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Abstract
Long Range Wireless Area Network (LoRaWAN) provides desirable solutions for
Internet of Things (IoT) applications that require hundreds or thousands of actively
connected devices (nodes) to monitor the environment or processes. In most cases, the
location information of the devices arguably plays a critical role and is desirable. In this
regard, the physical characteristics of the communication channel can be leveraged to
provide a feasible and affordable node localisation solution. This paper presents an
evaluation of the performance of LoRaWAN Received Signal Strength Indicator (RSSI)‐
based node localisation in a sandstorm environment. The authors employ machine
learning algorithms, Support Vector Regression and Gaussian Process Regression, which
turn the high variance of RSSI due to frequency hopping feature of LoRaWAN to
advantage, creating unique signatures representing different locations. In this work, the
RSSI features are used as input location fingerprints into the machine learning models.
The proposed method reduces node localisation complexity when compared to GPS‐
based approaches whilst provisioning more extensive connection paths. Furthermore,
the impact of LoRa spreading factor and kernel function on the performance of the
developed models have been studied. Experimental results show that the SVR‐enhanced
fingerprint yields the most significant improvement in node localisation performance.

1 | INTRODUCTION

The decreasing cost and increasing processing capabilities of
computing and communication technologies have fuelled the
exponential increase in the number of interconnected devices,
commonly referred to as the Internet of Things (IoT) [1]. The
deployment of extensive IoT implementations is more often
than not subject to the fundamental design constraints of
limited resources in terms of low power consumption and low
processing capabilities. The availability of Low‐Power Wide
Area Network (LPWAN) technologies has provisioned the
characteristics aligned with the needs of these applications.
Amongst the range of options, LoRa [2–4] has been widely
adopted owing to an advantageous combination of features:
low‐cost and low power consumption with long range wireless
connectivity.

Accurate node localisation is central to many beneficial
applications within extensive IoT networks [5, 6]. The bulk of
existing applications and services harness mature Global
Navigation Satellite Systems such as the Global Positioning
System (GPS) [7] or Global Navigation Satellite System [8].
Although these platforms provide accurate location estima-
tions, their implementations are relatively expensive and more
importantly in the context of IoT, prohibitively power hungry
[9]. For instance, the GPS consumes between 30 and 50 mA
acquiring a GPS fix which can take tens of seconds [10], largely
attributable to the necessary exchanges of data. A more aligned
approach is to develop network‐based localisation techniques,
which harness a suitable parameter inherent to data trans-
mission as the foundation. The paper details the development
and performance evaluation of a Long Range Wireless Area
Network (LoRaWAN) [11, 12] enabled location estimation
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scheme taking advantage of the flexibility provisioned by the
LoRa spectrum modulation scheme.

Inherent features of radio signals that characterise wireless
networks can be used to determine the location of a node in
the network [13, 14]. Signal propagation is dynamic and models
the environment in which electromagnetic signals propagate is
challenging. Measurable quantities such as the Received Signal
Strength Indicator (RSSI) [15, 16] vary with the position of the
transmitters and are time dependent. A number of reported
network‐based location estimations based on RSSI indicate
that deterministic solutions lack accuracy because of the tem-
poral dependence of the measurements.

Here, in order to maintain simplicity of implementation
whilst meeting the needs of extensive low power deployments,
a technique is developed and evaluated extending reported
research that relies on the inherent relationship between RSSI
and physical distance; the relationship will in turn be the basis
to estimate node location from the new, unknown node RSSI
value. We approach the evaluation of the proposed procedure
for the estimation of node location in sandstorm environment
through field trial and using LoRaWAN as an example tech-
nology. The aim of the evaluation is threefold. First, we aim at
demonstrating the feasibility of transformed RSSI‐based node
localisation using machine learning algorithms. We do that by
showing that transformed RSSI (RSSI ratio) estimation out-
performs the estimation of node location based on absolute
RSSI benchmark. Second, we aim at demonstrating the impact
of Spreading Factor (SF) and kernel function on estimation of
node location. This is done by using different SFs to gather
different datasets and different kernels to evaluate the ker-
nelised algorithms. The results demonstrate the impact of these
parameters on the performance of node localisation models.
Third, we aim at demonstrating the consistency of the best
performing technique across different scenarios by applying a
public dataset (Antwerp dataset).

The physical locations and relative elevations of nodes with
respect to receivers within the operational environment are
central to the solution. Thus, the approach adopts a ‘finger-
printing’ methodology that models transmission for the
network under the environment that governs the coverage
area; in this case, the ‘fingerprint’ is established from the
comprehensive mapping of RSSI values. A number of node
localisation techniques developed using RSSI‐based finger-
printing for the estimation of node location in LoRaWAN and
SigFox settings have been reported and summarised in Table 1.
The base models have been enhanced through the use of
machine learning in order to increase node location accuracy.

In Ref. [13], the fingerprint was enhanced through K‐
Nearest Neighbour methods to achieve a mean distance er-
ror of 689 m (Sigfox) and 398 m (LoRaWAN) from 84 to 68
base stations, respectively. However, neither the location of the
base stations was provided nor the SF was used in the devel-
opment of LoRaWAN‐based technique. Authors in Ref. [14]
focussed on the development of an outdoor parking posi-
tioning system for a restricted coverage area (340 � 340 m)
utilising 4 LoRaWAN base stations transmitting at an SF of 7.
The Maximum Likelihood method achieved a mean distance

error of 24 m. Gaussian Process Regression (GPR)‐based
fingerprinting for localisation [17] achieved a mean distance
error of 25 m in a campus outdoor area (150 � 250 m), uti-
lising 10 LoRaWAN base stations transmitting at an SF of 12.
The latter studies focussed on solutions for relatively modest
outdoor coverage areas.

In summary, previous studies have used empirical RSSI
measurement for node localisation in moderate coverage areas.
However, the idea of transforming RSSI measurement into
average RSSI ratio by pairs of gateways as input fingerprint,
combined kernel function and high SF can be harnessed to
optimise and improve estimation of node location in more
extensive coverage areas (in the order of kms).

The remainder of the paper is organised as follows; Section 2
details the data gathering infrastructure, measurement meth-
odology, the coverage area under consideration and environ-
mental conditions; Section 3 describes the establishment of the
‘fingerprint’; Section 4 details the enhancement to the finger-
printing technique owing to the application of two kernel‐based
machine learning techniques, Support Vector Regression (SVR)
and Gaussian Process Regression (GPR); Section 5 presents an
evaluation of the node location performance of the proposed
approaches; finally, Section 6 draws conclusions.

2 | MEASUREMENT METHODOLOGY

Measurements are executed in Jazan City in Saudi Arabia to
capture the radio propagation of LoRa nodes in sandstorm
condition. Figure 1 shows themap illustrating the location of the
gateways, deployed across a semi‐uniform grid given that the
terrain is characterised by buildings and natural obstacles such as
trees. Gateways/receivers are positioned on the outskirts of the
Jazan City on four elevated structures with their respective el-
evations provided in Table 2. The four gateways (Figure 1; black
circles) were located at points 4–7 km around the coverage area
containing the transmitter nodes at varying locations. Although
we used only four gateways to demonstrate our proposed
method. This can be easily scaled to any number of gateways.

Gateways are placed at elevated positions to extend the
range of the network that would otherwise be impaired due to
buildings and natural obstacles. The transmitter node is fixed
when taking measurements and moved between grid points
within the coverage area. Measurements were taken from 150
locations (viz. grid points) using different SFs. The distance
between grid points is approximately 100 m. The closest
measurement is taken at a distance of 4 km and the furthest
7 km. 20 RSSI packets are recorded from each measurement
location at different SFs, referred to as SF9, SF10, SF11 and
SF12, respectively; a total of 3000 measurements were acquired
for each SF. Each packet comprised GPS location coordinates
as a payload with gateways issuing an acknowledgement on the
successful receipt of the payload. The measured RSSIs at each
gateway were uploaded to The Things Network (TTN) server
along with the payload information.

The data acquisition system consisted of four LoRaWAN
transceiver gateways and transmitter accessing the Internet
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through laptops. The gateways comprise iC880ASPI LoR-
aWAN 868 MHz concentrators connected to a Wi‐Fi enabled
host (Raspberry Pi 3 Model B SBC platform with 16 GB
micro‐SD card) via a SubMiniature Version A antenna of 2 dBi
and are housed in Acrylonitrile butadiene Styrene Enclosures
with mains electrical power supply. The enclosures are
designed to guarantee operation between −5°C and +55°C,
meeting the requirements of the operational environmental
conditions. Gateways are the data collectors of the architecture
utilising 868 MHz channels for data transmission. Packets can
be received from different nodes with different SFs, up to 8
channels in parallel. Gateways are also equipped with an
external control microprocessor and an RPi 3 unit is connected
to the Institute for Mobile & Satellite Communication Tech-
nology concentrator via the Serial Peripheral Interface bus.
The RPi 3 is Wi‐Fi enabled and connected to 4G connectors in
order to receive and transmit data to the server (‘TTN’ server).
Transmitter nodes are a Sodaq One v2 LoRaWAN device with
an 868 MHz antenna of 3dBi connected to a GPS module
(Ublox Eva 7 M). The node consists of an RN2483 transceiver
with 14 dBm transmission power and a bandwidth of 125 kHz
powered by an 800 mAh lithium battery.

2.1 | Testbed environment

Two test beds were designed for this measurement
campaign to capture the radio propagation of LoRa nodes
in sandstorm condition for node localisation as a function
of SF. In the first instance, RSSI measurements were taken
to characterise the propagation of LoRa nodes in sand-
storm environment as compared to clear sky. Figure 2
shows the two environmental conditions: clear sky and
sandstorm in the city of Jazan. In this testbed, measure-
ments were taken at locations positioned 100 m away from
each other up to 3 km. At each location, the transmitter
transmits more than 10 packets and were received by the
gateway at a SF of 7. The gateway was placed on the roof
of a stationary car (approximately 2 m above the ground).
The location of the transmitter node was taken with
reference to the gateway. The transmitter node was placed
in a car (approximately 1 m above ground level) and
moved to the pre‐defined locations until all measurements
were taken. Second, measurements were taken to validate
the proposed node localisation technique. In this case, four
gateways are located on the outskirts of the urban area,
and the transmitters were located in the rural environment
as shown in Figure 1. The propagation path between the
test area and the gateways is characterised by buildings of
different elevations (9–30 m). In fact, the experimental
environment (sandstorm) in this work can be termed a
semi‐urban environment.

Both measurements were acquired during the monsoon
winds in the months of July and August. The wind speed is the
most important environmental factor that impacts signal
propagation in this context. It is reasonable to expect that as
the strength of the wind increases, the density of the perturbed
and sand particles increases and the impact on the propagation
of the radio signals becomes more significant and time
dependent. Table 3 represents the weather conditions in the
month of July and August, when measurements were taken.
The most challenging season is characterised by dust, high
temperature and humidity. Apart from the climatic factors, the
radio environment is also characterised by trees and buildings,
which can create challenges.

2.2 | LoRa transmitter distance estimation

In order to evaluate the performance of LoRa link for long
range transmission and transmitter distance estimation for

T A B L E 1 Related work in location fingerprinting

Reference Model Test environment Technology No. Of (GWs) Spread factor Mean error (m)

(Aernouts, et al., 2018) [13] KNN Outdoor (52 km2) SigFox 84 ‐‐‐ 689

(Aernouts, et al., 2018) [13] KNN Outdoor (52 km2) LoRaWAN 68 SF = 7–12 398

(Choi, et al., 2018) [14] Maximum Likelihood Outdoor parking (340 � 340 m) LoRaWAN 4 SF = 7 24

(Zhe, et al., 2019) [17] Gaussian process Outdoor (150 � 250 m) LoRaWAN 10 SF = 12 25

F I G U R E 1 Map illustrating the location of gateways (black circles)

T A B L E 2 Location of gateways

Gateway Location Height (m)

GW1 Top of University tower 100

GW2 Communication tower (1) 90

GW3 Communication tower (2) 70

GW4 Top of Water tower 40
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device location in sandstorm environment, the Two Ray
Ground Reflection Model is used to estimate transmitter‐
receiver distance from known measured LoRaWAN RSSI.
The two‐ray ground reflection model is used in this work
because it provides better prediction at long distances
compared to other ready‐made models [6]. The average
RSSI values are used as representative samples to estimate
the distance between the transmitter and the receiver.
Figure 3 shows the variation in the actual and estimated
distances with respect to measured RSSI. As can be seen,
there is significantly more attenuation to the signal strength
in sandstorm conditions compared to clear sky. However, in
both situations, the signal attenuation appears to plateau
within a certain range of greater distances.

For clear condition, the RSSI sensitivity value is approxi-
mately −106dBm at 600 m and greater, and for sandstorm
condition, RSSI sensitivity value is approximately −112dBm at
900 m and greater. Consequently, a large proportion of esti-
mated distances for clear and sandstorm conditions ‘bunch up’
at 600–700 m and 900–1000 m, respectively.

However, in sandstorm condition, the model could pro-
duce inaccurate estimates even at shorter distances of 200 m.
The estimated distances later bunch up and are significantly
greater or less than actual distances with significant error. In
clear condition, reasonable estimates are obtained only up to
600 m after which the estimated distances seem to cluster
around 650 m, which is far less than the actual distances. It can
be concluded that the use of ready‐made propagation model
with RSSI measurements to determine distances, and hence
position of LoRa devices under clear sky condition is grossly
inadequate for the long‐range application of LoRaWAN for
IoT. Therefore, we will investigate the use of location finger-
print for node location in sandstorm environment in the next
section.

3 | DATA PREPARATION AND
FINGERPRINTS

During the experiment, 20 packets were transmitted from each
of the 150 designated locations and were expected to be
received by the LoRaWAN gateways deployed in the vicinity of
the experimental environment. The vector of absolute RSSI
values received by the LoRaWAN gateways in the experimental
environment is used to develop node localisation models. The
calculated average values of RSSI of the 20 received packets at
each grid location represent the fingerprint of each location.
Figure 4 shows the RSSI pattern at various points in the radio
environment for each of the LoRa gateways. The figures reveal
the complexity of the radio environment (sandstorm), which
does not fit any well‐known propagation model. The
complexity of the signal attenuation with distance is a result of
noise and distortions. In case of a missing RSSI value in an
observation, we substitute the missing value by using mean
imputation method [18, 19], which increases the amount of
information that can be used, and hence, improves the per-
formance of node localisation models (as discussed in Sec-
tion IV). The procedure for mean imputation method used in
substituting missing RSSI values is as follows:

� Separation of each group of 20 packets by location.
� examination of all data for each gateway.

� In the case of loss of all RSSI data at a specific gateway
(referred to as ‘Monotone’) with the same location, the
missing RSSI values are replaced with a specified value.

� In the case of missing data at a specific gateway (referred
to as ‘Non‐Monotone’) with the same location, the mean
of measured RSSI values (not Null) of the Gj for each
location is calculated, where Gj denotes the number of
the gateways. The missing values are therefore replaced
with the mean value in Gj for each location.

The resulting data contains six columns [RSSI_Gateway1,
RSSI_Gateway2, RSSI_Gateway3, RSSI_Gateway4, Longitude,
and Latitude] and 3000 rows of absolute RSSI values (20
packets at 150 locations).

In a challenging radio environment, characterised by re-
flections and obstructions such as the one under consideration,
the dynamic variations of absolute RSSI values with time
introduce noise in the fingerprints and may impair the per-
formance of node localisation. In this paper, we propose to
derive robust fingerprints by taking ratios of RSSI values be-
tween gateway pairs in order to mitigate the variations in ab-
solute RSSI values.

(a) (b)

F I G U R E 2 The two environmental conditions. (a) clear and
(b) sandstorm

T A B L E 3 Testbed environmental
condition

Humidity (%) Temperature (˚C) Wind speed (km/h)

Dust sky 60–85 35–45 5–10

Sandstorm sky 60–85 35–45 13–27

Strong sandstorm 60–85 35–45 37
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Assume G ¼ g1; g2; :::; gnf g is a set of gateways deployed
in the area under consideration, and L ¼ l1; :::; lmf g represents
the reference node locations. The location feature space, li, can
then be represented by gateways and measured absolute RSSI
values r ∈ R where R ¼ r1; r2; :::; rnf g. The RSSI ratio is
defined at each location for a unique pair of gateways. The
received signal strength ratio for the gateways gi and gj can be
computed for measurement taken at location l = [(gi; ri); (gj ;
rj)] as in Equation (1).

RSSIratio gi; gj
� �

¼
ri
rj

ð1Þ

With i < j for uniqueness, where r is absolute RSSI value.
The total samples of the RSSIratio gi; gj

� �
is 3000 � 8 (6

columns for the RSSIratio between pair of gateways and 2 for
location coordinates).

The mean of the RSSI ratios for each location is computed
as given in Equation (2).

Mean RSSIratio ¼

Pn¼20
i;j¼1

ri
rj

n
ð2Þ

where gi;j denotes the number of unique pair of gateways that
measures the signal strength of the node at location li.

Mean RSSI ratios will be used in the subsequent analysis.
The proposed node localisation technique is shown in Figure 5.
It is important to note that in machine learning technique,

separate datasets are needed to train and validate the model.
Here, the RSSI_Ratios/location data collected during experi-
ment from 150 locations is randomly divided into training and
test sets. A total of 120 � 8 (the RSSI_Ratios between pairs of
gateways) randomly selected RSSIs with reference locations are
used for training the models and 30 � 6 remaining RSSI_R-
atios without reference locations are used to validate the
developed models.

4 | KERNEL‐BASED LOCALISATION

4.1 | Support Vector Regression

Support Vector Regression (SVR) [16, 21, 22], dedicated to
regression problems, is a variant of the well‐known Support
Vector Machine (SVM) technique. SVR uses the same prin-
ciple as SVM [23, 24] for classification, mapping the data into
a high dimensional feature space using non‐linear trans-
formations; linear regression is then executed in this space.
Kernel functions perform the non‐linear transformation of
the data into higher dimensional feature space that then en-
ables the linear separation. Effectively, linear regression in a
high dimensional space corresponds to non‐linear regression
in the low‐dimensional input space [25]. Invariably, regression
methods derive a function, say f ðxÞ, with the least deviation
between predicted and observed output for all training data.
Further, SVR minimises the influence of the error in the
observed data by establishing boundary margins around the
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hyperplane outside which data is not considered for regres-
sion. The prediction becomes challenging given that the SVR
output is a real number. Consequently, a tolerance margin,
epsilon is set in approximation to the SVM.

Two basic types of SVR are applied—epsilon‐SVR and nu‐
SVR [26–28]—differentiated by the manner the parameters
therein are managed. The main attribute of SVR is the use of a
non‐linear kernel transformation to map the input variables

F I GURE 4 Spatial spread of Received Signal Strength Indicator (RSSI) for (a) SF9, (b) SF10, (c) SF11 and (d) SF12
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into a feature space such that the relation with the output
variable becomes linear in the transformed space. Second,
SVR's excellent generalisation capabilities result from the use
of non‐linear kernels with good approximation. Also, SVR

does not suffer from local minima problem because it pos-
sesses convex optimisation formulation. It can better solve
small samples and non‐linear dimensional problems. The linear
case of SVR is modelled as given in Equation (3).

F I G U R E 4 (Continued)
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f ðxÞ ¼ 〈w ⋅ x〉 þ b ð3Þ

SVR can be formulated as a convex optimisation as given
in Equation (4).

Minimise
1
2
kwk

2

Subject to
�

yi − 〈w ⋅ xi〉 − b ≤ ε 〈w ⋅ xi〉 þ b − yi ≤ ε ð4Þ

ε is the acceptable deviation of estimated locations from actual
location.

An implicit assumption is that the function f ðxÞ can
approximate all input pairs xi; yið Þ with precision ε , that is,
it is assumed that optimisation is feasible. Therefore, in order
to accommodate errors, slack variables ξi; ξ∗

i are introduced
to cope with otherwise infeasible optimisation constraints
given in Equation (4) [29], where the constant C > 0 de-
termines the degree to which deviations larger than ξ are
tolerated with l being the number of samples as in
Equation (5).

Minimise
1
2

�
�wk

2
þ C

Xl

i¼1

ξi þ ξ∗
i

� �

Subject to
(

yi − 〈w ⋅ xi〉 − b ≤ ε þ ξi 〈w ⋅ xi〉 þ b

− yi ≤ ε þ ξ∗
i ξi; ξ∗

i ≥ 0 ð5Þ

ξi; ξ∗
i are the slack variables that make allowance for the

localisation errors to exist up to the value of ξi and ξ∗
i without

degrading performance. C is the box constraint, a positive
numeric value that controls the penalty imposed on data points
that lie outside the ε margin and helps to prevent overfitting.

A standard dualisation method with Lagrange multipliers
αi; α∗

i is used [30] to solve Equation (5), with ω expressed as in
Equation (6).

ω ¼
Xl

i¼1

αi − α∗
i

� �
xi ð6Þ

where αi ≥ 0 and α∗
i ≥ 0.

Substituting Equation (6) into Equation (3) and Equa-
tion (5) produces Equation (7).

f ðxÞ ¼
Xl

i¼1

αi − α∗
i

� �
〈xi ⋅ x〉 þ b ð7Þ

The dot product of the input vectors can be replaced with
their non‐linear transformation, the kernel function, repre-
sented by k xi; xð Þ to form the non‐linear solutions given in
Equation (8).

f ðxÞ ¼
Xl

i¼1

αi − α∗
i

� �
k xi; xð Þ þ b ð8Þ

Kernel functions make the SVR applicable to both linear
and non‐linear approximations. SVRs yield an acceptable
generalisation performance as only the support vectors are
used for prediction and are based on structural risk mini-
misation that seeks to minimise the generalisation rather than
the training error [31].

4.2 | Gaussian Process Regression

The Gaussian Process (GP) is a probabilistic kernel‐based
technique that has been applied in many practical problems
including estimation, classification, prediction, and prognosis
due to its advantage of being flexible, probabilistic, and non‐
parametric [17, 26]. A GP can model any system or process
according to a normal or Gaussian distribution, where the
mean and covariance function depend on the training data; the
process is a collection of random variables with a joint
Gaussian distribution [32]. Thus, any function sample has a
Gaussian distribution defined by its mean function mðxÞ and
covariance function k x; x0ð Þ.

The model assumes that the output is a realisation of a GP
with joint probability density function as given in Equation (9).

f ðxÞ ∼ GPðmðxÞ; k x; x0ð ÞÞ ð9Þ

where, mðxÞ ¼ Eðf ðxÞÞk x; x0ð Þ ¼ E ð½ f ðxÞ − mðxÞÞ f x0ð Þ − mð

x0ð ÞÞ� k x; x0ð Þ ¼ covðf ðxÞ; f x0ð ÞÞ

Here, the GP method is applied to a regression problem.
Assuming X ¼ x1; x2; : : : xN½ � represents N by 6‐

dimensional RSSI ratio input vectors, and the corresponding
outputs are y ¼ y1; y2; : : : yN½ �, representing the dual loca-
tion coordinates. When a new input vector x∗ is given, the goal
is to predict the corresponding output y∗ (unknown location
coordinates). The spatial relationship between the input vari-
able and the expected output can be modelled as a GP by
Equation (10).

F I G U R E 5 Node localisation technique
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T A B L E 4 Optimal parameters used for
epsilon_SVR algorithm

Epsilon_SVR kernels

Spreading factors Parameter tuning RBF+Matren RQ+Matern Exp.+Matern

SF9 RSSI Ratio Epsilon 1.00E‐03 1.00E‐04 1.00E‐03

Nu_Matern 10 1.5 1

Median 444 453 477

SF10 RSSI Ratio Epsilon 1.00E‐03 1.00E‐10 1.00E‐05

Nu_Matern 4 8.5 8

Median 359 381 410

SF11 RSSI Ratio Epsilon 1.00E‐03 1.00E‐03 1.00E‐03

Nu_Matern 1 1 1

Median 313 303 326

SF12 RSSI Ratio Epsilon 1.00E‐06 1.00E‐06 1.00E‐03

Nu_Matern 3 14.5 8.5

Median 323 346 329

T A B L E 5 Optimal parameters used for
Gaussian Process Regression (GPR) algorithm

GPR kernels

Spreading factors Parameter tuning RBF+Matren RQ+Matern Exp.+Matern

SF9 RSSI Ratio Alpha 1.00E‐05 1.00E‐06 1.00E‐05

Nu_Matern 1.5 4 2.5

Median 431 423 430

SF10 RSSI Ratio Alpha 1.00E‐06 1.00E‐08 1.00E‐05

Nu_Matern 8 11.5 6

Median 378 388 380

SF11 RSSI Ratio Alpha 1.00E‐09 1.00E‐08 1.00E‐09

Nu_Matern 1 11 1

Median 392 387 392

SF12 RSSI Ratio Alpha 1.00E‐07 1.00E‐07 1.00E‐05

Nu_Matern 9 10 8

Median 317 361 379

T A B L E 6 Optimal parameters used for
Nu‐SVR algorithm

Nu_SVR kernels

Spreading factors Parameter tuning RBF+Matren RQ+Matern Exp.+Matern

SF9 RSSI Ratio Nu_SVR 0.44 0.45 0.09

Nu_Matern 2 7 1

Median 410 399 425

SF10 RSSI Ratio Nu_SVR 0.97 0.27 0.22

Nu_Matern 3 11 9

Median 357 353 366

SF11 RSSI Ratio Nu_SVR 0.75 0.39 0.47

Nu_Matern 1 1 1

Median 336 338 338

SF12 RSSI Ratio Nu_SVR 0.55 0.86 0.78

Nu_Matern 1 1.5 1.5

Median 320 324 309
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T A B L E 7 Statistical performance of the
epsilon‐SVRExp.+Matren RBF+Matern RQ+Matern

Absolute RSSI_ SF 9 Min (m) 121 145 130

Median (m) 487 442 421

Mean (m) 536 493 483

RMSE (m) 603 556 542

Absolute RSSI_SF10 Min (m) 123 109 93

Median (m) 541 506 428

Mean (m) 551 559 513

RMSE (m) 619 656 607

Absolute RSSI_SF11 Min (m) 83 117 127

Median (m) 520 410 426

Mean (m) 539 575 537

RMSE (m) 609 660 613

Absolute RSSI_ SF12 Min (m) 110 128 80

Median (m) 508 336 344

Mean (m) 537 441 392

RMSE (m) 604 508 446

Abbreviation: RMSE, Root Mean Square Error.

T A B L E 8 Kernel functions
Kernel Formula

Radial basis function (RBF) k x ; x 0ð Þ ¼ e −x−x 02

2σ2

� �

Rational Quadratic (RQ) k x ; x 0ð Þ ¼ 1 þ
d x ;x 0ð Þ

2

2αl2

� �−α

Matern k x ; x 0ð Þ ¼ σ2 1
ΓðνÞ2ν−1 γ

ffiffiffiffiffiffiffi
2νd

p
x
l ;

x 0

l

� �� �ν
kv γ

ffiffiffiffiffiffiffi
2νd

p
x
l ;

x 0

l

� �� �

ExpSineSquared k x ; x 0ð Þ ¼ exp −2 sin π
p ∗ d x ; x 0ð Þ
�� �

=
�

l2Þ2
�

T A B L E 9 Performance of different algorithms based on Rational ExpSineSquared + Matern Kernel Function

Models SF9 RSSI Ratio (m) SF10 RSSI Ratio (m) SF11 RSSI Ratio (m) SF12 RSSI Ratio (m)

Epsilon‐SVR min 90 108 84 97

median 477 410 326 329

mean 637 498 453 393

RMSE 767 559 588 447

Nu‐SVR min 140 56 111 116

median 425 366 338 309

mean 541 432 474 404

RMSE 609 498 612 459

GPR min 36 59 32 62

median 430 380 392 379

mean 503 450 488 424

RMSE 576 508 595 481

Abbreviation: RMSE, Root Mean Square Error.
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T A B L E 10 Performance of different algorithms based on Radial basis function (RBF) + Matern Kernel Function

Models SF9 RSSI Ratio (m) SF10 RSSI Ratio (m) SF11 RSSI Ratio (m) SF12 RSSI Ratio (m)

Epsilon‐SVR min 75 45 84 42

median 444 359 313 323

mean 532 449 453 385

RMSE 629 507 583 440

Nu‐SVR min 55 64 129 83

median 410 357 336 320

mean 518 452 454 396

RMSE 600 514 567 443

GPR min 40 45 32 49

median 431 378 392 317

mean 502 454 488 425

RMSE 572 526 595 491

Abbreviations: GPR, Gaussian Process Regression; RMSE, Root Mean Square Error; SVR, Support Vector Regression

T A B L E 11 Performance of different algorithms based on Quadratic + Matern Kernel Function

Models SF9 RSSI Ratio (m) SF10 RSSI Ratio (m) SF11 RSSI Ratio (m) SF12 RSSI Ratio (m)

Epsilon‐SVR min 59 66 85 70

Median 453 381 303 346

mean 571 451 451 378

RMSE 694 509 573 431

Nu‐SVR min 119 57 109 121

Median 399 353 338 324

mean 508 440 463 391

RMSE 575 503 555 444

GPR min 49 52 35 22

Median 423 388 387 361

mean 489 447 490 385

RMSE 560 506 678 433

Abbreviations: GPR, Gaussian Process Regression; RMSE, Root Mean Square Error; SVR, Support Vector Regression

yi ¼ φ xi;Wð Þ þ ϵ; ϵ ∼ Nð0; Þ; i ¼ 1; : : :;N ð10Þ

whereφ is a function parameterised by vectorW ; ϵ is assumed to
be the noise caused by perturbations represented by a distributed
Gaussian distribution N with zero mean and variance σ2

n.
The prior probability on y is given by Equation (11).

E½y� ¼ E½φðx;W Þ þ ϵ� ¼ 0

cov½y� ¼ KðX; XÞ þ σ2
nI

ð11Þ

where E is the mean function, and cov is the variance function.
The distribution with the new input can be expressed by the
function in Equation (12).

y y∗½ � ∼ GP 0; KðX; XÞ þ σ2
nI K X; x∗ð Þ K X; x∗ð Þ

T K x∗; x∗ð Þ
h i� �

ð12Þ

whereK X; x∗ð Þ ¼ k x1; x∗ð Þ; : : : k xN ; x∗ð Þ½ � can be written as
k∗. The prediction can be presented by Equations (13) and (14).

E y∗ð Þ ¼ k∗T K þ σ2
nI

� �−1yT ð13Þ

cov y∗½ � ¼ K x∗; x∗ð Þ − k∗T K þ σ2
nI

� �−1K∗ ð14Þ

5 | EXPERIMENTAL RESULTS

The experimental results are presented in this section. The
offline measurements were taken in the suburb region of Jazan
City in Saudi Arabia. The testbed considered is an environment
characterised with sandstorms, tall buildings, masts and towers.
The testbed area was divided into a semi‐uniform grid with side
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measurement of 100 m to form 150 measurement locations.
The training data was measured at 130 randomly selected lo-
cations where 20 time samples of RSSI were measured at each
measurement location. For locations with null readings, a
default RSSI value of −132dB was used as valid data. The data
collected was used to analyse the localisation performance of
the developed models. The impact of the kernel functions, SF
and transformed RSSI features was analysed. In addition, the
time complexity of the models was investigated. The following
metrics are used in result analysis: Haversian distance metric,
Root Mean Square Error and Cumulative Distribution Func-
tion (CDF).

5.1 | Parameter tuning

The hyperparameters associated with the machine learning
algorithms impact the overall performance of models; thus,
central is the tuning of parameters to optimise their accuracy.

Hyperparameters are tuned for each dataset namely RSSI
ratios of SF9, SF10, SF11, and SF12. The optimal model
hyperparameters are unique to a single dataset. A random
search method is used to select the optimal parameters of the
epsilon‐SVR, nu‐SVR and GPR algorithms. A grid of hyper‐
parameters values is established, and a random combination
of the values is selected to train the model. Moreover, for SVR,

F I G U R E 6 Cumulative Distribution Function (CDF) for epsilon_SVR
models using combined kernels

F I G U R E 7 Cumulative Distribution Function (CDF) for Nu_SVR
models using combined kernels
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hyper‐parameter C, regularisation constant, epsilon and nu for
nu‐SVR are also optimised using the same methodology. For
GPR, the only hyperparameter to be tuned is alpha. Some
kernels such as ‘Matern’ have optimised parameters. The
summary of the optimal parameters used in each algorithm for
each dataset is given in Table 4, Table 5, and Table 6.

5.2 | Impact of transformed RSSI features

To evaluate the impact of the transformed fingerprints (RSSI
ratio), the SVR methods are first evaluated using absolute RSSI
values for all spreading factors (SF9, SF10, SF11, and SF12).
Table 7 shows the statistical performance of the models when
absolute RSSI data is used. The median localisation error using
absolute RSSI features with SF12 is 336 m. On the other hand,
epsilon_SVR with SF11 using RSSI_ratio provides the best
median localisation error of 303 m as shown in Table 7,
enhancing precision by 28.8% over using absolute RSSI with
SF11. The transformed data (RSSI_Ratio) have shown to
improve the accuracy of the node localisation. We believe that
the improved performance of the developed node localisation
model using transformed data (RSSI ratio) is because the
average RSSI ratio reduces the noise in the absolute RSSI data.

5.3 | Impact of kernel functions

In machine learning, a kernel is used to transform linearly
inseparable data to linearly separable data. In effect, kernel
functions compute similarities between samples in the data. A
range of kernel functions are used in the establishment of
SVR‐ and GPR‐enhanced localisation models. In addition,
different kernels are combined in order to further investigate
the effect of kernel functions on the performance of the
models. The kernels used in the evaluation are given in Table 8
[32] [33] [34].

RSSI ratio data and the corresponding location coordinates
are used as training inputs to the algorithm. Whilst the data
used for training remained constant, the kernel function was
varied in order to test its impact on performance. Results for
each algorithm, epsilon‐SVR, nu‐SVR and GPR with com-
bined kernel functions are shown in Table 9, Table 10 and
Table 11. It is evident that the combined kernel functions
outperformed the commonly used kernels on the same dataset
for all three algorithms. More specifically, the Rational
Quadratic + Matern kernel has the lowest median error of
303 m with the epsilon‐SVR algorithm; in other words, the
model locates the node with error less than 303 m for 50% of
the time. The median location error is 309 m for

F I G U R E 8 Cumulative Distribution Function (CDF) for Gaussian
Process Regression (GPR) models using combined kernels

T A B L E 12 Antwerp city dataset

Gateways SF9 SF10 SF11 SF12

No. of packets 6254 4559 2708 1430

T A B L E 13 Model performance on Antwerp data (ratios)

Model Median (m) Mean (m) Time

SF 9_Ratio RSSI RBF + Matern 708 871 199 min

RQ + Matern 707 872 198 min

SF 10_Ratio RSSI RBF + Matern 684 859 105 min

RQ + Matern 688 858 108 min

SF 11_Ratio RSSI RBF + Matern 614 784 38.5 min

RQ + Matern 616 786 38.3 min

SF 12_Ratio RSSI RBF + Matern 433 660 10 min

RQ + Matern 447 660 10.5 min
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ExpSineSquared + Matern kernel in nu‐SVR. In GPR, Radial
basis function (RBF) + Matern kernel gives a median error of
317 m.

5.4 | Impact of spreading factor

The impact of SF on the performance of the models developed
is evaluated using average RSSI ratios at different SFs (9, 10, 11
and 12) as input fingerprints to SVR and GPR. The results
presented in Table 9, Table 10 and Table 11 indicate that higher
spreading factors (SF11 and 12) yielded improved node
localisation performance compared to lower spreading factors
(SF9 and 10). SF11 and SF12 derived models produce the
highest level of consistency irrespective of the combined ker-
nels used. More specifically, epsilon‐SVR at SF11 provides a
median error of 303 m, a 30% improvement in precision
compared to the performance at SF9 (453 m). The significant
improvement at higher SF could be attributed to the quality of
data collected. It has been observed in the reported experiment
that the quality of data is a function of the SF used. Whilst we
experienced significant loss of packets at SF9 and SF10, there
was little or negligible loss of data at SF11 and 12. It should be
noted that at higher SFs, latency is a consideration as the
transfer of packets is subject to significant delays. However, the
trade‐off between latency and accuracy in this application may
be a design option. Shadowing and reflections are more likely
to impact reception at low SF values.

5.5 | Accuracy

Here, the accuracy of the models is measured as the average
Haversian distance metric between the estimated and true
location of a node as given in Equation (15):

d ¼ 2r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ − φ0

2

� �
þ cos cos φ0ð Þ cos cos ðφÞ

λ − λ0
2

� �s !

ð15Þ

where, φ0 ¼ latitude of real location, φ ¼ latitude of estim
ated location, λ0 ¼ longitude of real location, and λ ¼ longi
tude of estimated location

RSSI ratio data and the optimised kernel are used in order
to evaluate and compare the performance of the three algo-
rithms. RSSI ratio features (120 � 6) and their corresponding
location coordinates were used to train the algorithms; the data
from the remaining 30 locations were used as test data. The
overall performance of the three models is captured by CDFs
of the localisation error as shown in Figure 6, Figure 7 and
Figure 8. Each model provides a localisation accuracy with a
median error of less than 400 m. Epsilon‐SVR has the lowest
median error of 303 m compared to 309 and 317 m for nu‐
SVR and GPR, respectively. SVR outperformed the GPR
model in terms of the overall accuracy.

5.6 | Analysis of Antwerp dataset

To further demonstrate the feasibility and consistency of the
developed method for LoRaWAN localisation, we explore a
public dataset of LoRaWAN messages obtained in the city
centre of Antwerp. It holds 123,529 messages which were
collected over a 3‐week period. City of Things hardware and a
Firefly �1 GPS receiver was mounted on 20 cars of Antwerp's
postal service, which drove around in the city centre while
continuously acquiring the current latitude and longitude of the
car as well as the Horizontal Dilution of Precision (HDOP) of
the GPS signal. The acquired location information is sent in a
LoRaWAN message via the IM880 B‐L radio module. With
HDOP, messages with poor GPS signal quality could be
removed. Information stored in the dataset include 68

T A B L E 14 Model performance on
Antwerp data (absolute)

Model Median (m) Mean (m) Time

SF 9__Absolute RSSI RBF + Matern 808 895 155 min

RQ + Matern 781 894 157 min

SF 10__Absolute RSSI RBF + Matern 776 951 32 min

RQ + Matern 750 924 31 min

SF 11__Absolute RSSI RBF + Matern 666 837 32 min

RQ + Matern 625 807 32.89 min

SF 12__Absolute RSSI RBF + Matern 580 735 8.27 min

RQ + Matern 541 750 8.73 min

T A B L E 15 Model performance of support vector regression (SVR)
on Jazan data (ratios)

Models Median (m) Mean (m) Time

SF 9 Ratio RSSI RBF + Matern 444 532 3.74 min

RQ + Matern 453 571 3.21 min

SF 10 Ratio RSSI RBF + Matern 359 449 3.4 min

RQ + Matern 381 451 3.45 min

SF 11 Ratio RSSI RBF + Matern 313 453 3.31 min

RQ + Matern 303 451 3.28 min

SF 12 Ratio RSSI RBF + Matern 323 385 3.38 min

RQ + Matern 346 378 3.34 min
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LoRaWAN base stations, the receiving time, SF, HDOP, lati-
tude and longitude. For an unbiased comparison, we pre-
processed the Antwerp city LoRaWAN data before applying
our method. The preprocessing and result of the work done
with Antwerp dataset is captured as follows:

1. Four gateways (GW_9, GW_14, GW_27, and GW_69)
were selected out of the 68 gateways in the Antwerp city
dataset. This is done in order to have the same number of
gateways as in our Jazan city dataset.

2. The four selected gateways should have the same SF as the
Jazan city dataset, which are SF9, SF10, SF11, and SF12, in
order to guarantee the Antwerp city dataset has the same
features as Jazan dataset as shown in Table 12.

3. The same data transformation technique (RSSI ratio)
applied on Jazan city data is used on Antwerp city data.

4. The same kernel functions are used as with the Jazan city
dataset, which are (a) Matern with RBF and (b) Matern with
RQ.

5. The tables below show the results for both RSSI ratios and
Absolute RSSI for Antwerp city dataset.

As can be seen in both Tables 13 and 14, the RSSI ratio data
transformation technique helped improve the node localisation
performance. This proves the consistency in our technique.

5.7 | Runtime analysis

The time complexity of the methods used in this work have
been analysed. Tables 13–16 show the different models and the
run time for each algorithm. There is little or negligible dif-
ference in the run time of the algorithms for the Jazan city data
irrespective of the SF. However, when the same analysis is
conducted using the Antwerp city dataset, there is significant
change in the run time of the algorithm. This indicates that the
run time of our algorithms is data dependent.

6 | CONCLUSION

An investigation into the use of kernelised learning methods
in tandem with RSSI ratios for node localisation in LPWAN

settings has been detailed. Specifically, epsilon and nu‐
Support Vector Regression and GP Regression have been
used to develop localisation models, capturing the dynamic
relationship between RSSI ratios and node location
estimation.

A combination of four gateway RSSI ratio pairs formed
inputs to the models during training and the optimum kernel
function defined through an evaluation of the effect of
kernels on the performance of the estimate of location.
Each model provides a localisation accuracy with median
error of less than 400 m, using combined kernels. Epsilon‐
SVR yields the lowest median error of 303 m compared to
309 and 317 m for nu‐SVR and GPR, respectively. SVR
outperformed the GPR model in terms of overall accuracy.
The result demonstrates that the combination of different
kernel functions can enhance localisation accuracy. The
analysis of SF and transformed RSSI (RSSI ratio) shows the
significance of SF and RSSI ratio on the performance of the
node localisation models. The evaluation with High SFs
(SF11 and SF12) outperform low SFs (SF9 and SF10). The
RSSI ratio shows improved localisation accuracy over abso-
lute RSSI. The evaluation of the proposed method on the
Antwerp city data provides evidence on the consistency of
our findings.
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T A B L E 16 Model performance of
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Model Median (m) Mean (m) Time

SF 9 Absolute RSSI RBF + Matern 442 493 3.18 min

RQ + Matern 421 483 3.5 min

SF 10 Absolute RSSI RBF + Matern 506 559 3.23 min

RQ + Matern 428 513 3.43 min

SF 11 Absolute RSSI RBF + Matern 410 575 3.27 min

RQ + Matern 426 537 3.4 min

SF 12 Absolute RSSI RBF + Matern 336 441 3.23 min

RQ + Matern 344 392 3.44 in
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