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2 

SUMMARY 30 

Forecasting the spatio-temporal occurrence of events is at the core of Operational Earthquake 31 

Forecasting, which is of great interest for risk management, particularly during ongoing seismic 32 

sequences. Epidemic type aftershock sequence (ETAS) models are powerful tools to estimate the 33 

occurrence of events during earthquake sequences. In this context, a robust seismicity forecasting 34 

framework based on Bayesian-inference has been adapted to the Patras and Aegio region in western 35 

Greece (one of the most seismically active parts of Mediterranean), and an incremental adaptive 36 

algorithm is introduced to train the priors for ETAS model parameters. The seismicity forecasting is 37 

capable of accounting for uncertainty in the model parameters as well as variations in the sequence of 38 

events that may happen during the forecasting interval. Six seismic sequences between 1995 and 2018 39 

were selected with mainshock moment magnitudes Mw ≥ 6.0. The ETAS model was adapted for each 40 

seismic sequence. The number of forecasted events with Mw≥4.5 and their spatial distribution was 41 

retrospectively compared with the as-recorded earthquake catalogue, confirming a good agreement 42 

between the forecasts and observations. The results show that the adapted model can be employed 43 

immediately after a severe mainshock to statistically predict potentially damaging earthquakes during 44 

the ongoing seismic sequence. The seismicity forecasts were translated to short-term daily exceedance 45 

rates for different thresholds of peak ground acceleration. The results reveal that the seismic hazard 46 

increased by up to 33 times in the case of the damaging 1995 Mw 6.5 earthquake in the city of Aegio. 47 

However, the results confirmed that in all six studied sequences, the increased seismic hazard decayed 48 

rapidly during the two days after the mainshock, and remained relatively high in the following days 49 

(roughly ten times the long-term time-independent hazard).  50 

Keywords 51 

Earthquake interaction; forecasting and prediction; Earthquake hazards; Computational seismology. 52 

1 INTRODUCTION 53 

Estimating time-dependent probabilities of occurrence of potentially damaging earthquakes are at the 54 

heart of Operational Earthquake Forecasting (OEF) (Jordan et al. 2014). The output of OEF is often 55 

given in terms of probability changes due to time-dependent (over the order of days to months) 56 

seismicity. These probabilities can be used by emergency managers to communicate with the public 57 
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(Jordan and Jones 2010; Goltz 2015; Roeloffs and Goltz 2017; McBride et al. 2020; Field and Minler 58 

2018; Douglas and Azarbakht 2021; Azarbakht et al. 2021). Epidemic type aftershock sequence 59 

(ETAS) is a family of spatio-temporal point process models providing estimates of the time-60 

dependent seismicity over a predefined aftershock zone (Ogata 1988; Ogata 1998). ETAS models 61 

show promising results in forecasting aftershocks and perform quite well in prospectively forecasting 62 

the seismicity within various operational frameworks (e.g. Marzocchi and Lombardi 2009; Zhuang 63 

2011; Marzocchi and Murru 2012; Marzocchi et al. 2014; Ebrahimian and Jalayer 2017; Cattania et 64 

al. 2018; Kourouklas et al. 2020). According to the study by Console et al. (2007), the ETAS model is 65 

the best model for describing short-term seismicity (see also Zhuang et al. 2011). ETAS is an 66 

epidemic stochastic point process that considers every event as a potential trigger for subsequent 67 

events, thus, generalising the modified Omori (MO) aftershock decay model (Zhang and Shcherbakov 68 

2016, see also Utsu 1961; Utsu and Ogata 1995). In other words, the ETAS model is capable of 69 

accounting for the triggering effects of all events in the earthquake catalogue prior to the considered 70 

forecasting time interval. It is worth emphasising that an ETAS model’s time-dependent seismicity 71 

rate can be transformed into a time-dependent hazard model via Probabilistic Seismic Hazard 72 

Analysis (PSHA, Cornell 1968; McGuire 1995), as is discussed in the last section of this article.  73 

In the present article, a simulation-based framework is employed for both Bayesian updating of 74 

spatio-temporal ETAS model parameters as well as to obtain robust estimates of the spatial 75 

distribution of events in a prescribed forecasting time interval after a mainshock (see Ebrahimian and 76 

Jalayer 2017). The term “robust” here relates to the concept of robust reliability (Papadimitriou et al. 77 

2001, Beck and Au 2002), which implies both the uncertainties in ETAS model parameters and those 78 

related to the occurrence of events in the forecasting interval are considered. The Bayesian inference 79 

framework allows the model parameters to be updated with time since the mainshock. In other words, 80 

the model adapts itself to the new conditions that the seismicity variations dictate. To clarify, the 81 

robust forecasting terminology implies that several sets of model parameters are used through the 82 

simulation algorithm instead of using a set of constant model parameters, as is discussed in the 83 

methodology section (see also Ebrahimian and Jalayer 2017). A Markov Chain Monte Carlo (MCMC) 84 
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simulation scheme (Ebrahimian and Jalayer 2017; Omi et al. 2015; Papadimitriou et al. 2001) is used 85 

to sample directly from the conditional posterior probability distributions of the ETAS model 86 

parameters. This forecasting framework accounts for two sources of uncertainty: (1) the uncertainty in 87 

the ETAS model parameters conditioned on the available catalogue of observed events prior to the 88 

forecasting interval’s origin time, and (2) the uncertainty in the simulated sequence of events during 89 

the forecasting time interval. The outcomes of this framework are in terms of the spatial distribution 90 

of the forecasted events and consequently the mean and confidence interval for the estimated number 91 

of events, corresponding to a given forecasting interval. The latter results are then converted to 92 

seismic hazard estimates, here short-term (hours to weeks) probabilities of exceeding different levels 93 

of peak ground acceleration (PGA), which is chosen as the ground-motion intensity measure because 94 

of its common use in seismic hazard mapping. 95 

This article aims to demonstrate the feasibility of the proposed Bayesian framework and 96 

retrospectively study the aftershock seismicity and hazard forecasts in the Patras and Aegio region in 97 

western Greece. This area is chosen for this study since it is in one of Europe’s highest seismicity 98 

regions with numerous recent earthquake sequences, and it is a testbed of the TURNkey project1.  99 

The seismicity characteristics of the region and the available literature are reviewed in the next 100 

section. Following this, the input data and the selected earthquake sequences are discussed. Then, 101 

following a brief description of the employed forecasting framework, the retrospective spatio-102 

temporal forecasting of seismicity in the region is studied using this methodology. Subsequently, a 103 

daily PSHA is presented by combining the seismicity forecasts with three ground-motion models. The 104 

article ends with some brief conclusions.  105 

2 REGION OF STUDY 106 

The geodynamic characteristics of the study region are comprehensively discussed in Karakostas et al. 107 

(2020). The study area in western Greece includes the third-largest (in terms of population) city in 108 

Greece, Patras, with many essential infrastructures, including a large port. There are also many public 109 

                                                      
1  Towards more Earthquake-resilient Urban Societies through a Multi-sensor-based Information System 

enabling Earthquake Forecasting, Early Warning and Rapid Response actions (https://earthquake-turnkey.eu/ ) 
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buildings, schools and heritage monuments. Additionally, the Rio–Antirrio bridge crosses the Gulf of 110 

Corinth near Patras. This is one of the world’s longest multi-span cable-stayed bridges and the longest 111 

of the fully suspended type. The town of Aegio is also located in the region, which is famous for a 112 

topographic plateau across a major fault (the cause of the destructive earthquake on 15 June 1995). 113 

There are also two smaller towns, Kalavryta and Lidorikion, in the region. In this section, we briefly 114 

summarise the recent literature on seismic hazard and previous earthquake forecasts for this region. 115 

Both time-independent and time-dependent seismic hazards in Greece were investigated in terms of 116 

macroseismic intensity by Papaioannou and Papazachos (2000) for 144 cities, towns, and villages. 117 

They concluded that the time-dependent seismic hazard results are in good agreement with the 118 

observed seismicity during the period 150 to 1995. A detailed areal-source seismic zonation model for 119 

shallow earthquakes in the broader Aegean area, containing 113 zones, was proposed by Vamvakaris 120 

et al. (2016). This model was based on seismicity and the available seismotectonic and neotectonic 121 

information to represent active faulting characteristics. A detailed investigation of catalogue 122 

completeness for the recent instrumental period was also conducted. The seismicity parameters, such 123 

as Gutenberg-Richter values for the 113 proposed zones, were calculated, and their spatial distribution 124 

was also considered. A review of the official seismic hazard maps in Greece was given by Tsapanos 125 

(2008). 126 

Spatio-temporal earthquake clustering in the western Corinth gulf was investigated by Karagianni et 127 

al. (2013) by considering geological, seismological, and geodetic aspects. The results reveal 128 

complicated tectonic behaviour and strong indications that seismicity in the area is not random and 129 

forms distinctive clusters. Console et al. (2006) applied various forecasting algorithms to the Greek 130 

catalogue for two periods: 1966-1980 and 1981-2002. The forecasting capability was statistically 131 

assessed by using the log-likelihood method. Their results revealed that short-term and long-term 132 

methods performed much better than time-invariant models. Gospodinov and Rotondi (2006) and 133 

Gospodinov et al. (2007) studied the temporal decay in eight Greek aftershock sequences since 1975 134 

using a Restricted ETAS model (RETAS). The RETAS model assumes that only aftershocks of 135 

magnitudes bigger than or equal to a given threshold can trigger secondary events. Karakostas et al. 136 
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(2014) focused on forecasting, temporally and spatially, the 2013 Mw 5.8 north Aegean seismic 137 

sequence. They employed different statistical methods to simulate the aftershock sequence, including 138 

an ETAS model with pre-calibrated parameters. Their results indicate a significant Probability Gain 139 

(PG) of more than 20 times the background probability during the first days of the considered 140 

aftershock sequence. Latoussakis et al. (1991), Latoussakis and Drakatos (1994), and Drakatos and 141 

Latoussakis (1996) studied the possibility of forecasting large earthquakes in Greece during different 142 

sequences. They used the MO formula and noted its acceptable accuracy. Telesca et al. (2001) 143 

analysed the temporal properties of Greek aftershock sequences using the MO model. A physics-144 

based and statistical earthquake forecasting approach was applied by Segou (2016) to the continental 145 

rift zone of the Corinth Gulf, by implementing a retrospective forecast of events with magnitudes 146 

greater than or equal to 3 for the time period 1995-2013. This study revealed that the joint 147 

implementation of physics-based approaches and the statistical ETAS model is beneficial for future 148 

OEF systems. Kourouklas et al. (2020) investigated short-term spatio-temporal clustering of Greek 149 

seismicity from 2008 to 2018. The employed ETAS model used maximum-likelihood estimation 150 

through a simulated annealing approach. The discrepancies between the ETAS model forecasts and 151 

the observations were assessed by residual analysis. The model performed well except for the 2008 152 

sequence when five Mw>6 earthquakes occurred. Finally, the short-term seismicity of the central 153 

Ionian Islands was studied by Mangira et al. (2020), revealing that the employed ETAS clustering 154 

model provides reliable forecasts of the aftershock activity for this region.  155 

To be complementary to the available literature, the current study uses the most recent seismic data 156 

for the region from 1995 to 2018, which contains six earthquakes with Mw ≥ 6, as explained in detail 157 

in the next section.  158 

3 INPUT DATA AND SELECTED SEQUENCES  159 

The International Seismological Centre (ISC, last access 2020) earthquake catalogue (Bondár and 160 

Storchak 2011; ISC 2020) was used to collect data from the previous three decades in the study 161 

region. It was concluded that six severe mainshocks with their triggered aftershock sequences are 162 
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distinguishable since the catastrophic 1995 Aegio event. It is assumed that these six sequences are 163 

sufficient samples to have both a set of consistent and modern instrumental data, and sufficient 164 

sequences to study the potential variation in model parameters. The spatial and temporal 165 

characteristics of the ISC catalogue for the study area between 1995 and 2018 (including the six 166 

seismic sequences A to F) are shown in Figure 1 and Figure 2, respectively. The cumulative number 167 

of earthquakes with Mw ≥ 3 is also shown in Figure 2, indicating heightened seismicity around the 168 

selected sequences. Greek national catalogues were not used here; however, they are identical with 169 

the ISC catalogue beyond the magnitude of completeness. In Greece, there are two institutions 170 

reporting phases (bulletin data) to ISC: NOA and Aristotle University of Thessaloniki (AUTH). In 171 

other words, there is no common national bulletin in Greece, although, since 2007, there is a unified 172 

network sharing waveform data with the public. NOA is the official seismic monitoring agency in 173 

Greece, which provides the majority of Greek data to ISC. Nevertheless, the ISC reports some small 174 

earthquakes (particularly in northern Greece) using AUTH data. Therefore, the ISC catalogue is the 175 

most rational choice for the current study. 176 

The selected earthquake sequences are listed in Table 1, covering mainshocks with moment 177 

magnitude Mw ≥ 6 between 1995 and 2018. The distances between each mainshock’s epicentre and 178 

the two studied cities (Patras and Aegio) are also provided in Table 1 (sequences A and C are the 179 

closest to Patras and Aegio, including sequence A, which was only 23 km from Aegio). These 180 

differences in distance will influence the seismic hazard assessed at the considered locations, as 181 

discussed below.  182 
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 183 

Figure 1. The spatial distribution of the earthquakes between 1995 and 2018 in the study area. The selected 184 
seismic sequences are indicated by the capital letters next to the mainshock epicentre (see Table 1).  185 

 186 
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 187 

 188 

Figure 2. (top): The events with Mw ≥ 3 versus time in the ISC earthquake catalogue between 1995 and 2018 in 189 
the study area, including the labelled sequences in Table 1, (bottom): The cumulative number of events with 190 
Mw ≥ 3 between 1995 and 2018. 191 

 192 

Table 1. The selected sequences between 1995 and 2018 with mainshock magnitude Mw≥6, mainshock 193 
occurrence time, and the distances to the cities of Patras and Aegio. 194 

Sequence 

Label 

Lat.  

(N) 

Lon. 

(E) 

Mainshock 

Magnitude 

(Mw) 

Mainshock 

Date 

(dd/mm/yyyy) 

Hour:Minute 

Distance 

to Patras 

(km) 

Distance 

to Aegio 

(km) 

A 38.39 22.28 6.5 15/06/1995 00:15 50 23 

B 37.50 20.80 6.6 18/11/1997 13:07 116 140 

C 37.96 21.45 6.1 08/06/2008 12:25 40 64 

D 38.19 20.51 6.1 26/01/2014 13:55 107 137 

E 38.68 20.53 6.5 17/11/2015 07:10 115 143 
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F 37.53 20.62 6.8 25/10/2018 22:54 126 151 

 195 

4 METHODOLOGY 196 

Seismicity forecasts over periods of hours/days/weeks are crucial for emergency responders and 197 

decision-makers seeking to mitigate risk since there is a high chance of aftershocks during this period. 198 

It is clear that forecasting damaging earthquakes have a higher priority than forecasting small events, 199 

which is practically impossible. Therefore, this study’s focus is to forecast events with magnitudes ≥ 200 

4.5, which is the cut-off magnitude often considered in European seismic hazard studies (Woessner et 201 

al., 2015). A robust seismicity forecasting framework (Ebrahimian and Jalayer 2017) has been 202 

implemented for this study. By pairing the Bayesian inference with an advanced simulation technique 203 

(namely, MCMC) to update the ETAS model parameters, this framework has the unique feature of 204 

considering different sources of uncertainty, i.e. the uncertainties in the ETAS model parameters and 205 

the generated sequence of events within the forecasting interval (sequences are generated based on 206 

samples of the ETAS model parameters). 207 

4.1 The epidemic-type aftershock sequence (ETAS) model 208 

The ETAS model is a marked spatio-temporal point process (Daley and Vere-Jones 2003), where a 209 

seismic sequence is treated as a point process of inter-event time and epicentres. The magnitude of 210 

each event is an additional observed variable characterizing the point process to become marked. Let 211 

the aftershock zone be defined as set A in the Cartesian space. The conditional rate of occurrence of 212 

earthquakes at time t with magnitude ≥ m in the cell unit centred at the Cartesian coordinate (𝑥, 𝑦) ∈213 

𝐀 based on the ETAS model is denoted as 𝜆ETAS(𝑡, 𝑥, 𝑦, 𝑚|𝛉, 𝐬𝐞𝐪𝑡 , 𝑀𝑙). The rate 𝜆ETAS is conditioned 214 

on: (1) the vector of ETAS model parameters  (defined subsequently) (2) the observation history up 215 

to time t, which expresses the influence of past events 𝐬𝐞𝐪𝑡 = {(𝑡𝑗 , 𝑥𝑗 , 𝑦𝑗 , 𝑚𝑗), 𝑡𝑗 < 𝑡, 𝑀𝑗 ≥ 𝑀𝑙} where 216 

𝑡𝑗 is the arrival time for the jth event (with 𝑡𝑗 < 𝑡) with magnitude 𝑚𝑗 and location (𝑥𝑗 , 𝑦𝑗) ∈ 𝐀; and 217 

(3) the lower cut-off magnitude 𝑀𝑙. The conditional rate 𝜆ETAS can be computed as follows: 218 

𝜆ETAS(𝑡, 𝑥, 𝑦, 𝑚|𝜽, 𝐬𝐞𝐪𝑡 , 𝑀𝑙) = 𝑒−𝛽(𝑚−𝑀𝑙) ∑ [𝐾𝑡𝑗<𝑡 𝑒𝛽(𝑚𝑗−𝑀𝑙) 𝐾𝑡

(𝑡−𝑡𝑗+𝑐)𝑝

𝐾𝑅

(𝑟𝑗
2+𝑑2)𝑞] (Eq. 1) 219 
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In Equation (1), the background seismicity rate is not considered; this issue will be discussed in the 220 

subsequent section. The vector of ETAS model parameters is defined as 𝛉 = [𝐾, 𝐾𝑡 , 𝐾𝑅 , 𝛽, 𝑐, 𝑝, 𝑑, 𝑞]. 221 

Parameter 𝛽 is related to the Gutenberg-Richter relation; parameters c and p are similar to those of the 222 

MO’s Law defining the decay in time; d and q characterise the spatial distribution of the triggered 223 

events; rj is the distance between the location (𝑥, 𝑦) and the epicentre of the jth event (𝑥𝑗 , 𝑦𝑗). The 224 

parameter K requires calibration for each forecasting interval and is discussed in the subsequent 225 

section. The parameter Kt is computed so that the time-dependent term 𝐾𝑡 (𝑡 − 𝑡𝑗 + 𝑐)
𝑝

⁄  over infinite 226 

time will, in the limit, be equal to unity (see Ebrahimian and Jalayer 2017 and Lippiello et al. 2012 227 

and 2014), which results in 𝐾𝑡 = (𝑃 − 1) ∙ 𝑐(𝑝−1) . Finally, the parameter KR is normalised such that 228 

integrating the spatial term over infinite space will also, in the limit, be equal to unity (see Ebrahimian 229 

and Jalayer 2017 and Lippiello et al. 2012 and 2014) resulting in 𝐾𝑟 =
(𝑞−1)

𝜋
∙ 𝑑2(𝑞−1). In the ETAS 230 

model (Equation 1), the term 𝐾𝑒𝛼(𝑀𝑗−𝑀𝑙) is called the productivity function and the coefficient 𝛼 231 

shows the efficiency of an event in generating aftershock activity (dimension of magnitude-1). It is 232 

assumed herein that 𝛼 = 𝛽 (for more details, see the parameter 𝛼 in Ogata and Zhuang 2006). Hence, 233 

in summary, only five model parameters (i.e., [𝛽, 𝑐, 𝑝, 𝑑, 𝑞] ) are used in the MCMC updating 234 

framework. The other three parameters ([𝐾, 𝐾𝑡 , 𝐾𝑅]) are calculated as described above (for more 235 

details, see Ebrahimian and Jalayer 2017). It is noted that the generated sample through the MCMC 236 

algorithm is rejected if any of the following conditions hold: (1) any value of the vector [𝛽, 𝑐, 𝑝, 𝑑, 𝑞] 237 

is negative, (2) 𝑝 ≤ 1, or (3) 𝑞 ≤ 1 (the latter two conditions are described in Ebrahimian and Jalayer 238 

2017). It is also worth mentioning that the focus of the current study is forecasting over a short time 239 

interval (e.g. one day), otherwise, the 𝛽  coefficient in the productivity function may cause the 240 

population to explode when simulating for a relatively long time period.  241 

To clarify, the assumption of equality between the two parameters 𝛼 and 𝛽 is a commonly adopted 242 

constraint (see e.g. Seif et al. 2017; Zhang et al. 2018; Papadopoulos et al. 2021). When 𝛼  is 243 

considered to be a free parameter in the ETAS model (i.e. the model parameters become 244 

[𝛼, 𝛽, 𝑐, 𝑝, 𝑑, 𝑞]), past studies based on maximum-likelihood estimation (e.g. Marzocchi and Lombardi 245 
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2009) or Bayesian parameter estimation (Ebrahimian and Jalayer 2021) showed that 𝛼 < 𝛽 . In 246 

particular, the parameter 𝛼 determines the magnitude dependence of the trigger potential, which is 247 

crucial in identifying the underlying triggering mechanism and for forecasting ongoing earthquake 248 

sequences (Hainzl et al. 2013). The constraint 𝛼 = 𝛽 implies self-similarity of the triggering events 249 

(i.e. the number of triggered events is proportional to the rupture area of the triggering earthquake, see 250 

Papadopoulos et al. 2021). Moreover, it is shown that 𝛼 might be significantly underestimated (low 251 

value of 𝛼) due to the incompleteness of the aftershock catalogue and missing data at the early stages 252 

of an ongoing seismic sequence (Seif et al. 2017). This issue may be critical in terms of providing 253 

operational forecasts in the immediate aftermath of a large earthquake. Moreover, in the study region 254 

(Greece), where the recorded catalogue is not rich in low-magnitude events (see Section 4.3), this 255 

consideration might underestimate the parameter 𝛼. There are also other issues that have a significant 256 

influence on the estimation of the parameter 𝛼 including anisotropic aftershock distribution (Hainzl et 257 

al. 2008), potential time-dependent (nonstationary) background rate and transient aseismic forcing 258 

(Hainzl et al. 2013, who show that the majority of earthquake clusters in California are compatible 259 

with 𝛼 = 𝛽). Therefore, to avoid these potential biases, we have assumed 𝛼 = 𝛽 in the current study.  260 

4.2 Estimation for the number of aftershocks 261 

With reference to Equation (1), let 𝜆ETAS(𝑡, 𝑥, 𝑦, 𝑚|𝛉, 𝐬𝐞𝐪, 𝑀𝑙)  be the conditional intensity 262 

representing the ETAS rate of occurrence of events in the forecasting interval [Tstart, Tend] at time t 263 

(elapsed after the main event, or even any arbitrary time reference) with the time of origin at To. The 264 

observation history 𝐬𝐞𝐪 is the sequence of No events (including the mainshock and the sequence of 265 

aftershocks) that took place before the forecasting interval, i.e., in the interval [To, Tstart). This can be 266 

expressed as 𝐬𝐞𝐪 = {(𝑡𝑖 , 𝑥𝑖 , 𝑦𝑖 , 𝑚𝑖), 𝑇o ≤ 𝑡𝑖 < 𝑇𝑠𝑡𝑎𝑟𝑡 , 𝑚𝑖 ≥ 𝑀𝑙 , 𝑖 = 1: 𝑁o}. The number of events at 267 

the centre point of a given cell centred at (x, y) with magnitude ≥ m in the forecasting interval [Tstart, 268 

Tend], denoted as (𝑥, 𝑦, 𝑚|𝐬𝐞𝐪, 𝑀𝑙) , can be estimated by: 269 

𝑁(𝑥, 𝑦, 𝑚|𝐬𝐞𝐪, 𝑀𝑙) = 𝑁𝑏(𝑥, 𝑦, 𝑚|𝑀𝑙) + ∫ 𝜆ETAS(𝑡, 𝑥, 𝑦, 𝑚|𝐬𝐞𝐪, 𝑀𝑙) d𝑡
𝑇𝑒𝑛𝑑

𝑇𝑠𝑡𝑎𝑟𝑡
 (Eq. 2) 270 
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where 𝑁𝑏(𝑥, 𝑦, 𝑚|𝑀𝑙) is a constant representing the area’s background seismicity. It is equal to the 271 

time-invariant background spatial seismicity rate for magnitudes > m multiplied by the time interval 272 

(𝑇𝑒𝑛𝑑 − 𝑇𝑠𝑡𝑎𝑟𝑡). To clarify, the number of events in the whole cell can be calculated by multiplying N 273 

by the area of the cell. Given a realisation of  as the vector of ETAS model parameters, parameter K 274 

(of the vector ) is calibrated such that the number of events with magnitude ≥ Ml taking place in the 275 

time interval [To, Tstart), over the whole aftershock zone is equal to No (see Ebrahimian and Jalayer 276 

2017 for more details). Moreover, one can calculate a plausible value for the rate of occurrence 277 

denoted as 𝜆ETAS(𝑡, 𝑥, 𝑦, 𝑚|𝛉, 𝐬𝐞𝐪, 𝑀𝑙), as shown in Equation (1). A robust estimate (Ebrahimian and 278 

Jalayer 2017) of the average number of events in the cell centred at (x, y) with a magnitude ≥ m in the 279 

forecasting interval [Tstart, Tend], denoted as 𝔼[𝑁(𝑥, 𝑦, 𝑚|𝐬𝐞𝐪, 𝑀𝑙)], can be calculated over the domain 280 

of the model parameters Ω𝛉:  281 

𝔼[𝑁(𝑥, 𝑦, 𝑚|𝐬𝐞𝐪, 𝑀𝑙)] = 𝑁𝑏(𝑥, 𝑦, 𝑚|𝑀𝑙) + ∫ (∫ 𝜆ETAS(𝑡, 𝑥, 𝑦, 𝑚|𝐬𝐞𝐪, 𝑀𝑙) d𝑡
𝑇𝑒𝑛𝑑

𝑇𝑠𝑡𝑎𝑟𝑡
)

Ω𝛉
𝑝(𝛉|𝐬𝐞𝐪, 𝑀𝑙)d𝛉(Eq. 3) 282 

where 𝔼[∙] denotes the expectation, and 𝑝(𝛉|𝐬𝐞𝐪, 𝑀𝑙) is the conditional posterior probability density 283 

function (PDF) for 𝛉 given the 𝐬𝐞𝐪 and the lower cut-off magnitude 𝑀𝑙. The PDF 𝑝(𝛉|𝐬𝐞𝐪, 𝑀𝑙) can 284 

be estimated using Bayesian parameter estimation, which is discussed in Appendix 1. Equation (3) 285 

accounts for the events that took place before the forecasting interval [To, Tstart); however, the 286 

triggering effect of the events taking place during the forecasting interval [Tstart , Tend] is expected to 287 

play a major role. The robust estimate for the average number of aftershocks (as noted previously) 288 

also considers all the plausible sequences of events that can happen during the forecasting time 289 

interval (see Ebrahimian and Jalayer 2017 for a comprehensive discussion). To this end, the sequence 290 

of events taking place during the forecasting interval (denoted herein as seqg), which is unknown at 291 

the time of forecasts, is simulated. Let us assume that a plausible seqg is defined as the events within 292 

the forecasting interval defined as 𝐬𝐞𝐪𝐠 = {(𝐼𝐴𝑇𝑖 , 𝑥𝑖 , 𝑦𝑖 , 𝑚𝑖), 𝑇𝑠𝑡𝑎𝑟𝑡 ≤ 𝑡𝑖 ≤ 𝑇𝑒𝑛𝑑 , 𝑚𝑖 ≥ 𝑀𝑙} , where 293 

IATi=ti-ti-1 stands for the inter-arrival time. The robust estimate for the number of aftershocks in 294 

Equation (3) should also consider all the plausible sequences of events seqg (i.e., the domain seqg) 295 

that can happen during the forecasting time interval, as follows: 296 
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𝔼[𝑁(𝑥, 𝑦, 𝑚|𝐬𝐞𝐪, 𝑀𝑙)] = 𝑁𝑏(𝑥, 𝑦, 𝑚|𝑀𝑙) +297 

∫ [∫ (∫ 𝜆ETAS(𝑡, 𝑥, 𝑦, 𝑚|𝐬𝐞𝐪𝐠, 𝛉, 𝐬𝐞𝐪, 𝑀𝑙) d𝑡
𝑇𝑒𝑛𝑑

𝑇𝑠𝑡𝑎𝑟𝑡
) 𝑝(𝐬𝐞𝐪𝐠|𝛉, 𝐬𝐞𝐪, 𝑀𝑙)d𝐬𝐞𝐪𝐠

Ω𝐬𝐞𝐪𝐠
] 𝑝(𝛉|𝐬𝐞𝐪, 𝑀𝑙)d𝛉

Ω𝛉
   298 

 (Eq. 4) 299 

where 𝑝(𝐬𝐞𝐪𝐠|𝛉, 𝐬𝐞𝐪, 𝑀𝑙) is the PDF for the generated sequence seqg given that  and seq are known 300 

and 𝜆ETAS(𝑡, 𝑥, 𝑦, 𝑚|𝐬𝐞𝐪𝐠, 𝛉, 𝐬𝐞𝐪, 𝑀𝑙) is the space-time clustering ETAS model considering also the 301 

sequence of events taking place within the forecasting interval. The robust estimation in Equation (4) 302 

implies that a set of possible model parameters is used to estimate the conditional number of events 303 

𝑁(𝑥, 𝑦, 𝑚|𝐬𝐞𝐪, 𝑀𝑙) rather than a single set of model parameters. 304 

The proposed algorithm is demonstrated for six independent seismic sequences in the region (see 305 

Section 5). The employed algorithm is shown to successfully forecast aftershocks in all the six 306 

considered sequences. The conditional estimation of N (see Equation 4) can be used further for short-307 

term time-dependent PSHA. The 2013 European Seismic Hazard Model (ESHM13) (Giardini et al. 308 

2013; Woessner et al. 2015) has been used in the current study to define the background seismicity in 309 

Equation (2) to Equation (4). The Kernel-smoothed stochastic rate model considering seismicity and 310 

fault moment release (SEIFA-model) has been employed to define each cell's background seismicity 311 

rate in the aftershock zone (Woessner et al. 2015). 312 

4.3 The incremental adaptive training algorithm to obtain priors for the ETAS model 313 

parameters 314 

Defining prior values for the model parameters 𝛉 is a challenging task. In Greece the aftershock 315 

sequences are not particularly productive and/or well-reported, i.e., the magnitude of completeness 316 

(Mc) varies between 2.7 to 4.5 for different locations and catalogue lengths (see Vamvakaris et al. 317 

2016). This relatively high magnitude of completeness makes defining the prior values even more 318 

challenging. It is not reasonable to wait for a long time after a mainshock to obtain a satisfactory 319 

catalogue (for the period after the mainshock only) to initiate the forecasting procedure (especially in 320 

the context of operational earthquake forecasting). In other words, we would need to wait a long time 321 

after a mainshock (in aftershock sequences of low productivity or high magnitude of completeness) so 322 

that sufficient events occur to obtain a complete catalogue if we insist on using only the events 323 
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following a mainshock (sequence-specific). To clarify, as a solution, it is convenient to “borrow” 324 

events from a time window before the mainshock to calibrate the model parameters and consequently 325 

update it during the aftershock sequence. Therefore, an incremental adaptive training algorithm has 326 

been developed and proposed in this study to estimate a set of reasonable priors for the ETAS model 327 

parameters 𝛉 to start the forecast algorithm almost immediately after a mainshock (see Figure 3). It is 328 

worth emphasising that the proposed adaptive approach is only used for the first round of the 329 

forecasting algorithm. The sequence-specific catalogue (from the mainshock’s origin time) is then 330 

used for the second round (i.e., the second day in this study) of the forecasting trials and so forth. As 331 

shown in Figure 3, the proposed algorithm starts its computations from ‘M’ months before the 332 

forecast interval and chooses several arbitrary subsets of ‘E’ events with magnitude ≥ Mc. It is worth 333 

mentioning that Mc is sequence-specific and is calculated for each sequence separately. In the case of 334 

the first round, where the adaptive algorithm in Figure 3 is employed, if we face a quiescent period 335 

before the mainshock, we lengthen the catalogue prior to the mainshock to obtain sufficient data to 336 

calibrate the prior parameters of the ETAS model. Additionally, in the case of the second round and 337 

so forth, we may face a lack of data in the catalogue after the mainshock for calculation of the 338 

magnitude of completeness. This lack of data may be due to low productivity in a specific sequence or 339 

the aftershock waves being hidden in the seismic waves of the larger events (Lippiello et al. 2016 and 340 

2019). In this case, we move the catalogue origin time To back a couple of days before the mainshock, 341 

with the aim of having a catalogue that is sufficient to calculate Mc. 342 

Normally-distributed prior model parameters (mean values of b=1, c=0.03, p=1, d=1, q=1.5, all with 343 

standard deviation (𝛔) equal to 0.3, and 𝛽 = 𝑏 ∙ ln10) are used for the first subset of the adaptive 344 

incremental algorithm, and the MCMC algorithm is used to update these model parameters based on 345 

the first subset catalogue. As an example, the prior and posterior distributions of the ‘c’ model 346 

parameter are shown in Figure 4. As seen in Figure 4, sample posterior intervals are simulated by the 347 

MCMC algorithm, and consequently, a normal distribution is fitted to the posterior numerical 348 

histograms. In other words, an advantage of the currently employed model is that the model 349 
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parameters are not constant during a seismic sequence, which is in contrast with ETAS models based 350 

on the maximum-likelihood approach.  351 

Subsequently, the previous subset’s posterior distributions are used as the prior distributions for the 352 

next subset. This procedure repeats until we reach the last subset, which ends before the starting time 353 

of the forecast (Tstart). Each subset is also checked so that it covers at least ‘D’ days of the catalogue, 354 

i.e. if ‘E’ events happen in less than ‘D’ days, we increase the subset’s time window to cover at least 355 

‘D’ days.  356 

This proposed algorithm ensures that the final prior distributions for the ETAS model parameters have 357 

been trained based on the previous ‘M’ months catalogue. For example, for Sequence F (see Table 1), 358 

the employed catalogue goes back a year before the mainshock (27-1-2018 to 25-10-2018). Hence, as 359 

seen in Table 2, we start from 27 January 2018 until the date which provides subsets of at least 50 360 

events with magnitude ≥ Mc (equal to 4.1 in this case based on the approach of Wiemer 2001) and 361 

covers at least a minimum duration of 30 days. The minimum of 50 events guarantees the proper 362 

numerical MCMC updating of the ETAS model parameters (this was empirically verified by the 363 

authors); nevertheless, considering a minimum value for D (equal to 30 days herein) will also provide 364 

a trade-off between the number of events and the time span in which they took place. The first row in 365 

Table 2 indicates that the first subset begins on 27 January 2018 and ends on 14 March 2018, which 366 

contains 71 events with M≥4.1. These events were primarily used in the MCMC Bayesian updating 367 

algorithm to update the prior model parameters. The updated five (mean) model parameters are also 368 

provided in the first row of Table 2. The first row of Table 2 is used as prior information (the mean 369 

value, the corresponding 𝛔 and the normal distribution assumption) for the second row. This 370 

procedure was repeated until the last row in Table 2, which is before the forecasting date, i.e. at 00:00 371 

UTC on 26 October 2018 (almost one hour after the mainshock of Sequence F). The proposed 372 

incremental adaptive training of the ETAS model parameters needs only the MCMC algorithm to 373 

update the ETAS model parameters (subsets 1 to 6 in Table 2). The seismicity forecasting is only 374 

performed for the last row in Table 2 (subset 6 in Table 2) in order to provide the spatio-temporal 375 

distribution of earthquakes in the forecasting interval of interest, as discussed in the next section.  376 
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The adaptive training of the ETAS model parameters provides the opportunity to initiate earthquake 377 

forecasting almost immediately after the occurrence of a mainshock, especially in regions with 378 

aftershock sequences of low productivity. This is a key forecasting constraint in many high seismicity 379 

regions such as Greece in the first (golden) hours after a severe mainshock, during which the 380 

forecasting results are of utmost importance for first responders. The possibility of earthquake 381 

forecasting immediately after a severe mainshock is of great interest to researchers (e.g. Lippiello et 382 

al. 2016 and 2019). The proposed incremental adaptive training algorithm also provides a rational 383 

framework to continuously update the prior ETAS model parameters used in an OEF engine on a 384 

regular basis. A potential OEF framework may use the last set of updated parameters, when a 385 

magnitude greater than a pre-defined threshold occurs, which can potentially define the mainshock of 386 

interest. In this context, there is no need to consider a very long sequence (e.g., the whole 419 events 387 

in Table 2), which thus overcomes the burden of summing up the triggering properties of all the 388 

events when providing early forecasts. Moreover, there is no need to consider the origin time of the 389 

sequence if the mainshock is not preceded by foreshocks. 390 

Table 2. The incremental adaptive training of the ETAS model parameters for sequence F (see Table 1). 391 

Number 

of subsets 

Start date  

(dd-mm-yyyy) 

End date   

(dd-mm-yyyy) 

No. of events 

with M≥Mc 
 c d p q 

1 27-01-2018 14-03-2018 71 1.681 0.044 1.014 1.803 1.207 

2 17-03-2018 23-04-2018 70 1.679 0.048 1.014 2.050 1.224 

3 24-04-2018 17-06-2018 70 1.681 0.054 1.012 2.172 1.230 

4 17-06-2018 06-08-2018 70 1.682 0.058 1.010 2.443 1.225 

5 06-08-2018 01-10-2018 70 1.682 0.064 1.009 2.535 1.226 

6 01-10-2018 25-10-2018 68 1.682 0.065 1.010 2.556 1.227 
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 392 
Figure 3. The flowchart of the incremental adaptive training algorithm to obtain the ETAS prior model 393 

parameters. 394 
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 395 

Figure 4. The MCMC updating for the example of the ‘c’ model parameter, showing the prior and posterior 396 
distributions.  397 

 We summarize the proposed methodology’s steps as follows: 398 

1- Use the incremental adaptive training methodology to obtain prior ETAS model parameters 399 

before a mainshock. This set of model parameters is used for the first forecasting attempt after a 400 

mainshock.  401 

2- Use the sequence-specific catalogue (between the mainshock’s origin time and the start of the 402 

forecasting interval) to obtain the ETAS model parameters for the second forecasting trial and so 403 

forth. If the catalogue is not sufficient to estimate the magnitude of completeness, then the 404 

catalogue is extended by days/months before the mainshock to obtain sufficient data.  405 

3- To estimate the ETAS model parameters conditioned on the events that have already taken place 406 

in the ongoing seismic sequence and before the beginning of the forecasting interval, an MCMC 407 

simulation scheme is used to sample directly from the conditional posterior probability 408 

distribution for ETAS model parameters. This ETAS model parameter updating is applied to the 409 

selected catalogue (from either Step 1 or Step 2 above).  410 
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4- Perform many (200 in our study) sequence simulations based on the generated plausible 411 

sequences of events that may occur during the forecasting interval (the real sequence is unknown 412 

at the time of forecasting). 413 

5- Use Equation (4) to estimate the spatial distribution of the forecasted events and consequently the 414 

estimated number of events corresponding to a given forecasting interval with their confidence 415 

intervals. The background seismicity can also be included.  416 

6- Employ Equation (6) (see Section 6) to convert forecasted seismicity results into time-dependent 417 

seismic hazard estimates.  418 

5 SEISMICITY FORECASTING RESULTS 419 

The study area in Figure 2 is defined between 20-23E and 37-39N and is meshed with a grid size of 420 

0.05×0.05 degrees, which is the same grid size as ESHM13 (Woessner et al. 2015). This choice 421 

facilitates the implementation of the seismicity results in the PSHA. This area is the same as in 422 

previous studies on these earthquake sequences (e.g. Karakostas et al., 2020). The forecast interval is 423 

defined as one day (24 hours), and Tstart is set at 00:00 UTC. Starting with the most recent mainshock 424 

(i.e., sequence F), Tstart is almost one hour after the mainshock. Sequence F’s mainshock had a 425 

magnitude Mw of 6.8 and occurred at 37.53N and 20.62E, which is near the southwest corner of the 426 

considered aftershock zone (Figure 5, see also Figure 2 and Table 1). It is worth mentioning that 427 

ESHM13 (Giardini et al. 2013; Woessner et al. 2015) has been used throughout this paper to define 428 

the background seismicity as an input to the ETAS model. 429 

The forecasted short-term spatial distribution of seismicity in terms of the mean plus 2𝛔 (98% 430 

confidence interval) in the study area is shown in Figure 5, for a forecast interval of one day (24 431 

hours) following Tstart of 00:00 UTC on 26 October 2018. The observed earthquakes of interest that 432 

occurred within the corresponding forecasting interval are also illustrated as coloured dots 433 

(distinguished by magnitude). The colour bar in Figure 5 indicates the forecasted number of 434 

occurrences (per forecast time interval and per km2) of events with a magnitude ≥ Ml (we set 435 

Ml=Mc=4.1 in this case). Mc is calculated (Wiemer 2001) based on the sequence of events (see seq in 436 
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Equation 2), which contains 68 observed data from 1-10-2018 to 25-10-2018 (see the last row in 437 

Table 2), and eight aftershocks occurred during the 66 minutes between the mainshock time (22:54 438 

UTC) and Tstart (00:00 UTC). Only eight aftershocks with M≥Mc took place after the mainshock up to 439 

Tstart; hence, as explained in the previous section, we used the catalogue before the mainshock origin 440 

time (see the last row in Table 2) to overcome this shortcoming and to incrementally obtain the model 441 

parameters’ prior values.  442 

As shown in Figure 5, higher seismicity is forecasted at the closest distances to the mainshock’s 443 

epicentre. The probabilities of exceeding different magnitude thresholds (from 4.5 to 7.5) are shown 444 

in Table 3 for all sequences (A to F in Table 1) and the first forecasting day following the given 445 

mainshocks. The upper limit for the magnitude is assumed to be 7.5 since the maximum magnitude in 446 

ESHM13 (Giardini et al. 2013; Woessner et al. 2015) for all the 14 SEIFA area sources in the study 447 

area are between 7.2 and 8.1. It is worth noting that the probabilities shown in Table 3 refer to an 448 

event occurring anywhere inside the study area and cannot be interpreted as a forecast of a specific 449 

event at a particular location. These probabilities are the integration of forecasted numbers over all 450 

cells (covering the whole study region). For example, the probability of having Mw ≥ 4.5 during the 451 

first day following a mainshock anywhere in the whole study area is equal to 0.999 (=1.00) in the 452 

case of sequence F. This forecast is reasonable since there are 32 observed events with Mw ≥ 4.5 in 453 

this forecasting time interval (Figure 5 and Table 3).  454 

The forecasted number of events, within the aftershock zone, with Mw ≥ 4.5 (which is the minimum 455 

magnitude assumed in ESHM13 for seismic hazard calculation) is also shown in Table 3,indicate the 456 

forecasted 50th percentile (the median value, equivalent to the logarithmic mean in an arithmetic 457 

scale), the 84th percentile (logarithmic mean plus one logarithmic 𝛔 in an arithmetic scale), and the 458 

98th percentile (logarithmic mean plus two logarithmic 𝛔 in an arithmetic scale), respectively. The 459 

observed number of events with a magnitude greater than 4.5 is also shown in Table 3 for the purpose 460 

of comparison. As seen in Table 3, the forecasted numbers of events are in good agreement with the 461 

observed data. This is an inherent criterion to intuitively assess the quality of the forecasting 462 
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algorithm. To study this agreement more, we estimated the seismicity for different forecasting time 463 

intervals. Besides, as seen in Table 4, the results (including statistical percentiles) are provided by 464 

repeating the current forecasting algorithm for nine different forecasting time intervals, all with the 465 

same Tstart (i.e., 00:00 UTC on 26 October 2018). The distribution of the forecasted number of events 466 

shows good agreement with the observed catalogue, as reported in Table 4. Therefore, the 24-hour 467 

forecasting time interval is chosen for further investigations; this is also a reasonable time interval for 468 

risk management purposes (see also Ebrahimian et al. 2013 and 2014). It is worth mentioning that the 469 

forecasted number of events is calculated as a real number, but is shown in Table 4 after rounding to 470 

the closest integer value. Therefore, some percentiles for a given time interval become identical in 471 

Table 4.  472 

In addition, the N-test (Zechar et al. 2010) was employed to assess the quality of the forecasts. The N-473 

test is intended to measure (in a probabilistic manner) how well the forecasted number of earthquakes 474 

matches the observed number of events. According to this test, we fit a Poisson distribution to the 475 

forecasted number of events (Nfore) with a magnitude greater than a threshold, which is actually the 476 

expected number of events in the forecasting interval that we have estimated. Then, we measure if the 477 

observed number of events (Nobs) with a magnitude greater than a threshold is not located in the tails 478 

of the Poisson distribution. To this end, we estimate two probability terms that should be greater than 479 

a pre-defined value Peff: as written in Equation (5).  480 

𝑃(𝑛 ≤ 𝑁obs|𝑁fore) = ∑
(𝑁fore)𝑛𝑒−𝑁fore

𝑛!

𝑁obs

𝑛=0
> 𝑃𝑒𝑓𝑓 481 

𝑃(𝑛 ≥ 𝑁obs|𝑁fore) = 1 − 𝑃(𝑛 ≤ 𝑁obs − 1|𝑁fore) = 1 − ∑
(𝑁fore)𝑛𝑒−𝑁fore

𝑛!

(𝑁obs−1)

𝑛=0
> 𝑃𝑒𝑓𝑓 482 

  (Eq. 5) 483 

The above expression guaranties that the real case of Nobs will not be within the tails of our forecast. It 484 

is worth mentioning that the value for Peff is set to 0.025 to reflect the 95% confidence interval. As 485 

seen in Table 4, the N-test column has two numbers in each cell, representing the first and second 486 

integrals in Equation (5), respectively. The employed N-test confirms that, in all forecast cases, the 487 

Nobs is not located within the tails of our forecast. However, providing the statistical distribution of 488 
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Nfore (see Table 4) is more feasible in the sense that instead of assigning a Poisson distribution to the 489 

forecasted number of events, it estimates directly the distribution of the forecast and computes its 490 

percentiles (i.e., 50th, 16th, 84th, 2nd and 98th). In this way, one can judge how well the forecasted 491 

number of earthquakes matches Nobs. Besides, as seen in Figures 5 and 6, the spatial distribution of 492 

forecasted events are in very good agreement with the observed events, which again demonstrates the 493 

accuracy of the employed algorithm.  494 

  495 

Figure 5. The spatial distribution of the seismicity (the map reports the mean+2𝛔 confidence interval, i.e. 98th 496 
percentile, for the number of events per km2) in the aftershock zone for 26 October 2018 (sequence F in 497 

Table1). The forecast interval is 24 hours, starting from 00:00 UTC. The probability of having a magnitude 498 
greater than or equal to a given magnitude is shown in the figure’s bottom-left corner. The forecasted numbers 499 
of events with M≥4.5 are shown in the bottom-right corner. The first, second, and third numbers indicate the 500 

50th, 84th and 98th percentiles. The fourth number (in the parenthesis) indicates the observed number of events. 501 

 502 

Table 3. Comparison between the forecasted number of events (and the corresponding statistical distribution) 503 
with M≥4.5 and the observed data in the case of all sequences for the first day after the mainshock. The 504 

probabilities of exceeding different magnitude thresholds (from 4.5 to 7.5) over the whole aftershock zone are 505 
also shown.  506 
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Sequence 

Label 

Number of forecasted events with 

M≥4.5 

O
b
se

rv
ed

 P(M≥m) over the aftershock zone 

 
50th 

percentile 

84th 

percentile 

98th 

percentile 

m=4.5 m=5.5 m=6.5 m=7.5 

A 2 2 2 2 .9 .2 .03 .003 

B 3 4 4 4 1 .3 .04 .005 

C 3 3 4 0 .9 .2 .03 .003 

D 1 1 1 4 .6 .1 .01 .001 

E 4 5 7 3 1 .5 .1 .02 

F 20 24 35 32 1 1 .5 .1 

 507 

 508 

Table 4. Comparison between the forecasted number of events (and the corresponding statistical distribution) 509 
with M≥4.5 and the observed data in the case of sequence F for different forecasting intervals. The forecasting 510 

start time, Tstart, is 00:00 UTC on 26 October 2018. 511 

Forecasting 

interval 
Number of forecasted events with M≥4.5  

O
b
se

rv
ed

 

N
-t

es
t 

 
2nd 

percentile 

16th 

percentile 

50th 

percentile 

84th 

percentile 

98th 

percentile 

6 hours 6 7 7 9 12 11 .946, .098 

12 hours 9 10 12 15 20 19 .978, .037 

1 day 13 16 20 24 35 32 .983, .026 

2 days 19 23 30 42 83 39 .953, .064 

3 days 23 30 39 57 92 45 .850, .187 

4 days 28 36 48 68 109 50 .648, .405 

5 days 35 43 61 82 149 61 .483, .567 

6 days 39 49 66 93 181 63 .386, .660 

7 days 44 54 76 111 189 67 .227, .807 

 512 

Another advantage of the seismicity forecasting model is its ability to forecast repeatedly during the 513 

short duration of most aftershock sequences within an operational framework. Hence, the forecasting 514 

model has been run repeatedly every day until seven days following the mainshock (see Table 5). To 515 

clarify, we only used the incremental adaptive training of the parameters in the case of forecasting for 516 

26 October (the first row in Table 5), for which seq contained 68 events and was defined previously 517 

in this section (see the last row of Table 2). However, for the second-day forecast (second row in 518 

Table 5) and for subsequent forecasts, we only used the previous day's posterior distribution (the 519 

mean value, the corresponding 𝛔 and the normal distribution) as prior values for the next day. 520 
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Additionally, we only used the catalogue starting from the mainshock up to the Tstart, in the case of 521 

forecasting for 27 October and beyond (i.e. the seq includes the mainshock and the sequence of the 522 

events up to Tstart of the corresponding date). This change is a rational (as well as an operational) 523 

choice; e.g. for daily forecasting starting from 00.00 UTC on 27 October, 25 hours have passed since 524 

the mainshock, and we have sufficient events (according to the second column of Table 5, seq 525 

contains 101 events including the mainshock and the sequence of aftershocks with M>Mc). Thus, 526 

there is no longer a need to use the catalogue before the mainshock. However, if we face a lack of 527 

data in the catalogue after the mainshock, then, we would move the catalogue’s start time back a 528 

couple of days before the mainshock, in order to have sufficient data to perform the Bayesian 529 

updating. This was not necessary for Sequence ‘F’, but, this assumption is necessary to make the 530 

algorithm versatile. The magnitude of completeness, Mc, in Table 5 is equal to 4.1 (see the third 531 

column). The retrospective forecasting results for the number of events with M>4.5 are shown in 532 

Table 5, which confirms that the forecasted number of events is in good agreement with the observed 533 

data (see the last four columns in Table 5). However, an event with a magnitude (Mw) of 6.2 occurred 534 

on 30 October at 02:59 UTC. The ETAS model cannot directly forecast such a severe doublet event. 535 

Nevertheless, the forecasted number of earthquakes above the threshold of 4.5 is between 4 and 7, 536 

which confirms that the seismicity is still high based on this forecasting model. As seen in Table 5, 537 

the employed N-test results also confirm that, in all cases, the Nobs is not located within the tails of our 538 

forecast. 539 
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Table 5. The variation of the model parameters  and seismicity forecasting results for seven days following the mainshock for sequence F (Table 1). The forecasting time 540 
interval is equal to 24 hours (1 day) for all seven days with Tstart = 00:00 UTC at the corresponding date.  541 

Forecast 

date  
(dd-mm) 

No. of 

events 

after the 

mainshock 

(M≥Mc) 

Mc 

 c p d q 
Number of forecasted events with 

M≥4.5 

O
b
se

rv
ed

 

N
-t

es
t 

median σ median σ median σ median σ median σ Median Median+1σ Median+2σ 

26-10 8 (+68) 4.1 1.682 .002 .064 .007 1.008 .005 2.556 .151 1.226 .012 20 24 35 32 
.983, 

.026 

27-10 101 4.1 1.872 .102 .042 .007 1.558 .135 2.241 .266 1.338 .042 2 3 5 7 
.988, 

.033 

28-10 138 4.1 1.966 .112 .041 .008 1.273 .095 2.315 .224 1.330 .031 4 5 9 6 
.889, 

.214 

29-10 210 4.1 2.056 .091 .042 .007 1.180 .075 2.480 .228 1.354 .035 4 6 7 5 
.785, 

.371 

30-10 247 4.1 2.078 .099 .042 .007 1.109 .055 2.534 .196 1.373 .028 4 5 7 11 
.989, 

.025 

31-10 286 4.1 2.067 .068 .041 .007 1.079 .040 2.730 .221 1.383 .035 5 6 9 2 
.238, 

.908 

01-11 303 4.1 2.089 .079 .045 .008 1.110 .053 2.684 .194 1.381 .034 4 5 6 4 
.628, 

.566 

 542 

 543 

 544 
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In addition, the forecasting model is applied to the other sequences in Table 1 (A to E), starting about 545 

1 to 2 hours following their mainshocks. The forecasting results for the first 24 hours are shown in 546 

Figure 6 for sequences A to E. As seen in Figure 6, it is confirmed that the numbers of forecasted 547 

events are in good agreement with the observed data. Additionally, in all the six considered sequences 548 

the forecasted events’ spatial distribution is also in good agreement with the observed data. This is 549 

evidence that the proposed model can reproduce seismic sequences surrounding a mainshock in the 550 

study area.  551 
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Figure 6. The spatial distribution of seismicity (the maps report the mean+2 𝛔 confidence interval, i.e. 98th 552 
percentile, for the number of events per km2) in the aftershock zone for sequences A to E (Table 1) during one 553 

day following the mainshock. See the caption of Figure 5 for an explanation of the information.  554 

 555 

As discussed earlier, one concern in the ETAS forecasting approach is how to select reasonable prior 556 

values for 𝛉. The posterior distributions of 𝛉, in the day following the mainshock, and for the six 557 

seismic sequences in Table 1, are shown in Table 6. The forecasting origin time, Tstart, for each 558 

seismic sequence in Table 6 is identical to that shown in Figures 5 and 6. The median of the five 559 

model parameters of ETAS and their uncertainties are also provided in Table 6. Furthermore, the 560 

minimum and maximum values for each model parameter (in terms of the median and 𝛔) are shown 561 

in the last row in Table 6, which we propose to be employed as a reasonable set of prior 𝛉 for further 562 

implementation in the study area. As seen in Table 6, parameters c and p do not change significantly, 563 

confirming that the temporal decay follows the MO’s law in all the sequences. However, parameters  564 
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and d vary significantly among the different sequences, which indicates that the spatial characteristics 565 

and the Gutenberg-Richter relation are sequence-specific. Additionally, it is worth emphasising that, 566 

as seen in Table 6, the ETAS posterior parameters are quite sequence-specific. Hence, using the 567 

proposed incremental adaptive training algorithm is a superior approach to using the model 568 

parameters from previous sequences in the study area.  569 

Table 6. The posterior distributions of ETAS parameters for six sequences in Table 1. All the parameters are 570 
assumed normally distributed.  571 

Sequence 

ID 
 c p d q 

median σ median σ median σ median σ median σ 
A 2.049 .001 .062 .008 1.010 .004 2.669 .221 1.195 .010 

B 2.148 .016 .042 .008 1.018 .009 2.153 .216 1.187 .018 

C 2.270 .012 .055 .007 1.010 .006 2.457 .212 1.217 .015 

D 2.151 .091 .031 .008 1.033 .024 1.172 .199 1.182 .032 

E 1.759 .069 .046 .007 1.012 .007 1.654 .193 1.216 .023 
F 1.682 .002 .064 .007 1.008 .005 2.556 .151 1.226 .012 

Bounds of 

parameters  

1.682-

2.270 

.001-

.091 

.031-

.064 

.007-

.008 

1.008-

1.033 

.004-

.024 

1.172-

2.669 

.151-

.221 

1.182-

1.226 

.010-

.032 

 572 

6 SEISMIC HAZARD MODEL 573 

The short-term changes in seismicity revealed by the ETAS model, reflected by the time-variant 574 

conditional rate in Equation 1, are superimposed on the background seismicity (see Equation 2) to 575 

forecast the number of events over the aftershock zone within the considered time interval. The 576 

seismicity output in terms of the forecasted number of events in the forecasting time interval can be 577 

used as the short-term seismicity rate within a short-term time-dependent PSHA. Therefore, firstly, a 578 

conventional PSHA has been performed using Equation 6 (adapted from Cornell 1968; McGuire 579 

1995; Ebrahimian et al 2014; Baker 2015; Ebrahimian et al. 2019; and numerically integrated over the 580 

aftershock zone):  581 

𝜆(𝑃𝐺𝐴 > 𝑝𝑔𝑎) = 𝜆(𝑀 > 𝑀𝑚𝑖𝑛) ∫ ∫ ∫ 𝑃(𝑃𝐺𝐴 >
𝑌𝑚𝑎𝑥

𝑌𝑚𝑖𝑛

𝑋𝑚𝑎𝑥

𝑋𝑚𝑖𝑛

𝑀𝑚𝑎𝑥

𝑀𝑚𝑖𝑛
582 

𝑝𝑔𝑎|𝑚, 𝑑{(𝑥, 𝑦), (𝑥𝑠 , 𝑦𝑠)}). 𝑓𝑀(𝑚). 𝑓𝑋,𝑌(𝑥, 𝑦) d𝑦d𝑥d𝑚 (Eq. 6) 583 

 584 

where 𝜆(𝑃𝐺𝐴 > 𝑝𝑔𝑎) is the annual rate of exceedance of PGA above a threshold pga; Mmin is equal 585 

to 4.5 (the same assumption as in ESHM13); Mmax is the maximum magnitude obtained from the 586 

ESHM13 results for each area source; 𝜆(𝑀 > 𝑀𝑚𝑖𝑛) is the annual rate of exceedance of earthquakes 587 
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greater than Mmin, which is numerically defined for each grid cell based on the ESHM13 SEIFA 588 

model; 𝑑{(𝑥, 𝑦), (𝑥𝑠 , 𝑦𝑠)} is the epicentral distance between the desired site (xs and ys coordinates 589 

where the hazard computation is of interest) and an arbitrary point (x and y coordinates ∈ A) inside 590 

the aftershock zone (see also Ebrahimian et al. 2019); 𝑃(𝑃𝐺𝐴 > 𝑝𝑔𝑎|𝑚, 𝑑{(𝑥, 𝑦), (𝑥𝑠 , 𝑦𝑠)}) is the 591 

conditional probability of PGA exceeding a threshold pga, given a magnitude m and an epicentral 592 

distance d at the (x,y ∈ A) coordinate which can be estimated using a Ground Motion Prediction 593 

Equation (GMPE); 𝑓𝑀(𝑚)  is the probability density function of magnitude, which follows the 594 

Gutenberg-Richter relationship based on the ESHM13 for each area source; 𝑓𝑋,𝑌(𝑥, 𝑦) is the joint 595 

probability density function of the distance distribution at an arbitrary point with (x,y ∈ A) from the 596 

site (𝑥𝑠, 𝑦𝑠) coordinate, which has a uniform distribution, i.e. assuming equiprobable occurrence of 597 

earthquakes in the area source; Xmin and Xmax are, respectively, the lower and upper bound values in 598 

the x-axis direction in Cartesian coordinates inside the study area ( ∈  A); Ymin and Ymax are, 599 

respectively, the lower and upper bound values in the y-axis direction in Cartesian coordinates inside 600 

the study area (∈ A).  601 

Choosing GMPEs for seismic hazard analysis has always been a challenging task (see also Danciu et 602 

al. 2007; Segou et al. 2010; Delavaud et al. 2012; Skarlatoudis et al. 2013). On the other hand, a 603 

sophisticated logic tree including several GMPEs makes the forecasting algorithm time consuming, 604 

thereby limiting its potential real-time use for OEF. Therefore, only three GMPEs are used in this 605 

study to approximately match the ESHM13 assumptions as well as recent GMPE developments for 606 

Greece: Chiou and Youngs (2014), with a weight of 25%, Zhao et al. (2006), with a weight of 25%, 607 

and Boore et al. (2021), with a weight of 50%. The 2008 version of Chiou and Youngs’ GMPE has 608 

been used in ESHM13; however, we decided to use the newer version (Chiou and Youngs 2014). The 609 

Chiou and Youngs (2014) GMPE is also justified by this model’s high stability (Bommer and Stafford 610 

2020). However, Zhao et al. (2006) GMPE was also chosen to account for epistemic uncertainty since 611 

it has the simplest functional form among the GMPEs used in the ESHM13. The Boore et al. (2021) 612 

GMPE was also taken into consideration since it has recently been developed specifically for Greece. 613 

Therefore, we allocate a higher, 50%, weight to this regional model. We also acknowledge that the 614 
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influence of GMPE selection on the final short-term time-dependent PSHA is an interesting topic for 615 

future research but it is beyond the scope of this study.  616 

The short-term (daily) time-dependent PSHA is performed by substituting the rate 𝜆(𝑀 > 𝑀𝑚𝑖𝑛) in 617 

Equation (6) by the forecasted number of events obtained from the robust seismicity framework 618 

(herein, corresponding to sequence F for 26 October 2018) and over the forecasting time interval (see 619 

Equation 4). The rest of the parameters have the same definition and values as used for the 620 

background (time-independent) hazard calculations. The aftershock zone is subdivided into 14 area 621 

sources as defined in ESHM13 and shown in Figure 7. The results of the conventional and time-622 

dependent PSHA are shown in Figure 8 for Patras city. The left graph in Figure 8 is for the daily 623 

probability of exceedance, and the right graph is for the daily rate of exceedance. It is assumed that a 624 

Poisson process models the occurrence of earthquakes of interest. It is worth mentioning that a 625 

complex logic-tree is not recommended for OEF, since the computational effort should be kept to a 626 

minimum level to obtain the forecasts as rapidly as possible. 627 

 628 

Figure 7. 14 area sources in the study area from ESHM13 (Giardini et al. 2013; Woessner et al. 2015). 629 
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 630 

In the next step, 𝜆(𝑀 > 𝑀𝑚𝑖𝑛) is altered with the expected number of events within the forecasting 631 

interval (herein, 1-day) resulting from the implemented seismicity forecasting framework to account 632 

for the summation of background seismicity (from conventional PSHA) and short-term seismicity 633 

(see Equation 4). The hazard integral (Equation 5) is computed again based on this increased short-634 

term seismicity. The results of this time-dependent PSHA are shown in the left (daily probability of 635 

exceedance) and the right (daily rate of exceedance) panels in Figure 8 for Patras on 26 October 2018. 636 

For the purpose of comparison with the conventional PSHA, the annual frequency of exceedance 637 

derived from the long-term (time-independent) hazard is converted to the daily rate (dividing by 365) 638 

and consequently transformed into the daily probability of exceedance using the Poisson distribution. 639 

It is worth mentioning that the conventional hazard curve represents a lower bound for this short-term 640 

hazard curve, since we assume that the short-term seismicity can only increase the long-term hazard.  641 

 642 

 643 

Figure 8. Short-term PSHA for Patras, (left): the short-term time-dependent daily probability of exceedance 644 
versus PGA and comparison with the conventional daily hazard curve, and (right): short-term time-dependent 645 

daily rate of exceedance versus PGA and comparison with the conventional daily hazard curve. 646 

 647 

The short-term hazard ratio to the median conventional hazard is defined as the Probability Gain 648 

(PG), which is a function of the considered PGA. As can be seen in Figure 8, the PG parameter 649 

decreases as PGA increases. The PG parameter, corresponding to a PGA equal to 0.05g, is calculated 650 

for all the cells inside the study area and the results are shown in Figure 9 in terms of 2nd, 50th, and 651 
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98th percentiles. These percentiles are based on the dispersion of the forecasted number of events 652 

obtained from the robust seismicity framework. It is worth mentioning that the background seismicity 653 

is kept to the median value for all three cases. The maximum PG values occur around the mainshock’s 654 

epicentre, and equal 321, 385, and 448, respectively, in the cases of 2nd (Figure 9-top), 50th (Figure 9-655 

middle), and 98th percentiles (Figure 9-bottom). However, the colour bar in Figure 9 is limited to 100 656 

to better distinguish the differences amongst the cells.  657 
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Figure 9. The spatial distribution of the PG parameter (the ratio of short-term hazard to the long-term time-658 
independent hazard corresponding to a PGA equal to 0.05g) for sequence F (Table 1). The forecast starts at 659 
00:00UTC on 26 October 2018 and for the next 24 hours. (top): 2nd percentile, (middle): 50th percentile, and 660 

(bottom): 98th percentile. 661 

 662 

PG can also be considered for a given site with respect to time since the mainshock. The variation of 663 

the 50th percentile PG for the cities of Patras and Aegio is shown in Figure 10 for all the sequences in 664 

Table 1 during the four days following each sequence’s mainshock. The results reveal that the 665 

heightened seismicity decays rapidly during the first two days (the so-called “golden hours” for first 666 

responders) following the mainshock. The 50th percentile PG is as high as 33 in Aegio (23 km from 667 

the epicentre of the mainshock of sequence A, see Table 1) during the first hours following the 668 

mainshock whereas, the 50th percentile PG equals 17 in Patras (50 km from the epicentre) in this time 669 

period. As seen in Figure 10, the same trend is seen for sequence C (see Table 1), the second closest 670 

event to the studied cities among the six selected sequences. The other seismic sequences show lower 671 
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PG values (mostly less than 10) since their mainshock epicentres are far from the studied cities. For 672 

example, the 50th percentile PG value is about 3 in the case of sequence F (starting on 26 October 673 

2018), which can also be seen in Figure 8 for a PGA equal to 0.05g.  674 

 675 
Figure 10. The median probability gain PG (the ratio of the median short-term time-dependent to the median 676 

long-term time-independent hazard corresponding to a PGA equal to 0.05g) versus days since the mainshock at 677 
Patras and Aegio for the different seismic sequences in Table 1. 678 

7 CONCLUSIONS 679 

A robust seismicity forecasting framework has been applied using the ISC earthquake catalogue for 680 

western Greece, one of the most seismically active regions in Europe. The chosen catalogue was used 681 

to identify six aftershock sequences between 1995 to 2018 with at least one mainshock with moment 682 

magnitude Mw ≥ 6. A new approach has been introduced for incrementally adaptive training of the 683 

ETAS model parameters prior to the mainshock, which can be further used to start forecasting quickly 684 

after the mainshock. The developed algorithm facilitates the concept of operational earthquake 685 

forecasting, which aims at forecasting damaging earthquakes during the first golden hours after a 686 

severe mainshock. It is worth emphasising that the employed algorithm takes advantage of Bayesian 687 
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inference, in contrast to the majority of the available studies which use constant ETAS coefficients. 688 

The forecasting algorithm is applied for the next 24 hours to forecast the spatial distribution of the 689 

seismicity rate and the number of potentially damaging earthquakes (here defined as an event with a 690 

moment magnitude Mw ≥ 4.5). In addition, the proposed algorithm has been tested to demonstrate its 691 

usability for operational forecasting on the basis of intervals of 6 hours to 7 days. The results show 692 

that the adapted ETAS model within the seismicity framework can retrospectively forecast the 693 

number of damaging earthquakes and that the forecasts are generally in good agreement with the 694 

observed data. The spatial distribution of the heightened seismicity zone is also in good agreement 695 

with the spatial propagation of observed events. This seismicity forecasting framework has been 696 

applied to the six selected seismic sequences, and posterior distributions of the model parameters 697 

were obtained by employing Bayesian inference. These distributions and their relative bounds are 698 

proposed as prior values for future forecasting of new aftershock sequences in the region. The results 699 

of the current study reveal that the temporal decay of events follows almost the same MO’s law for all 700 

sequences; however, the spatial and magnitude-frequency (Gutenberg-Richter) characteristics are 701 

sequence-specific.  702 

The forecasted occurrence rates were implemented within a time-dependent seismic hazard 703 

framework using inputs on the long-term seismicity from ESHM13. The daily seismic hazard was 704 

computed for the study area as well as for the two major cities of the study region, Patras and Aegio. 705 

The results revealed that the daily probability of exceeding a threshold PGA equal to 0.05g is, on 706 

average, increased by up to 33 times the long-term (time-independent) hazard in Aegio, during the 707 

first hours following the 1995 Mw 6.5 mainshock. This PG parameter decays to under 10 after three 708 

days. Additionally, the PG parameter varies between 1 and 10 for the four seismic sequences (B, D, E 709 

and F) that are relatively far from the considered cities. It is important to note that multiple types of 710 

uncertainty have been addressed in the proposed forecasting framework, such as Bayesian inference 711 

and MCMC simulations in the ETAS forecasting model, and GMPE and logic-tree in the hazard 712 

model. However, the optimum choice of GMPE and associated logic-tree weights for this region, and 713 

more generally for operational earthquake forecasting globally, remains an interesting topic for future 714 
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research. Also, considering uncertainties from different sources such as the PSHA and forecasting 715 

algorithms is an area to be explored in future.  716 

The current study has demonstrated the applicability of the proposed forecasting algorithm for short-717 

time intervals (by emphasising medium-to-large events), which is of great interest for first responders 718 

during an aftershock sequence. The forecasted distribution was in good agreement with the observed 719 

events in all retrospectively-studied earthquake sequences. Besides, the spatial distribution of 720 

forecasted events was close to the distribution of observed events. Therefore, at least within the 721 

assumption and limitations of the present study, it is concluded that the employed Bayesian inference 722 

has the ability to be adapted to the specific characteristics of earthquakes in this region.  723 
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APPENDIX 1  920 

Sampling  from the distribution p(|seq,Ml) 921 

The probability distribution 𝑝(𝛉|𝐬𝐞𝐪, 𝑀𝑙) in Equation (3) can be calculated using Bayesian parameter 922 

estimation as follows (see also Ebrahimian and Jalayer 2017): 923 

𝑝(𝛉|𝐬𝐞𝐪, 𝑀𝑙) = 𝐶−1𝑝(𝐬𝐞𝐪|𝛉, 𝑀𝑙) ∙ 𝑝(𝛉|𝑀𝑙) (Eq. A1) 924 

where 𝑝(𝐬𝐞𝐪|𝛉, 𝑀𝑙)  denotes the likelihood of the observed sequence given the vector of model 925 

parameters  and lower cut-off magnitude Ml, 𝑝(𝛉|𝑀𝑙)) is the prior distribution for the vector , and 926 

the term 𝐶−1 is a normalizing constant. In lieu of additional information (e.g., statistics of regional 927 

model parameters), the prior joint distribution p(|Ml) can be estimated as the product of marginal 928 

uniform probability distributions for each model parameter. The calculation of the likelihood 929 

𝑝(𝐬𝐞𝐪|𝛉, 𝑀𝑙) is discussed in detail in Ebrahimian and Jalayer (2017). 930 

In order to sample from 𝑝(𝛉|𝐬𝐞𝐪, 𝑀𝑙), a MCMC simulation routine is employed, which is particularly 931 

useful for cases where the sampling needs to be done from a probability distribution that is known up 932 

to a constant value, that is 𝐶−1  herein (see Beck and Au 2002). The MCMC routine uses the 933 

Metropolis-Hastings (MH) algorithm (Metropolis et al. 1953, Hasting 1970) in order to generate 934 

samples as a Markov Chain sequence used first to sample from the target probability distribution 935 

𝑝(𝛉|𝐬𝐞𝐪, 𝑀𝑙), and later to estimate the robust seismicity forecasting in Equation (3) and Equation (4). 936 

The MH routine generates a Markov chain that produces a sequence of samples 937 

[1→2→…→n→…], where n represents the state of Markov Chain at nth iteration. It can be 938 

shown that the samples from the chain after the initial transient ones (the first few samples are often 939 

discarded to reduce the initial transient effect) reflect samples from the target distribution 940 

𝑝(𝛉|𝐬𝐞𝐪, 𝑀𝑙). To generate the (n+1)th sample n+1 given that the nth sample n is already known, the 941 

following procedure is performed: 942 
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(a) Generate a candidate sample * from a proposal (candidate) distribution 𝑞(|n). It is important to 943 

note that there are no specific restrictions about the choice of q(·) apart from the fact that it 944 

should be possible to calculate both q(i+1|i) and q(i|i+1).  945 

(b) Accept the candidate sample with the probability min(1,r) (where r is defined in Equation (A2) 946 

as follows) and set n+1=
*; otherwise, n+1=n: 947 

𝑟 =
𝑝(𝛉∗|𝐬𝐞𝐪,𝑀𝑙)

𝑝(𝛉𝑛|𝐬𝐞𝐪,𝑀𝑙)
⋅

𝑞(𝛉𝑛|𝛉∗)

𝑞(𝛉∗|𝛉𝑛)
   = (

𝑝(𝐬𝐞𝐪|𝛉∗,𝑀𝑙)

𝑝(𝐬𝐞𝐪|𝛉𝑛,𝑀𝑙)
⋅

𝑝(𝛉∗|𝑀𝑙)

𝑝(𝛉𝑛|𝑀𝑙)
) ⋅

𝑞(𝛉𝑛|𝛉∗)

𝑞(𝛉∗|𝛉𝑛)
 (Eq. A2) 948 

where 
𝑝(𝐬𝐞𝐪|𝛉∗,𝑀𝑙)

𝑝(𝐬𝐞𝐪|𝛉𝑛,𝑀𝑙)
 is the likelihood ratio; 

𝑝(𝛉∗|𝑀𝑙)

𝑝(𝛉𝑛|𝑀𝑙)
 is the prior ratio; 

𝑞(𝛉𝑛|𝛉∗)

𝑞(𝛉∗|𝛉𝑛)
 is the proposal ratio.  949 

 950 

It can be shown, see Beck and Au (2002); Jalayer and Ebrahimian (2017), using the Total Probability 951 

Theorem that, if the current sample n is distributed as p(·|seq,Ml), the (n+1)th sample n+1 is also 952 

distributed as p(·|seq,Ml). In order to improve the rate of convergence of the simulation process, we 953 

have used an adaptive MH algorithm, as proposed by Beck and Au (2002), that introduces a sequence 954 

of intermediate evolutionary candidate PDF’s that resemble more and more the target PDF.  955 

APPENDIX 2- LIST OF SYMBOLS 956 

Symbol Meaning Symbol Meaning 

Mw Moment magnitude 𝑁𝑏(𝑥, 𝑦, 𝑚|𝑀𝑙) a constant representing 

the area’s background 

seismicity 

A Aftershock zone 𝔼[𝑁(𝑥, 𝑦, 𝑚|𝐬𝐞𝐪, 𝑀𝑙)] the average number of 

events in the cell 

centred at (x, y) with a 

magnitude ≥ m in the 

forecasting interval 

[Tstart, Tend] 

𝜆ETAS The conditional rate of 

occurrence of 

earthquakes 

Ω𝛉 the domain of the 

model parameters 

 Model parameters 𝑝(𝛉|𝐬𝐞𝐪, 𝑀𝑙) conditional posterior 
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probability density 

function (PDF) for 𝛉 

given the 𝐬𝐞𝐪 and the 

lower cut-off 

magnitude 𝑀𝑙 

𝐬𝐞𝐪𝑡 past events 𝐬𝐞𝐪𝐠 the events within the 

forecasting interval 

𝑀𝑙 lower cut-off 

magnitude 

𝑝(𝐬𝐞𝐪𝐠|𝛉, 𝐬𝐞𝐪, 𝑀𝑙) the PDF for the 

generated sequence 

seqg given that  and 

seq are known 

𝑀𝑐 Magnitude of 

completeness 

‘M’ Number of months 

before the forecast 

interval when applying 

the incremental 

adaptive training 

algorithm  

𝛽 related to the 

Gutenberg-Richter 

relation 

‘E’ arbitrary subsets of 

events with magnitude 

≥ Mc when applying 

the incremental 

adaptive training 

algorithm 

c and p MO’s Law parameter ‘D’ Each ‘E’ subset covers 

at least ‘D’ days of the 

catalogue when 

applying the 

incremental adaptive 

training algorithm 

d and q spatial distribution of 

the triggered events 

𝛔 Standard deviation 

K calibration for each 

forecasting interval 

𝜆(𝑃𝐺𝐴 > 𝑝𝑔𝑎) the annual rate of 

exceedance of PGA 
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above a threshold pga 

Kt Unifies the time-

dependent term over 

infinite time 

Mmin The minimum 

magnitude in PSHA 

KR Unifies the spatial term 

over infinite space 

Mmax The maximum 

magnitude in PSHA 

𝛼 efficiency of an event 

in generating aftershock 

activity 

𝜆(𝑀 > 𝑀𝑚𝑖𝑛) the annual rate of 

exceedance of 

earthquakes greater 

than Mmin 

[Tstart, Tend] forecasting interval 𝑃(𝑃𝐺𝐴

> 𝑝𝑔𝑎|𝑚, 𝑑{(𝑥, 𝑦), (𝑥𝑠, 𝑦𝑠)}) 

the conditional 

probability of PGA 

exceeding a threshold 

pga, given a 

magnitude m and a 

epicentral distance d at 

the (x,y ∈ A) 

To time of origin 𝑓𝑀(𝑚) probability density 

function of magnitude 

𝐬𝐞𝐪 The observation history 

of No events that took 

place before the 

forecasting interval [To, 

Tstart) 

𝑓𝑋,𝑌(𝑥, 𝑦) the joint probability 

density function of the 

distance distribution 

𝑁(𝑥, 𝑦, 𝑚|𝐬𝐞𝐪, 𝑀𝑙) The number of events 

at the centre point of a 

given cell centred at (x, 

y) with magnitude ≥ m 

in the forecasting 

interval [Tstart, Tend] 

  

 957 
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