoring MHW incidence in
open ocean waters (Hobday et al., 2016).

2.2.3. Coastal winds and upwelling
Hourly wind speed vectors over the ocean surface were extracted from

ERA5 0.25° reanalysis data from the nearest pixel locations to the study
sites (6.25°W 43.75°N for Oleiros; 4.5°W 43.5°N for La Franca), for the pe-
riod Jan. 1981–Dec. 2019. Data were retrieved from the Copernicus Cli-
mate Change Service (C3S) of the Climate Data Store (CDS) (Hersbach
et al., 2020). Wind stress, τ [N m−2], was calculated from neutral wind
speed vectors at 10 m (U10 [m s−1]) using the bulk formula; τ = ρair · CD ·
U10 · |U10|, where ρair is air density (taken as 1.223 kg m−3) and CD is a
non-dimensional drag coefficient. CD was estimated as a function of U10

based on Large et al. (1994):

103CD ¼ 2:70
U10

þ 0:142þ 0:0764U10
3

Alongshore coastal upwelling was then calculated based on estimates of
the seaward Ekman transport (T [m2 s−1]) along a segment of coast of a
given length (L = 1 m), which gives Bakun (1973) upwelling index, bui ¼
TL ¼ τa L

ρsw ƒ [m
3 s−1]. Transport depends on the alongshore component of

wind stress, τa, which was estimated assuming a prevailing east-west orien-
tation of the coastline; seawater density, ρsw, set to 1025 kg m−3, and the
Coriolis parameter ƒ = 9.96 10−5 s−1, corresponding to 43°N. An 11-day
simple moving average was applied on the resulting bui estimates to inte-
grate the cumulated impact of high frequency wind variability on cross-
shore transport (Otero and Ruiz-Villarreal, 2008; García-Reyes and
Largier, 2010). Positive bui values correspond to the upwelling of deep wa-
ters and leads to surface cooling, whereas negative values correspond to
downwelling, sinking and warming.
2.2.4. Air-sea heat fluxes and stratification
Time series of ocean surface net heat flux, Qi [Wm−2], were calculated

based on data from theModern-Era Retrospective analysis for Research and
Applications version 2 (MERRA-2) V5.12.4 ocean surface diagnostics prod-
uct (M2T1NXOCN, GlobalModeling&AssimilationOffice [GMAO], 2015).
Hourly estimates were retrieved for each 0.5° × 0.625° grid cell corre-
sponding to the nearest pixel locations to the study sites (6.2500°W
43.75°N for Oleiros; 4.6875°W 43.5°N for La Franca), for the period Jan.
1980–Oct. 2020.

Surface waters in the Cantabrian Sea follow the characteristic seasonal
cycle of temperate shelf seas (e.g., Simpson and Sharples, 2012). During
winter (Dec-Feb), convectivemixing leads to the formation of a deep homo-
geneous layer that lasts until spring (Mar-May), when favorable weather
conditions eventually generate a shallow,mixed layer that persists through-
out summer (Jun-Aug) until autumn (Sep-Nov) storms break stratification
(Lavín et al., 2006). Surface heat exchange is the dominant buoyancy
source for seasonal mixing in most shelf seas, so the net heat flux (Qi) was
used as a proxy for thermally driven seasonal stratification (with positive
[negative] Qi matching seasonal stratification [mixing]). Net heat flux
was calculated asQi=Qs(1-A)–Qb–Qe–Qc, whereQs represents solar inputs
to the ocean surface,A is albedo,Qb is back radiation,Qe andQc are sensible
and latent heat fluxes respectively. An 81-day simple moving average was
applied to smooth out a signal to distinguish seasonal stratification vs.
mixing periods.
2.3. Detectability and trends in coastal marine heatwaves (MHWs)

The analysis was structured in three steps. First, a set of regression
models was developed to downscale and calibrate the satellite time series
against field observations, which allowed us to explore potential biases
among the two series due to the proximity to land. Then, the impact of de-
viations among satellite and local field measurements on the detection and
characterization of MHWs was examined. In a third set of analyses, the
models were used to reconstruct past temperatures and assess the

http://www.ncdc.noaa.gov/oisst
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contribution of the underlying warming trend on the incidence ofMHWs in
the Cantabrian Sea.

2.3.1. Assessment and downscaling of satellite temperatures
In the first analysis, we tested a set of nested statistical downscaling

models to assess and reconcile potential deviations between satellite tem-
peratures and those recorded in the field (Table 1). Downscaling is a tech-
nique that allows to derive finer-scale projections of climate variables
affected by local processes not captured by coarse resolution products
(see Wilby and Wigley, 1997). All models initially assumed that field tem-
peratures are linearly related to satellite retrievals. Such relationship ac-
counts for the expected offset between field point measurements and the
large areas averaged by the satellite. Local site effects account for extra de-
viations due to the unique characteristics of each location, from local ba-
thymetry and circulation to the degree of land contamination in satellite
retrievals.

The baseline model featured the above defined assumption of a simple
linear relationship between field and satellite temperature measurements
with a different intercept on each site (Tƒ = β0 + β1site + β2Ts, Mod1 in
Table 1). Deviations between both series may grow during coastal upwell-
ing and downwelling depending on water column stratification, so we
tested two extra models, Mod2 and Mod3, which feature an interaction be-
tween bui as a proxy of cross-shore transport and net heat flux (Qi) as a
proxy of stratification. The interaction term accounts for the varying impact
of upwelling on surface temperature; coastal upwelling (downwelling) may
cool (further warm) surface waters when the column is stratified. However,
upwelling may not alter surface temperatures when the column is fully
mixed in winter, though downwelling may still transport slightly warmer
waters from deeper areas offshore.

Mod2 and Mod3 attempt to capture potential differences in surface
water temperatures near the shore vs. more oceanic conditions. Mod2 is a
linear regression model where the interaction between cross-shore trans-
port and net heat flux is assumed to be linear (i.e., a multiplicative, symmet-
ric effect see Mod2 in Table 1). On the other hand, Mod3 is a generalized
additive model (GAMs; Hastie and Tibshirani, 1986; Wood, 2017), a type
of model especially useful to describe non-linear effects of independent var-
iables without an a priori specification of the functional relationships (see
Mod3 in Table 1). In particular, Mod3 includes regular smooth terms (s, spe-
cifically a thin-plate regression spline) to describe individual non-linear ef-
fects of bui and Qi, and a tensor product smooth (ti) to incorporate their
interactive non-linear effect and account for their different units (Wood,
2017). Such interaction enables a varying effect of cross-shore transport
on deviations between satellite and field temperatures across net heat
flux levels. The complexity of smooth terms inGAMs is determined through
cross-validation to avoid overfitting (Wood, 2017).

Mod3 assumes that the effect of upwelling on satellite deviations is ho-
mogeneous along the coast. To assess the reliability of this assumption,
we reconstructed the field signal at La Franca using satellite, bui and Qi
data from the closest pixel and the parameters derived from fitting of
Mod3 only using data from Oleiros, and vice versa. As shown in Figs. S1
and S2 in the Supplement, these analyses result in predictions i) that
Table 1
Model selection table summarizing the assessment of alternative hypotheses about the be
lower AIC score were favored. Tf stands for field measurements [°C]. Predictor variable
[103 m3 s−1 km−1]) and Qi (net heat flux [W m−2]). The coefficient β0 denotes the in
andMod2 are linearmodels,Mod3 is a GeneralizedAdditiveModel (GAM). InMod3, s(x)
a flexible relationship between Tf and the covariate x, while ti(x,y) represents a tensor sm
different measurement units (Wood, 2017).

Name Description

Mod1 Linear effect of satellite temperature series (Ts) and different intercept depending on site.

Mod2
Ts linear effect and linear interactive effect between coastal up/downwelling (bui)
and net heat flux at the sea surface (Qi).

Mod3 Ts linear effect and non-linear interactive effect between bui and Qi at the sea surface.

4

reproduce near-shore SSTs more reliably than the satellite (Fig. S1) and
ii) comparable to those based on a model trained using all data and featur-
ing a local upwelling effect (Fig. S2), suggesting that Mod3 may provide a
reasonable description of the effect of upwelling along the coast.

Model fits were checked for Mod1, Mod2 and Mod3 for the presence of
any non-random pattern in the residuals, and then ranked them using the
Akaike's Information Criterion (AIC, Burnham and Anderson, 2002).

2.3.2. Detection and characterization of marine heatwaves (MHW)
We analyzed the incidence and magnitude of MHWs following Hobday

et al. (2016) criteria, who defined MHWs as warm periods that last for five
or more consecutive days during which temperature rises above a seasonal
climatology of the 90th percentile (P90) of the temperature at a given loca-
tion. Previous studies estimated P90 threshold climatologies using a cen-
tered 30-day moving window. Such an approach introduces a directional
lag by pooling temperatures consistently increasing or decreasing along
the seasonal cycle. For instance, P90 estimates for late July are partially
based on warmer temperatures from early August, making it more difficult
to detect actual MHWs. To avoid potential biases, we implemented a para-
metric Monte Carlo approach to estimate P90. For each SST time series, we
fitted a GAM featuring a constant seasonal cycle and a linear trend. Then,
we randomly sampled 10,000 model parameter vectors from their fitted
mean and covariance using a multivariate normal random number genera-
tor. Sample parameters were used to simulate daily surrogate time series,
providing a large sample to retrieve unbiased estimates of P90 for each sim-
ulated date. Surrogates incorporating only the constant seasonal cycle term
result in a static threshold that does not vary between years, but adding sim-
ulated trends result in a time-moving P90 threshold. This dynamic threshold
is useful to assess the impact of long-term trends in MHWs (see
Section 2.3.5 below). Resulting thresholds were further smoothed using a
15-day central moving average to avoid wiggles.

2.3.3. Assessment of MHWs based on field observations
The second analysis focused on the incidence of MHWs at the two study

locations of Oleiros and La Franca. The incidence and characteristics of
MHWs were compared based on field, satellite and model-based recon-
structions of coastal sea surface temperature during the period Jan. 1998–
Mar. 2019. MHW detection thresholds were calculated using all available
data to characterize overall changes in the incidence of MHWs. We con-
structed presence-absence confusion matrices to assess the ability of each
temperature series to detect MHWs, setting field observations as reference
(Allouche et al., 2006). Additionally, we analyzed other MHW features
such as duration (dur) and maximum, mean and accumulated intensity of
detected events (imax, imean, icum, respectively; Hobday et al., 2016). To en-
sure a fair comparison, missing dates in temperature field records were
masked on both satellite and model-based temperature reconstructions be-
fore the analysis and separately at each station.

2.3.4. Temperature reconstruction and association of MHWs to climate warming
In the third analysis we used the best fitting model (Mod3 in Table 1,

based on AIC scores) to hindcast coastal temperature variability based on
st strategy to reconcile satellite and field temperature measurements. Models with a
s are site (study area), Ts (satellite measurements [°C]), bui (Bakun Upwelling Index
tercept, whereas the other β measure the effect of each predictor separately. Mod1
stands for a regular smooth term (specifically a thin-plate regression spline) featuring
ooth allowing a nonlinear interaction between covariates x and y,which may have

Equation logLik dLogLik df AIC dAIC AIC
weights

Tf = β0 + β1site + β2Ts −18.03 0 4 36.07 7304 0
Tf = β0 + β1site+ β2Ts + β3bui+ β4Qi

∗ Qi
−15.56 2465 7 31.14 2380 0

Tf = β0 + β1site+ β2Ts + s1(bui) + s2
(Q1) + ti(bui,Qi)

−14.35 3676 27 28.76 0 1
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satellite and ocean reanalysis data. This approach enabled us to extend the
analysis back in time and to examine trends in the incidence of MHWs dur-
ing the last four decades (Sep. 1981–Dec. 2019). Also, the spatial extentwas
broadened to cover the entire Cantabrian Sea from Cape Estaca de Bares in
the west to the mouth of the Adour River in the east (n = 25, Fig. 1). Up-
welling index (bui) and heat flux (Qi) reanalysis fields were aligned with
SST data using first-order, conservative interpolation.

Finally, we assessed changes in trend estimates for the incidence and
features of MHWs resulting when using a static detection threshold based
on the climatological seasonal cycle vs. a dynamic baseline incorporating
a linear warming trend (Oliver et al., 2021). For imax, imean, icum and dur of
detectedMHWs, these trends were estimated using simple linear regression
(e.g., Chandler and Scott, 2011). MHW frequency and the number of MHW
days per year are discrete variables (i.e., counts of events during some pe-
riod of time) whose residuals are usually skewed following a Poisson distri-
bution, so these trends were estimated using Poisson generalized linear
models (e.g., Gelman and Hill, 2007). We performed standard residual
checks and tests to assess model adequacy and accounted for
overdispersion of MHW counts when necessary (Gelman and Hill, 2007).

2.3.5. Technical implementation details
Statistical model fitting was implemented in R version 4.1.2 (R Core

Team, 2021) making extensive use of libraries mgcv (Wood, 2017) for
GAMs, caret (Kuhn, 2020) and bbmle (Bolker, 2020) for confusion matrices
andmodel predictions. MHWevents were detected and characterized using
the library heatwaveR (Schlegel and Smit, 2018), which implements the def-
inition of MHW proposed by Hobday et al. (2016). Libraries tidyverse
(Wickham et al., 2019), ncdf4 (Pierce, 2019), lubridate (Grolemund and
Wickham, 2011), plyr (Wickham, 2011), zoo (Zeileis and Grothendieck,
2005), gratia (Simpson, 2021), reshape2 (Wickham, 2007), fields (Nychka
et al., 2017), data.table (Dowle and Srinivasan, 2021), sf (Pebesma, 2018),
RColorBrewer (Neuwirth, 2014), cowplot (Wilke, 2020), rnaturalearth
(South, 2017) and extrafont (Chang, 2014) were also used in the analyses
and to prepare graphs and other summaries.

3. Results

Satellite and field records of the ocean surface confirmed the predomi-
nance of cooler conditions in the westernmost station of Oleiros than in
La Franca (Table 2). Differences in surface water temperatures between
the two stations further increased during spring and summer coinciding
with the upwelling season (Apr-Sep; Lavín et al., 2006), which is also stron-
ger at Oleiros. The analysis also revealed large deviations between field and
satellite temperature records (RMSE >1.22 °C at both Oleiros and La
Franca), which increased again during the upwelling season, when satellite
temperatures tended to overestimate field temperatures by up to 5 °C
(Table 2, Fig. 2, Fig. S3& Fig. S4 in Supplementary File). Satellite retrievals
also resulted in smoother time series that lacked sudden temperature fluc-
tuations associated with upwelling and downwelling events in field series.
Table 2
Annual and seasonal estimates of mean sea surface temperature and of the Bakun upwe

Annual
Sea surface temperature [°C]

Mean
SD

Bakun Upwelling Index [103m3s−1 km−1]
Mean
SD

Spring-summer (Mar-Aug)
Sea surface temperature [°C]

Mean
SD

Bakun Upwelling Index [103m3s−1 km−1]
Mean
SD

Autumn-winter (Sep-Feb)
Sea surface temperature [°C]

Mean
SD

Bakun Upwelling Index [103m3s−1 km−1]
Mean
SD
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3.1. Assessment and downscaling of satellite temperatures

Table 1 summarizes the assessment of models reconciling field and sat-
ellite temperature time series. Model selection based on AIC scores favored
modelMod3, which features a nonlinear interaction betweenupwelling and
time-integrated heat. In essence, Mod3 lowers and raises satellite tempera-
tures during upwelling and downwelling events when Qi > 0, respectively
(Fig. 3). The same model further suggests that satellite temperatures tend
to overestimate coastal field measurements in the absence of water column
stratification (Qi < 0 in Fig. 3). The model resulted nonetheless in an excel-
lent skill (r = 0.97; r2 = 0.94), so we proceeded to reconstruct a gap-free
temperature time series at the two study locations for the period Jan.
1998–Mar. 2019 (Fig. 2, Fig. S3 & Fig. S4). As expected, the reconstructed
time series amended biases between field and satellite records due to wind-
driven, cross-shore transport, especially during spring and summer
(RMSE <0.67 °C between field and reconstructed temperatures at both
Oleiros and La Franca; see Table 2 for complementary metrics).

3.2. Detection of MHWs in field, satellite and model-based reconstructions

Deviations between temperature time series propagated to the detec-
tion of MHW, and both the number and characteristics of the MHWs
showed consistent differences between the two locations in the field, satel-
lite and reconstructed temperature time series. The overall number of
MHWs detected in the field series was 42 and 30 at Oleiros and La Franca,
respectively, suggesting regional scale asynchrony in the occurrence of
MHWs. The number of MHWs detected was similar and slightly larger
both in the satellite and modelled series than in the field, with smaller dif-
ferences with respect to MHW counts in Oleiros (41 and 46, respectively)
than in La Franca (35 and 36, respectively). The satellite and the recon-
structed series also failed to detect a large proportion of MHW days
(above a half in Oleiros, Table 3). However, the modelled series improved
the detection of MHW with respect to the raw satellite series, both in
terms of MHW and non-MHW days (Table 3). The satellite series resulted
in an overestimation of the incidence of MHWs, with a large proportion
of false positive MHW days during upwelling episodes (i.e., ~73% and
~76% of the non-MHW days classified as MHW days at Oleiros and La
Franca, respectively). The same fraction is reduced at least by a half in
the model-based, reconstructed series (17% and 37% of false positives dur-
ing upwelling events).

3.3. Trends in MHWs based on temperature reconstructions

The extended series reconstructed from satellite and reanalysis data
(Sep. 1981–Dec. 2019) revealed an average rate of warming of 0.16 °C
per decade along the coasts of the Cantabrian Sea (Table S1 in Supplemen-
tary File). Such rate exceeds mean surface warming in the global ocean
(0.11–0.13 °C per decade, Rhein et al., 2013), but it is still considerably
below the estimate based on the satellite series (0.23 °C per decade,
lling index values at Oleiros and La Franca for the period 1998–2019.

Oleiros La Franca

Field Satellite Model Field Satellite Model

15.13 15.73 15.19 15.48 16.14 15.47
1.14 1.24 1.10 1.23 1.32 1.23
– −0.10 – – −0.20 –
– 0.77 – – 0.88 –

15.61 16.11 15.50 15.89 16.53 15.92
1.23 1.27 1.19 1.31 1.40 1.23
– −0.01 – – −0.11 –
– 0.65 – – 0.73 –

14.65 15.35 14.73 15.09 15.77 15.03
1.04 1.20 1.01 1.15 1.25 1.04
– −0.20 – – −0.29 –
– 0.89 – – 1.04 –



Fig. 2. Seasonal sea surface temperature variations at Oleiros (left column) and La Franca (right column) in 2006 (top row) and 2014 (bottom row). Colored bars in red (field),
orange (satellite) and light blue (best selected model [Mod3, Table 1]) show marine heatwave days detected with each temperature series. The years shown here are among
those with themost remarkablemarine heatwaves in number and/or intensity and/or duration in the entire series (1998–2019). The rest of the years are further illustrated in
Fig. S3 & Fig. S4 in the Supplementary File.
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Table S1). Warming rates increase eastwards towards the inner Bay of Bis-
cay (Fig. S5 in Supplementary File).

The comparative analysis of MHW features based on static vs. dy-
namic detection thresholds pointed towards a potential role of long-
term ocean warming in enhancing MHWs in the Cantabrian Sea in the
past 40 years (Fig. 4). When using a static MHW detection threshold
(left column in Fig. 4) both the number of MHW events and MHW
Fig. 3.Non-linear interaction between the BakunUpwelling Index (bui) and net heatflux
and satellite temperatures.

6

days per year revealed an increase by a factor of ~1.9 per decade (i.e.,
doubling each 11 years). No significant trends were found for imax,
imean, icum and dur (p-value >0.05 in every computation), though all esti-
mates were positive. When using a dynamic MHW detection threshold
incorporating a linear warming trend in surface temperature (right
column in Fig. 4), all trends became non-significant and estimates
substantially decreased.
(Qi) based on the best selectedmodel (Mod3, Table 1) on the difference betweenfield



Table 3
Assessment of detected MHW in satellite and model-based reconstructions of coastal temperatures with respect to those detected based on field observations. Presence-ab-
sence confusionmatrices were built to compare the number of non-MHWandMHWdays detectedwith thefieldmeasurements [reference] vs. those from the satellite and the
best selectedmodel -Mod3, Table 1-, respectively [tests], within Jan. 1998 –Mar. 2019 at Oleiros and La Franca. For each approach, each date is classified as a presence (MHW)
or as an absence (non-MHW) to calculate the numbers of: true positives (both test and reference are presences), false positives (presence in the test but absence in the reference),
true negative (both test and reference are absences) and false negative (test is an absence but the reference is a presence).

Confusion matrices

Oleiros La Franca

Satellite Model Satellite Model

MHW Non−MHW MHW Non−MHW MHW Non−MHW MHW Non−MHW

Field
MHW 235 379 251 363 190 234 213 211
Non−MHW 277 6364 202 6439 330 5775 210 5895

Fig. 4. Annual values -on average for all 25 localities along the Cantabrian coast- of the features of the marine heatwaves detected with the extended modelled series using a
static (left) vs. a dynamic (right) baseline period. Red dashed lines indicate the estimate linear trend for each marine heatwave feature. The slope, proportion of variance
explained (R2), and p-value of each trend are shown. Shaded areas account for 95% confidence intervals.
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To ease the interpretation of the increase inMHW incidence throughout
the past 40 years, we arranged by decades the number of MHW days de-
tected in the extended series (Fig. 5) and mapped them to illustrate spatial
gradients along the Cantabrian coast (Fig. S6 in Supplementary File). On av-
erage for all 25 localities covering the spatial extent of the extended series, a
total of 1047 vs. 839 MHW days per decade were detected in the past four
decades when using static vs. dynamic detection thresholds, respectively
(Fig. 5). This may be interpreted as 80% of MHW days (839/1047) taking
place regardless of the underlying warming trend, while the remaining
~20% (208/1047) occurring because of it. The proportions increase to
60–40% for the period 2000–19, and to 50–50% for 2010–2019. The anal-
ysis also revealed considerable interannual and interdecadal variability,
with some years having a remarkably high number of MHW days (i.e.,
2006, 2011 or 2014; Fig. 4). Overall, the analysis based on a static baseline
period reveals a six-fold increase in the incidence of MHWs during the last
four decades, which exceeds the two-fold, steady increase observed in the
series derived using a dynamic threshold.

4. Discussion

This study combines two decades of field temperature measurements
with long term reanalysis and satellite data in a statistical downscaling ap-
proach based on regression modeling, which allowed to reconstruct past
coast-level temperatures and hindcast the incidence of MHW in the last
four decades. By including the effect of coastal upwelling and air-sea heat
fluxes, our method enabled us to predict an improved temperature series
that i) reliably reproduces near-shore sea surface temperatures, ii) retains
the satellite's spatial and temporal resolution and iii) improves MHWdetec-
tion near-shore. Also, the assessment of trends using static vs. dynamic de-
tection thresholds suggested that the underlying ocean warming trend
contributed to enhance the incidence, intensity and duration of MHWs
along the coasts of the Cantabrian Sea during the last four decades.

Downscaling of satellite data enabled the reconstruction of a tempera-
ture series to fairly capture temperature variation close to the coast,
enhancing the detection and characterization of MHW nearshores. How-
ever, some aspects of this approach limit its possible application in other
areas and require further refinement. The proposed downscaling approach
relies on long-termfield records of water temperature that are seldom avail-
able (Oliver et al., 2021). Data from meteorological station networks pro-
vide a potential alternative, with the added challenge of modeling water
temperature dynamics (e.g., Somavilla Cabrillo et al., 2011). Another caveat
lies on the number of stations needed to properly characterize downscaling
transfer functions. The two stations, Oleiros and La Franca, may not be fully
Fig. 5. Progression of the number ofmarine heatwave days decade−1 detectedwith the e
(orange) detection thresholds (see left andmiddle columns in Fig. S6). Note that we adju
in the early 1980s. Each line -for each colour- represents one locality of the 25 examined
heatwaves per decade calculated using all 25 localities for each marine heatwave detec
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representative of upwelling regimes along the southern Bay of Biscay,
which tend to be weaker towards the inner part of the Bay (Lavín et al.,
2006).

Our approach has room to improve by considering additional physical
processes modulating water temperatures along the Cantabrian shelf, like
the incidence of the Iberian Poleward Current (IPC, García-Soto et al.,
2002). This current conveys subtropical, warmwaters along the Cantabrian
continental shelf and slope duringwinter, which result inmilder conditions
that might favor the occurrence of MHWs. In other areas, it may be more
important to account for the impact of river discharge or tidal currents on
temperature. Nevertheless, the approach provides reasonable, robust pre-
dictions and reassures the use of downscaling approaches to extend the ap-
plicability of coarse satellite and reanalysis products near the shore.

Disparities between field and satellite temperature records are compat-
ible with those reported in prior studies regarding the reliability of near-
shore satellite temperature data (Stobart et al., 2008; Smit et al., 2013;
Stobart et al., 2016). The importance of these biases depends on the specific
context and the question at hand. Analyses of short-term temperature ex-
tremes like MHWs, which entail fine-scale recording of swift temperature
variations, may be compromised by small scale biases (Smale and
Wernberg, 2009). On the other hand, satellites provide a reliable approach
to assess the incidence and impact of surface MHWs in the open ocean
(Fewings and Brown, 2019). Downscaling methods are routinely used to
project climate variables from coarse-resolution climate models to a local-
scale (e.g., Gaitán et al., 2013; Gaitán, 2016;Muhling et al., 2017) and to re-
produce historical records of specific events (Hirsch et al., 2021). Our ap-
proach relies on analyses of air-sea heat fluxes and estimates of wind-
induced cross-shore transport to calibrate satellite estimates against field
measurements through regression modeling.

Deviations between satellite and field temperature records during
coastal upwelling events depend on water column stratification (Botas
et al., 1990; Lavín et al., 2006; Llope et al., 2006), but they mainly reflect
the coarse resolution of the satellite product employed here. First, temper-
ature variability close to the land-seamargin occurs at smaller spatial scales
than offshore and, as a result, the effect of local physical processes such as
coastal upwelling might go unnoticed to it (Smit et al., 2013). Second, the
coarse size of the satellite pixel entails an unavoidable interpolation with
temperatures more offshore. In general, open ocean waters have a greater
inertia and vary at a slower pace than shallow waters (Marin et al.,
2021a). In particular, upwelling-prone coastal areas tend to present signif-
icant differences inwarming rates when comparing trends in nearshore and
offshore waters. Coastal cooling due to upwelling weakens trends in surface
temperature (Gentemann et al., 2017; Fewings and Brown, 2019) and
xtendedmodelled temperature serieswhen calculated using static (blue) vs. dynamic
sted the estimates by the total number of days per decade to compensate lack of data
along the Cantabrian coast. Numeric values indicate the average number of marine
tion threshold approach.
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enhances differences in warming rates between coastal and oceanic waters.
Offshore waters remain unaffected by the cold-deep-water pump and expe-
rience higher warming rates (Santos et al., 2011; deCastro et al., 2014). In
fact, Varela et al. (2018) found that SST warming has been more intense in
offshore than nearshore waters in ~92% of the upwelling locations world-
wide. During upwelling events, satellite retrievals of offshore temperatures
may result in warmer measurements than those recorded by the field log-
gers close to the shore. Indeed, Meneghesso et al. (2020), revealed that
Level 4 remotely-sensed products (blended satellite and/or in situ observa-
tions, interpolated to fill data gaps like those used here) can overestimate
coastal SST in upwelling prone locations. This warm biasmay consequently
lead to the overestimation of MHW events. Varela et al. (2021) recently
showed that trends in the number of MHW days were lower near the
coast than in adjacent offshore areas in the Eastern Boundary Upwelling
systems. Our results add to previous evidence showing a similar buffering
effect in a system with weak seasonal upwelling and highlight how
satellite-derived SSTs may overestimate MHW incidence near the coast.

All available estimates agree that the Bay of Biscay has beenwarming at
rates above 0.1 °C per decade since the 1970s (Table S1). The increase in
SST observed in the present study in all 25 localities along the coast of
northern Spain within Sep. 1981–Dec. 2019 confirms previous findings
and results in trend estimates similar to those of Gómez-Gesteira et al.
(2008), who revealed a warming of 0.15–0.25 °C per decade along the
Cantabrian coast. This temperature increase might be linked to the general
warming trend in theNorthAtlantic Ocean, which is attributed to global cli-
mate change (Harris et al., 2014).

The combined use of static and dynamic detection thresholds allowed
us to contrast MHW trends with and without the effect of long-term
ocean warming (Oliver et al., 2021). The results imply that the underlying
warming trend contributed to increase the number of MHW days in the
Cantabrian coast by a 20% (Fig. 5& Fig. S6). These outcomes are consistent
with the assessment of the impact of global warming on MHW incidence
conducted by Laufkötter et al. (2020) and Marin et al. (2021b).

The contrast in the trends obtained with eachMHWdetection threshold
for all MHW features (Fig. 4) suggests that their overall increase has its or-
igin in the progressive ocean warming trend. It should be noted that the
warming period to which the Bay of Biscay is currently subjected began
in the 1970s (deCastro et al., 2009). The extended modelled series com-
prises most of it; nonetheless, a time series spanning the warming period
thoroughly may have likely revealed a clearer increasing trend for MHW
features such as imax and imean (Fig. 4). The observed differences in the pro-
gression of the number of MHW days per decade calculated with each de-
tection threshold also pointed towards the effect of the underlying sea
warming trend (Fig. 5 & Fig. S6). The static threshold series followed a
quite accentuated trend from the very beginning though it reached maxi-
mum steepness from the 2000s on, coinciding with an increase in the SST
warming rate in central Cantabrian Sea (Voerman et al., 2013).

Since the 1970s, the N coast of Spain has been subjected to a global
warming-associated increase in SST (deCastro et al., 2009), especially dur-
ing summer, enhancing water column stratification (González-Gil et al.,
2015, 2018); this trend parallels a decrease in the number of upwelling
days and their intensity, especially towards the inner part of the Bay of Bis-
cay (Llope et al., 2006; Pérez et al., 2010; Gómez-Gesteira et al., 2011).
Taken together, these trends may lead to an enhanced warming of the
upper ocean layer in the coming years, which could be particularly remark-
able during summer months (Llope et al., 2006). Coastal upwelling can
abate SST anomalies in coastal areas (Gentemann et al., 2017; Fewings
and Brown, 2019) and provide thermal refugia to cold-affinity species
(Lourenço et al., 2016; Seabra et al., 2019). Our findings support the under-
standing of upwelling systems as key factors buffering oceanwarming near-
shore and preventing the impact of threatening climate extremes.

Cold-temperate canopy-forming macroalgae are key components of
Cantabrian coastal marine ecosystems, as they provide complex habitat
for a wide range of associated flora and fauna (Martínez et al., 2015). Sev-
eral authors have recently reported the abundance decrease, retreat and re-
distribution of numerous macroalgae communities and their associated
9

biodiversity since the end of the XX century (Fernández, 2011; Viejo
et al., 2011; Duarte et al., 2013; Nicastro et al., 2013; Fernández, 2016;
Casado-Amezúa et al., 2019; Ramos et al., 2020). These shifts have gener-
ally been attributed to the general increase in SST in the Cantabrian Sea; in-
deed, ocean warming has a negative effect on seaweed species (Wernberg
et al., 2011b).

Long-term changes in mean SST are the main driver of the observed
trends in the occurrence of coastal MHWs globally (Frölicher and
Laufkötter, 2018; Oliver et al., 2019). Considering the above-described
trends in the Cantabrian Sea, this hints at an alarming scenario for the com-
ing years. Extreme temperature events tend to exert stronger, more imme-
diate impacts than average gradual trends associated with ocean warming
(Sanz-Lázaro, 2016; Oliver et al., 2018). In fact, MHWs have been ac-
counted for remarkable impacts on macroalgae-dominated ecosystems
around the world (Wernberg et al., 2011a; Wernberg et al., 2012; Smale
and Wernberg, 2013; Reed et al., 2016; Wernberg and Straub, 2016;
Wernberg et al., 2016; Arafeh-Dalmau et al., 2019). Extreme thermal stress
derived from MHWs have well-documented effects on seaweeds (from re-
sistance to altered physiological and ecological performance, disruption
of ecosystem structure and regime shifts), although these may not be evi-
dent during, or immediately after SST peaks, but might rather have long
time-lags (Straub et al., 2019). Overall, increasing temperatures and
MHWs directly and indirectly alter the distribution and abundance of
canopy-forming species. Thus, our findings highlight the high conservation
value and the suitability of climate refugia associated with upwelling areas
to safeguard seaweed diversity in the Cantabrian Sea.

The results in this study imply that, during the last decade, half of the
MHW events detected along the Cantabrian coast occurred under the influ-
ence of the ocean warming trend. Future projections under different global
warming scenarios predict an increase in the occurrence and intensity of
MHWs in the coming years (Oliver et al., 2019). This urgently calls for a
full risk assessment of the Cantabrian Seamarine organisms and ecosystems
in order to encourage the elaboration of appropriate conservation andman-
agement strategies for awarmer future. The approach presented heremight
contribute to improve the monitoring of the impact of MHWs on marine
coastal ecosystems, which remain key for human livelihood but are cur-
rently endangered under the threat of escalating global warming.
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