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Abstract
In the behavioral epidemiology (BE) of infectious diseases, little theoretical effort seems to have been de-

voted to understand the possible effects of individuals’ behavioral responses during an epidemic outbreak in
small populations. To fill this gap, here we first build general, behavior implicit, SIR epidemic models includ-
ing behavioral responses and set them within the framework of nonlinear feedback control theory. Second, we
provide a thorough investigation of the effects of different types of agents’ behavioral responses for the dynam-
ics of hybrid stochastic SIR outbreak models.
In the proposed model, the stochastic discrete dynamics of infection spread is combined with a continuous
model describing the agents’ delayed behavioral response. The delay reflects the memory mechanisms
with which individuals enact protective behavior based on past data on the epidemic course. This results
in a stochastic hybrid system with time–varying transition probabilities. To simulate such system, we ex-
tend Gillespie’s classic stochastic simulation algorithm by developing analytical formulas valid for our classes
of models. The algorithm is used to simulate a number of stochastic behavioral models and to classify the
effects of different types of agents’ behavioral responses. In particular this work focuses on the effects of
the structure of the response function and of the form of the temporal distribution of such response. Among
the various results, we stress the appearance of multiple, stochastic epidemic waves triggered by the delayed
behavioral response of individuals.

Keywords: Multiple Epidemic Waves, Social Distancing, Hybrid Systems, Stochastic Epidemic Models,
Human Behavior, Memory Effects, Gillespie Algorithm.

1 Introduction

The principles of Mathematical Epidemiology (ME) were established more than one century ago with the milestone
work by Sir Ronald Ross in 1916 and by Kermack and McKendrick [1, 2].
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The Kermack and McKendrick’s lied in the description of infection transmission by means of the mass action
law of Chemistry and Statistical Mechanics. In their formulation, the individuals’ social contact patterns relevant
for transmission are represented as collisions between particles of a perfect gas, while transmission is modeled
as a chemical reaction occurring with a certain probability upon a random encounter between two individuals of
different types, namely a susceptible subject and an infective one [3]:

Susceptible+ Infectious
β→ Infectious+ Infectious.

As a consequence, in their approaches, the social contact rate per individual, and the transmission rate β per social
contact, were taken essentially as natural constants valid for appropriate combinations of spatial settings, human
activities, cultural habits, institutions etc. However, it was acknowledged the possible dependence of these con-
stants on the seasonality of social phenomena, e.g. the school calendar, or on climatic phenomena [4].
In the last four decades, mathematical models of infectious diseases have become key supporting tools for public
health decisions [5–7]. This development was made possible by the increasing awareness of the need for better
data and statistical tools allowing a finer and finer description of the transmission process. Further dimensions
were incorporated in the models: individual-level characteristics, as age and sex; meso-level fundamental
structures, such as the community composition by household type, by space, by social activity; etc... [5].
The impulse impressed by the fear for avian influenza and the 2009 H1N1 flu pandemic induced the development
of highly sophisticated mathematical and computational models, which better integrate models with data [6, 8],
and which were used to describe and predict the worldwide dynamics of influenza pandemics. Of course, the
current COVID-19 pandemic, and related mitigation measures, are bringing further astonishing momentum to the
discipline, with an endless list of contributions (more than 9000 modeling papers and PhD Theses on COVID-
19 are reported by Google Scholar at February 2 2022).
However, in essentially all public health models, the individuals’ social, transmission and vaccination behavior
remain unaffected regardless of the trends in the risks of acquiring the infection they might perceive from available
information.
Clearly, this is an unrealistic abstraction, increasingly less applicable in contemporary scenarios. This became
even more true during the current COVID-19 pandemic, which represented a huge open-sky laboratory of hu-
mans’ behaviors [9].Indeed, individuals are frantic information-seekers and therefore hardly unaffected by the
state of the disease and related information.
Attempts to remove this abstraction have led, in the last 20 years, to the birth of a new branch of ME that was
termed the behavioral epidemiology (BE) of infectious diseases [7, 10–12].
The pioneering work in BE was due to Capasso and Serio [13,14], who first assumed that the transmission inten-
sity might also depend on the level of infection spread by modeling the contact rate β as a decreasing function of
infection prevalence. This was the first instance of an epidemiological model incorporating individuals’ sponta-
neous social-distancing behavior by a prevalence-dependent contact rate [7,10–12]. A key postulate of BE is that
infection spread is not anymore an independent process but it is instead the outcome of the interplay of an infection-
spread layer with a number of other layers, first of all a behavior layer, in turn modulated by an information layer.
In simple words, human behavior relevant for infection spread may be critically affected by the information about
the spread and severity of the considered infection. And any change in human behavior will possibly affect in-
fection trends, that might eventually feedback on behavior itself. This means that the spread of information is a
critical component of infection transmission modeling and therefore requires careful modeling per se. All this led
some of us to develop new classes of epidemiological models by using new variables, that we termed information
indexes, in order to include not only individual perceptions about the current state of infection, but also the memory
of past spread [7, 15, 16] and eventually also spatio-temporal memories. In particular, in [17] the Capasso-Serio
model was extended by considering a deterministic SIR model for an endemic infection disease with a general
information-dependent transmission rate allowing to also include past available information on infection spread.
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In this article, we depart from the previously cited works [13, 17] along two main directions.
The first one deals with the interpretation side: we will cast the aforementioned behavior implicit models in-
cluding the effects of delayed information [17]) in the framework of the theory of nonlinear feedback control
systems [18–21]. The underlying idea is that the individuals’ behavioral responses considered in the BE litera-
ture, whereby e.g., agents reduce their daily number of social contacts depending on the information they have on
disease severity. This is nothing other than a (nonlinear) feedback control. In particular, unlike many feedback
systems studied in mathematical biology [19, 22, 23], the one considered here is a genuine feedback. Indeed, it is
the outcome of voluntary - though uncoordinated - actions of agents.

The second main departure point is that most BE studies are based on deterministic models and as such they
are suitable to describe epidemic or endemic scenarios for large populations only.
More in detail, we aim at studying the impact of human behavior during the spread of an epidemic outbreak in
small-medium size populations, by taking into account that human decisions might also depend on past informa-
tion. This has a number of implications. First, the involved nonlinear feedback control systems are stochastic, and
therefore depart from the classical asymptotic deterministic description based on the qualitative theory of differen-
tial equations [18–21]. Moreover, as we are dealing here with a system having a finite life–span, it is necessary to
assess the impact of the control action on a mainly transient phenomenon.
In particular, we depart from classical stochastic models of mathematical epidemiology, generically belonging (as
the models of chemical kinetics, of which they can be considered as a subcase [7]) to the class of nonlinear birth
and death Markov processes [24,25]. The latter processes can be simulated by means of the well known Gillespie
algorithm [26,27]. However, the presence of the information memory index (denoted asM(t) in this paper) makes,
from the theoretical viewpoint, the resulting model a hybrid stochastic system [28–30], where a birth-death model
of epidemic spread is coupled with a piecewise deterministic model for the information index M(t)). The main
implications are the following: i) the state variables of the stochastic epidemic sub-system impact on the - other-
wise deterministic - dynamics of the memory; ii) in its turn, the model of the memory impacts on the birth-death
epidemic component by making the key occurrence probabilities, namely the transmission rate β, heterogeneous
in time. From the computational viewpoint, the latter issue requires to modify Gillespie’s algorithm following the
lines of [28–31].
Based on this background, we then use selected simulation experiments to analyse and classify the effects of dif-
ferent individuals’ delayed behavioral responses during the course of a stochastic SIR-type epidemic in a fully
susceptible population. In particular, the agents’ responses to the epidemic threat are modulated by: (i) the struc-
ture of the behavioral response function, (ii) the form and amplitude of the response function temporal kernels.
Consistently, for each hypothesis on the behavioral response function, the resulting system is simulated to ade-
quately reconstruct a number of key features of the stochastic epidemic, namely the simulated distributions of (i)
the final attack rate, (ii) the epidemic extinction time, (iii) the epidemic maximum prevalence etc.
Finally, we explicitly stress that our work did not intend to refer to COVID-19, which is an infection with
a more complex dynamical structure than the one considered here [32–34]. Instead, our work had a quite
general purpose namely to develop a general stochastic behavioral epidemiology framework including de-
layed responses by individuals. However, we will insert – only where appropriate – observations that could
be related to (or of interest for) investigations on the current pandemics.
The manuscript is structured as follows. Section two (i)presents the behavioral deterministic models and the related
information indices that motivated this study, (ii) it plugs them in the formalism of nonlinear control theory, and
(iii) it presents the models main features. Section three introduces the stochastic counterparts of the given models
with special focus on the simulation issues that arise when lagged behavioral components are considered, thereby
leading to hybrid stochastic systems. Section four explains the experiments. The subsequent sections illustrate the
results for different forms of the information index. Concluding remarks follow.
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2 Deterministic epidemic models with implicit behavior

In this section we present the deterministic counterparts of the stochastic behavioral models used in this paper. We
depart from two basic, behavior–implicit, models with a prevalence–dependent response. Then, we discuss the
structure of the information indexM and present some main instances of delaying kernels tuning the behavioral
response namely, the exponentially fading kernel and a generalisation that we term the acquisition fading kernel.
Then we set the proposed systems in the framework of nonlinear control theory. Finally, we discuss the main
qualitative features of the proposed class of models with special focus on the interplay between the strength of the
behavioral response and the related time delay.

2.1 Prologue: the Capasso-Serio deterministic SIR epidemic model with social distancing

The model by Capasso and Serio [13] extended the classical SIR deterministic epidemic model by Kermack and
McKendrick [2] to include a prevalence-dependent contact (or transmission) rate, taken as a decreasing function of
infective prevalence to mimick individual behavior change as a response to the epidemic threat. The model reads
as follows:

S′ = −β(I) I
N
S (1)

I ′ = β(I)
I

N
S − γI (2)

where S = S(t), I = I(t) represent the number of susceptible and infective individuals at time t, γ > 0 is the
recovery rate, and β(I) is the prevalence-dependent transmission rate which was assumed to obey

β′(I) < 0

β(0) = β0

where β0 represents the transmission rate in the epidemic early phase where no individuals’ responses are in place
yet. The key hypotesis is that the larger the infective prevalence, the stronger will be the agents’ response to the
epidemic threat by correspondingly reducing their transmission - or contact - rates, that is by expanding their social
distancing.
Among the main properties of the model (1)-(2) we mention that: i) an epidemic outbreak will occur only if
β(0) (S(0)/N) > γ i.e., if the basic reproduction number (BRN) relevant for this model exceeds one; ii) for
t → ∞ it is I(t) → 0, that is, due to the deterministic continuous nature of the model the outbreak only ends for
infinitely times. Moreover, the total number of infected subjects obeys the biologically meaningful relationship

T =

∫ +∞

0
β(I(t))

I(t)

N
S(t)dt = S(+∞)− S(0)

. In substantive terms, the working of the model is rather simple: the inclusion of a simple agents’ response in-
creasing with prevalence has a protective role on the community. Compared to the baseline Kermack-McKendrick
model, this response can mitigate the epidemic in the event of an outbreak and can - if very intense - even pre-
vent the outbreak occurrence. This simplicity will obviously disappear in presence of more articulated behavioral
response.
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2.2 A deterministic endemic SIR model with social distancing

In [17], the notion of prevalence-dependent social distancing first formulated by Capasso and Serio was extended
in a fairly general manner by taking the transmission rate β as a decreasing function of a general information index
denoted byM(t) i.e., β = β(M), β′(M) < 0. The concept of information index was first introduced in [15], to
summarize the entire amount of - current and past - available information about infection spread that agents can
use to inform their response to the infection threat. In [17] the idea of social distancing was cast within a basic
behavior implicit information-dependent SIR model for an endemic - rather than epidemic - infection (therefore
also including the vital dynamics of the population). The model read as follows:

S′ = µ(N − S)− β(M(t))
I

N
S (3)

I ′ = β(M(t))
I

N
S − γI − µI, (4)

where µ represent both the birth and death rates, kept equal to ensure population stationarity over time. The
corresponding epidemic variant is obtained by just setting µ = 0.
A model using theM index in a behavior-explicit setting was proposed by [35] within their outbreak model with
normal vs altered behavior.
As argued in [17], the information index is a flexible summary of the infection state and can therefore take a wide
range of forms. A general form adequate for our present purposes is the following prevalence-dependent form

M(t) =

∫ +∞

0
g(I(t− q))K(q)dq (5)

where: g(I) is an increasing function of the prevalence, andK(q) is a delaying kernel (or ’memory function’), that
is a probability density function that weighting the levels of past prevalence. For the sake of the simplicity, in our
subsequent analyses we will use g(I) = kI .
In [17] it was shown that in the endemic case (i.e., for µ > 0), the model (3)–(4)–(5) has two equilibria: i)
the disease-free equilibrium point DFE = (N, 0), which is Locally Asymptotically Stable (LAS) and Globally
Asymptotically Stable (GAS) provided that the model BRN is lower or at most equal to one, where

BRN =
β(0)

µ+ ν

and a unique endemic equilibrium
EE = (Se, Ie)

where (Se, Ie) is the unique solution of the following system

Se = N −
(
1 +

ν

µ

)
Ie

Se = N
µ+ ν

β(Ie)
.

The stability of the endemic state depends on the specific model of the information index (5). For example, if the
kernelK obeysK(q) = δ(q) where δ(.) is the Dirac function thenM(t) = I(t) (i.e., the model is unlagged), and
EE is GAS (see [17, 36] and appendix A.
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2.3 Plugging social distancing within the framework of nonlinear control theory

Even on an intuitive ground, the information indexM(t) can be read as a feedback control variable (traditionally
denoted as u(t) in nonlinear control theory), since it represents a decision variable that - at the individual level -
agents may tune to reduce their hazard of infection. By setting β0 = β(0) and defining

ψ(M) = 1− β(M)

β0

one can rewrite system (3)–(4)–(5) in the classical form of nonlinear control theory [18]

x′ = f(x) + ψ(M)g(x) (6)

where
x = (x1, x2) = (S, I)

f(x) =
(
µ(N − x1)− β0

x2
N
x1, β0

x2
N
x1 − (ν + µ)x2

)
g(x) =

(
β0
x2
N
x1,−β0

x2
N
x1

)
.

In particular, the case where the information index is assumed to be simply given by the infection prevalence,
M = I = x2, has a nice control–theory intepretation: it is the deviation of the state x2(t) (i.e. I) with respect to
the ideal reference case of absence of disease,i.e. xref2 (t) = 0: M = x2 − xref2 (t).

2.4 Modelling the information index and its temporal kernels

In this section, we state our main assumptions on the transmission rate and the delaying kernel, and provide some
relevant control-theoretic interpretations.
As regards the functional form of the transmission rate resulting from the above definition (2.3) i.e., β = β0(1 −
ψ(M)), this could allow to design the control by applying techniques of differential geometry [18,20,21]. However,
this approach would not keep under control the key constraint on function ψ(M) namely:

0 < ψ(M) < 1

ψ(0) = 0

ψ′(M) > 0.

Therefore, in our numerical simulations we will use the following phenomenological family of functions for the
information-dependent transmission rate β(M):

β(M) = β0
Mp

50

Mp
50 +Mp

(7)

where p is an integer such that p ≥ 1, andM50 is such that β(M50) = 0.5β(0).
Note that, in the particular case where the information index only includes current information (that is, M(t) =
I(t)) and for p = 1, the corresponding force of infection (FOI) h(I) = β(I)I/N (the instantaneous hazard of
infection faced by a susceptible individual per time unit) is increasing, whereas for p ≥ 2 the FOI is non–monotone
with a maximum at I =M50.
Note moreover that, the fact that the DFE is LAS (GAS, actually) only if BRN < 1 independently of the memory
kernel , i.e. only if in absence of the behavioral effect the disease cannot remain endemic, implies that one cannot
design a ψ(M) such that the DFE is stabilized.
As regards the memory kernel, we will consider three main cases:
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• The memoryless caseK(q) = δ(q). In this case the information indexM only includes current information.

• The exponentially fading memory kernel (EFK):

K(q) = aExp(−aq).

This represents the often realistic case where past information receives a decreasing weight. In this case, the
integro–differential system can be reduced to ordinary differential equation (ODEs) by adding the further
ODE:

M ′(t) = a(g(I)−M) (8)

• The acquisition-fading memory kernel (AFK):

K(q) =
a1a2
a2 − a1

(Exp(−a1q)− Exp(−a2q)) .

This represents another possibly realistic scenario where no information (about the infection state) is avail-
able at current time, then it is gradually acquired up to a maximum before starting fading out exponentially,
as in the EFK case.
Even in this case the integro–differential model (3)-(4)-(5) can be reduced to ODEs by the additional equa-
tions

Z ′(t) = a1(g(I)− Z) (9)

M ′(t) = a2(Z −M) (10)

Note that if the two sub-processes of information acquisition and memory fading occur at the same relative
speed a1 = a2 = a, then our 2-dimensional acquisition-fading kernel reduces (via the limit a2 → a1) to the
so-called Erlang(2, a) = ate−at kernel [37].

It is immediate to verify that:

• In the case of the exponentially fading kernel, the memory index/control variableM(t) can be read as the
output of a low–pass filter with characteristic cut–off frequency a that is applied to the ’signal’ g(I(t)).
Under our work assumption g(I) = kI the transfer function H(λ) between the input I and the output M
reads as follows

H(λ) =
M̂(λ)

Î(λ)
=

kλ

a+ λ
= K̂(λ),

where λ ∈ C and M̂(λ), M̂(λ) and K̂(λ) are the Laplace transforms of, respectively,M(t), I(t) andK(q);

• In the case of the acquisition–fading kernel, the memory indexM(t) can be read as the output of the applica-
tion of two low–pass filters in series (with characteristic frequencies a1 and a2) that is applied to the ’signal’
g(I(t)). In particular, in the case g(I) = kI , the transfer function between the input I and the output M
reads as follows

H(λ) =
M̂(λ)

Î(λ)
=

ka1a2
(a1 + λ)(a2 + λ)

= K̂(λ). (11)

Therefore, in our problems, the processes of fading and (if it is the case) acquisition of the memory are analogous
to the error with memory connected to the measure of a feedback signal by means of a mechanic or electronic
device [19]. This is a typical scenario in control theory, where the controller often acquires the information on
the variables to be controlled by means of measure devices. The latter can have their own internal dynamics and
moreover, are also aimed at reducing extrinsic noises that are characterized by large frequencies.
Adopting again the control-theory formalism, the final structure of the considered family ofmodels (6) is as follows:
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• In case of EFK:
x = (x1, x2, x3) = (S, I,M)

f(x) =
(
µ(N − x1)− β0

x2
N
x1, β0

x2
N
x1 − (ν + µ)x2, a(g(x2)− x3)

)
g(x) =

(
+β0

x2
N
x1,−β0

x2
N
x1

)
, 0

• In case of AFK:
x = (x1, x2, x3, x4) = (S, I, Z,M)

f(x) =
(
µ(N − x1)− β0

x2
N
x1, β0

x2
N
x1 − (ν + µ)x2, a1(g(x2)− x3), a2(x3 − x4)

)
g(x) =

(
+β0

x2
N
x1,−β0

x2
N
x1

)
, 0

2.5 Properties of the previous general deterministic endemic model with social distancing

We discuss here the main stability properties of the endemic state of model (6) under the different hypotheses
considered on the form of the delaying kernel.
First, in the case of EFK, it was proven in [17] that the Endemic Equilibrium is LAS. Moreover, in [38] by
means of an appropriate Liapunov function it was shown that under the additional condition (Mβ(M))′ > 0
the Endemic Equilibrium is globally stable. Additionally, in [17], the case of an Erlang2 type memory was
considered. As already pointed out, this memory represents a special case of the acquisition-fading kernel where
the two sub-processes of acquisition and fading occur at the same rate a1 = a2 = a. The corresponding transfer
function reads as follows

M̂(λ)

Î(λ)
=

ka2

(a+ λ)2
,

In this case, the EE can be either LAS or can be destabilized by a Hopf bifurcation (see [17]).
Let us now consider model (6) for a general delaying kernel K(τ). Denoting as K̂(λ) the corresponding Laplace
transform and linearizing at EE one gets:

λ2 + c1λ+ c0 + d(λ+ µ) = K̂(λ) = 0,

where:
c1 = µ+ β(Ie)Ie > 0

c0 = β2(Ie)IeSe > 0

d = −β′(Ie)IeSe > 0

Under an AFK, K̂(λ) is given by formula (11) and it can easily be rewritten as follows:

K(λ) =
a1a2

(λ+ a1)(λ+ a2)
=

p

λ2 + σλ+ p

where σ = a1 + a2 and p = a1a2.
This finally yields the following characteristic polynomial:

λ4 + q1λ
3 + q2λ

2 + q3λ+ q4 = 0

where
q3 = σ + c1 > 0
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q2 = c1σ + p+ c0 > 0

q1 = c0σ + (c1 + d)p > 0

q0 = (dµ+ c0)p > 0

Since all the coefficients are positive, applying the Routh- Hurwitz criterion we get the following local stability
conditions of the EE:

H(p, σ) = q1q2q3 − q21 − q23q0 > 0, (12)

In particular, if
H(p, σ) < 0, (13)

then EE becomes unstable through Hopf a bifurcation at the locus

H(p, σ) = 0.

As well known, the Hopf Theorem only provides local information in the parametric space. In other words, it only
states that in a parametric neighborhood of the bifurcation point the solution of the system is a periodic solution
of small amplitude. Therefore, in our case this will hold for values of (p, σ) in the region H(p, σ) < 0 that are
sufficiently close to points where H(p, σ) = 0. In order to draw more general information about points in the
interior of the region H(p, σ) < 0 one can take advantage of the Yakubovitch–Efimov–Fradkov theorem [39].
To apply the theorem, note preliminarly that the system is bounded and has two unstable equilibrium points, and
the DFE has as stable manifold the segment l = (x1, 0, 0, 0) with x1 ∈ [0, N ] that corresponds to the trivial case of
absence of disease in the target population. The biological and geometrical nature of the stable manifold of DFE
implies that there are not heteroclinic orbits connecting EE to DFE.
As a consequence, from the Yakubovitch–Efimov–Fradkov theorem (see corollary 1 of [39]) if H(p, σ) < 0
then system undergoes self-sustained oscillations, not necessarily periodic, called Yakubovitch oscillations or Y–
oscillations [40]. We report below two useful remarks.
REMARK The above results can easily be extended to delays in the form of n ≥ 3 first order low–pass filters in
series.
REMARK Note that, in our case (and in the generalization) the Y–oscillations are fully induced by the behavior
i.e., by the control. In control language, this is the consequence of the fact that the control is based on a ’measure’
coming from a double filtering of the prevalence, i..e from the indirect nature of the control. Note however that the
choice of the weightK(q) is primarily based on behavioral arguments.
As regards the analytical form of the condition (12), this is cumbersome and gives no particular hints, so that also
(13) become of scarce practical relevance. Therefore, we numerically computed the Jacobian and its 4 associated
eigenvalues at the endemic equilibrium. This allowed us to plot (see figure 1) the stability and instability regions
in function of the two key parameters: i) T1 = 1/a1 which is the average acquisition time of information; and
T2 = 1/a2 which is the average fading time. In particular, figure 1 reports the contour plot of the following
function:

z(T1, T2) =Max
(
0,Maxk∈{1,2,3,4} (Re(λk(T1, T2))

)

2.6 Deterministic modeling of the epidemic case (µ = 0)

In the rest of the present work we will mostly focus on the purely epidemic case (µ = 0). This case was not
previously analyzed with the exception of the caseM = I , i.e. the Capasso–Serio model.
For the general model with a generic information-dependentM index it is easy to see that it exists a disease–free
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Figure 1: Model (6) with acquisition–fading kernel: contour plot of the stability and instability regions in terms
of parameters T1 and T2 as determined by the function z(T1, T2). Dark Blue: LAS region. Lighter blue and other
colors: instability region. In the instability region the different colors indicates the amplitude of z(T1, T2), i.e. the
real part of the eigenvalue (of the Jacobi Matrix) having the largest real part. The Basic Reproduction Number
is set to either BRN = 20 (left panel) or to BRN = 2 (right panel). Other parameters: µ = 1/(365.25 ∗ 75),
ν = 1/7.
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equilibrium x2 = 0 and that x1(t) tends to an equilibrium value that depends on the function ψ(M(t)) and on
the dynamics ofM(t), which is in turn determined by the delay kernel. A fact not previously pointed out in the
literature is that under appropriate behavioral responses multiple behavior-induced epidemic waves can arise even
in the course of a single epidemic. We will numerically illustrate these deterministic results in the Appendix.

3 Stochastic modelling of social distancing under genericM -indices

In this section we introduce the stochastic counterparts of the previous deterministic models with social distancing
and discuss the simulation issues that arise when the behavioral component is involved. We start from the simpler
case where no memory effects are considered, and then extend to the case of hybrid systems arising under memory
effects.

3.1 No memory effects: stochastic version of the Capasso-Serio model

As is well-known, the deterministic models of infectious diseases can be considered as a good approximation of the
true underlying stochastic systems only if the population size is large enough so that stochastic oscillations around
the mean pattern become negligible. In the absence of behavioral effects, if the population is small then the
system is modelled by a birth-death Markov process [24].
In the absence of memory effects i.e., when considering the stochastic version of the Capasso-Serio model, the
resulting stochastic model remains a birth–death stochastic processes [24, 26, 27, 41].
In this case, the model is simply the outcome of two transition processes and related events, namely:
i) transmission: a susceptible subject becomes infectious due to adequate social contacts with infectious subjects.
The probability of a transmission event during the infinitesimal interval (t, t+ dt) is:

Prob ((S(t+ dt), I(t+ dt)) = (S(t)− 1, I(t) + 1)) = β(I)
I

N
Sdt (14)

However, unlike the basic stochastic SIR model, the probability in formula ( 14) is not bilinear.
ii)removal: an infectious individuals is removed from the infectious compartment due to recovery and immunity
acquisition. The probability of a removal event during (t, t+ dt) is:

Prob ((S(t+ dt), I(t+ dt)) = (S(t), I(t)− 1)) = γIdt (15)

The stochastic simulation of birth and death Markov processes is elegantly done by the Gillespie algorithm [26,27,
41] which in our case works as follows. Let us suppose that the n–th event occurred at time tn so that the system
after the event has state values

(S, I) = (Sn, In).

Therefore, denoting the time of the next event as

tn+1 = tn + τ

then τ is such that
γInτ + β(In)

In
N
Snτ = rn

where rn is exponentially distributed. This yields:

τ =
rn

γIn + β(In)
In
N Sn

(16)
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The type of the next event, whichwill either be the contagion of a susceptible or the removal of an infectious subject)
is determined by randomization through a Bernoulli experiment based on the two complementary probabilities

ρrec =
γIn

γIn + β(In)
In
N Sn

ρcont = 1− ρrec

3.2 Memory effects and simulation of hybrid stochastic systems

In the presence of a general memory effects the behavior of the system becomes more complicated. Indeed, the
stochastic evolution of the discrete state variables (S, I) has to be coupled with an integral equation describing the
dynamics of M(t), which is a continuous one during each inter-events intervals (tn, tn+1). In particular, under
our hypotheses on the memory kernels, the dynamics ofM is given by a system of ordinary differential equations
depending on In.
As a consequence, the system is no longer a classical birth and death process, but it belongs to the class of the
so-called hybrid models [28] where Stochastic Automata are coupled with deterministic processes by means of
time varying propensities. Note however, that in our case the coupling is mutual. Indeed, a stochastic birth–death
model (for infection spread) is coupled with an ODE (or a system of ODEs) model for the memory, yielding for
M a continuous piecewise deterministic model that depends on the stochastic epidemic model. Indeed, in between
two stochastic events, the dynamics ofM(t) is fully deterministic i.e.,M(t) is a piecewise deterministic process.
Overall, the above–described model can be formalized similarly to the class of Stochastic Hybrid Automata defined
in [31].
Operatively, the infinitesimal probability of a contagion event in (t, t+ dt), given by:

Prob ((S(t+ dt), I(t+ dt)) = (S(t)− 1, I(t) + 1)) = β(M(t))
I

N
Sdt (17)

is time-dependent. This requires to resort to a version of the Gillespie algorithm with time-varying propensities, as
in [28].
Namely, the time to the (n+ 1)–th event is determined by the following equation:

γInτ +
In
N
Sn

∫ tn+τ

tn

β(M(t))dt = rn (18)

In the general case, the inequality
0 ≤ β(M) ≤ β0,

implies that

0 ≤
∫ tn+τ

tn

β(M(t))dt ≤ β0τ.

As a consequence, from (18) and provided that In > 0 (the case In = 0 is trivial because I = 0 is an adsorbing
state for the system) we can infer that

τL ≤ τ ≤ τR,

where:
τL =

rn

γIn + β0
In
N Sn

τR =
rn
γIn
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which is an useful bound for the numerical simulations.
REMARK The bounds τL and τR are not constant: they change at each step of the simulation algorithm.
To compute τ it is necessary to know the model linking the continuous state variable M(t) to the discrete state
variables (S, I).
Once τ has been determined, the type of the next event is chosen (as in the classical Gillespie algorithm) by the
following probabilities:

ρ̄rec =
γIn

γIn + β(M(tn + τ)) InN Sn

ρ̄cont = 1− ρ̄rec

3.2.1 Numerical determination of τ

Let us define
ψ(τ) =

∫ tn+τ

tn

β(M(t))dt

Then one has to numerically solve the following equation

γInτ +
In
N
Snψ(τ) = rn (19)

in the interval
τL ≤ τ ≤ τR,

by some numerical algorithms. We then have two main cases. The first one occurs when function ψ(τ) is available
in closed form. In the case where β(M(t)) can be analytically integrated in (tn, tn+1), then the equation (19) can
be solved by means of well known standard iterative algorithms, such as the Newton–Raphson and the bisection
methods (see appendix).
For the sake of notational simplicity we define

f(τ) = γInτ +
In
N
Snψ(τ)− rn

thus to determine τ we must solve
f(τ) = 0

Note also that: f(τL) < 0 and f(τR) > 0.
Instead, if ψ(τ) is not analytically known, one has to numerically approximate the integral that appears in the
time-varying Gillespie algorithm. For this case, we propose the algorithm described by the following steps:

• Split the interval [0, τR] in L >> 1 points, and define

h =
τR
V

θk = kh

where k = 0, 1, . . . , V. Note that :
f(θ0) = f(0) = −rn

θV = τR
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• Approximate ψ(θk+1) by some standard strategy, such as:

ψ(θk+1) ≈ ψ(θk) +
h

2
(β(M(tn + θk)) + β(M(tn + θk+1))) .

Note that this implies that

f(θk+1) ≈ f(θk) + γInh+
In
N
Sn
h

2
(β(M(tn + θk)) + β(M(tn + θk+1))) (20)

• Since τ > τL, we have to iterate computations (without checking if we have found the solution τ ) f(θ) at
least until the step

kL =
[τL
h

]
where [x] is the integer part of x. E.g.: [3.99] = 3.

• Suppose that the step q ≥ kL had been reached and that

f(θq) < 0.

Then go to the next step θq+1 and compute f(θq+1) by means of the formula (20). The following three
cases are possible: i) |f(θq+1)| < Tol, where Tol is a sufficiently small tolerance, so you can stop; ii)
f(θq+1) < −Tol, thus one must continue; iii) f(θq+1) > Tol, which implies that then the solution τ is such
that

τ ∈ (θq, θq+1)

Since h is sufficiently small, one can use the approximation

τ ≈ θq + θq+1

2
= θq +

h

2

REMARK The most sensitive point in the previous algorithm is therefore that of appropriately choosing V , which
must be sufficiently large. In our simulations, we have chosen V in a way such that the time step h is always kept
smaller than 0.1 days. Moreover, one must remember that since τR changes at each step of the Gillespie algorithm,
the same holds for V Once determined τ the type of the next event is chosen by the following probability:

ρ̄rec =
γIn

γIn + β(M(tn + τ)) InN Sn

ρ̄cont = 1− ρ̄rec

3.3 The case of the exponentially fading memory

In the cases of EFK and of AFK kernels, the coupling between the discrete and the continuous parts of the hybrid
model is relatively simpler than in the general case Indeed, as we have seen, in our examples the model ofM(t)
reduces, respectively, to one or two linear ordinary differential equations.
In this section and in the following one, we will show how β(M(t)) can be analytically defined in all event intervals
(tn, tn+1) for both the EFK and the AFK. For the exponentially fading memory kernel, we will also provide the
analytical form of ψ(τ), which allows to significantly speeds up the computations.
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In the case of an exponentially fading memory, one has that in each interval (tn, tn+1) between two consecutive
events,M(t) is given by the following linear differential equation

M ′(t) = a(g(In)−M) (21)
M(tn) =Mn (22)

M0 = 0. (23)

since we suppose that the epidemics starts at t = 0. The solution of the ODE problem (21)–(22) is:

M(t) = g(In) + (Mn − g(In))Exp(−aθ) (24)

where
θ = t− tn.

The function ψ(τ) is given by the integral

ψ(τ) = β0

∫ τ

0

Mp
50

Mp
50 + (g(In) + (Mn − g(In))Exp(−aθ))p

dθ

Defining

K =
M50

|Mn − g(In)|
, B =

g(In)

|Mn − g(In)|
, σ = sign (Mn − g(In))

yields

ψ(τ) = β0K
p

∫ τ

0

1

Kp + (R+ σExp(−aθ))p
dθ

Defining the new variable
y = R+ σExp(−aθ)

yields

ψ(τ) = β0K
p

∫ R+σExp(−aτ)

R+σ

−1

a

1

(Kp + yp)

1

y −R
dy.

As for the above integral note the following: i) if σ = 1 then we have that the upper integration limit is smaller
than the lower integration limit (due to a > 0) but since y = R + exp(−aθ) ⇒ y > R thus the function to bo
integrated is negative and the integral is positive; ii)if σ = −1, the upper integration limit is greater than the lower
integration limit and since y = R − exp(−aθ) ⇒ y < R, the integrand function turns out to be positive, so that
the integral will be positive as well (and, in principle, analytically solvable).
Further setting y = Kz one gets:

ψ(τ) = β0

∫ r+ρExp(−aτ)

r+ρ

−1

a

1

(1 + zp)

1

z − r
dz

where r = R/K and ρ = σ/K.
Namely, for the case p = 1 one has:

ψ(τ) = β0
−1

a(1 + r)

∣∣∣log(z − r)− log(1 + z)
∣∣∣r+ρExp(−aτ)

r+ρ

yielding

ψ(τ) = β0
−1

a(1 + r)
log

(
1 + r + ρ

Exp(aτ)(1 + r) + ρ

)
> 0
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or equivalently (the following version reduces numerical errors in the case exp(−aτ) << 1)

ψ(τ) = β0
−1

a(1 + r)

(
−aτ − log

(
1 + r + ρExp(−aτ)

1 + r + ρ

))
(25)

For the case p = 2 one has:

ψ(τ) = β0
−1

a

1

1 + r2

∣∣∣log(z − r)− (1/2)log(1 + z2)− rArctan(z)
∣∣∣r+ρExp(−aτ)

r+ρ

For p ≥ 3, the expression of ψ(τ) becomes untractable.
Of course, once τ has been computed, one must set

Mn+1 = g(In) + (Mn − g(In))Exp(−aτ)

3.4 The case of the acquisition–fading kernel

In the case of the acquisition–fading kernel, one has that in each interval (tn, tn+1) the solution (Z(t),M(t)) to
the pair of addition differential equations, can be computed as follows. First, Z(t) is defined as the solution of the
following differential equation

Z ′(t) = a1(g(In)− Z) (26)
Z(tn) = Zn (27)
Z0 = 0 (28)

The solution of the above ODE problem is:

Z(t) = g(In) + (Zn − g(In))Exp(−a1θ) (29)

where
θ = t− tn.

Next,M(t) is the solution of

M ′(t) = a2(Z(t)−M) (30)
M(tn) =Mn. (31)

(32)

implying:

M(t) = g(In) +
( a2
a2 − a1

(Zn − g(In))
)
Exp(−a1τ) +

(
Mn − a2Zn

a2 − a1
+
a1g(In)

a2 − a1

)
Exp(−a2τ) (33)

Note that in this case the integral defining ψ(τ) cannot be analytically solved even in the case p = 1.
REMARK In this case, once τ has been numerically computed, one must set

Zn+1 = g(In) + (Zn − g(In))Exp(−a1τ) (34)

Mn+1 = g(In) +
( a2
a2 − a1

(Zn − g(In))
)
Exp(−a1τ) +

(
Mn − a2Zn

a2 − a1
+
a1g(In)

a2 − a1

)
Exp(−a2τ) (35)

Simulations of scenarios where the memory kernel is the AFK are shown in the appendix, for the sake of the
readability.
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3.5 Algorithm for the localization of multiple ’process’ peaks in the simulated time series

In our work we used Matlab 2019b for model simulation and the analysis of results. Given our focus on multiple -
stochastic - epidemic waves, we briefly present the approach for the localisation of (multiple) epidemic peaks. The
purpose of the algorithm is that of allowing to separate true ’process’ peaks i.e., peaks induced by the behavioral
response, from spurious oscillations due to the stochastic nature of the problem. The localization of the first peak
was done by finding the maximum number of infectious individuals, because the first peak always resulted the
higher one. The latter (purely due to susceptible depletion) is a somewhat straightforward consequence of the
simplicity of the model. The localization of the second peak (and subsequent ones) wasmore complicated due to the
noise of stochastic simulations. Firstly, we filtered the time courses and analysed only cases with 3 and more points.
Noise was filtered by the Gaussian-weighted moving average filter (we applied Matlab function: smoothdata) with
window size equal to 100 points. Then we accepted as true peaks, maxima arising in the smoothed data course
according to the following criteria (i) minimum height of peak equal to 100 infectious, (ii) minimum time distance
between subsequent peaks of 5 days (Matlab function: findpeaks). As matter of fact, since the appearance of
multiple peaks was much neater in the case BRN = 15 (compared to BRN = 2), later on we will mainly report
our results on multiple peaks for this case.

4 Results. Stochastic epidemics and behavior. The memoryless case

In this section we report the main results of a range of stochastic simulation experiments, with special focus on
the effects of different hypotheses on the shape of the social distancing response function β(M) on the system
behavior.

4.1 Simulation strategy, assignment of input parameters and main simulation outputs

In all our experiments we simulated epidemic outbreaks in a fully susceptible population, under the following as-
sumptions on input parameters: i) the population size is set toN = 10000; i) the infection average duration is set to
one week, implying γ = 1/7days−1; iii)M50% is allowed to take three possible values: M50% ∈ {10, 50, 200}. As
regards the basic reproduction number, we considered two widely different cases: 1) BRN = 15 corresponding
to a highly transmissible infection, such as measles; 2) BRN = 2, corresponding to a moderately transmissible
infection as it may be the case e.g., of seasonal influenza. The corresponding baseline transmission rates (in the
absence of any behavioral response) are β0 = 15/7days(−1), and β0 = 2/7days(−1), respectively. In the deter-
ministic SIR epidemic model in a wholly susceptible population, the considered figures of the BRN would yield
a total proportion of people eventually infected i.e., a final attack rate of the outbreak - well above 99 percent
for BRN=15 and around 78 percent for BRN=2. As for the main outputs of stochastic simulation we primarily
looked at the simulated probability density functions (PDF) of (i) the final attack rate, (ii) the epidemic extinction
time, (iii) the maximum prevalence, and to the temporal realizations (or realised paths) of the prevalence function.
In particular, in order to adequately reproduce the relevant probability density functions, the model simulation is
replicated Nsim = 100000 times.

4.2 Results: behavioral responses without memory effects

4.2.1 Effects ofM50% in the stochastic case

In this subsection, we considered the memoryless case with p = 1, in order to characterize the role of parameter
M50%.
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The stationary PDFs of the final attack rate and of the extinction time are shown in the upper and lower panels
of figure 2 (left panels: BRN = 15, right panels: BRN = 2), respectively. Each panel reports three different
histograms corresponding to the three values considered of M50% and, for comparison purposes, also the one
corresponding to the benchmark case of the classic stochastic SIR model without behavioral response.

Concerning the final attack rates (upper panels of 2), we note that for both BRN = 15 and BRN = 2, the
simulated PDFs are always bimodal. The mode for low values of the infected subjects reflects stochastic extinction
occurring soonafter infection introduction, when the behavioral effects are still negligible. Obviously stochastic
extinction is rather unlikely for BRN = 15, whereas it occurs with a much higher probability percentages for the
’classical SIR’; instead for BRN = 2 this lower mode is very large.
Wemay note that even forM50% = 200 for bothBRN = 15 andBRN = 2 the effect is remarkable. Qualitatively,
both for BRN = 15 and for BRN = 2, the mean value of the total number of people that acquired the infection
decreases if M50 decreases, but the variance of the distributions increases. For BRN = 2, at M50 = 10 the
distribution is characterised by a large initial peak followed by exponential–like decrease.

As for the extinction time (lower panels of 2), the simulated PDFs are also bimodal, corresponding to ”initial”
and ”final” (i.e., after the outbreak occurred) extinction. Interestingly, for BRN = 15 the mean values of the ex-
tinction time are increasing asM50 decreases (i.e., when outbreaks occur, the stronger the behavioral response the
longer is the epidemic), and also the variances become larger. Moreover, atM50 = 10 the PDF is more markedly bi-
modal. ForBRN = 2 andM50% = 10 the PDF again shows an initial peak followed by exponential–like decrease.

Note that, for BRN = 15 the location of PDFs of the extinction time for M50% = 50 and especially for
M50% = 10 is so rightward that the chosen approximation of neglecting vital dynamics could be questioned. The
same holds for BRN = 2 andM50% = 50. This suggests that behavioral responses could significantly delay the
epidemic extinction time and, not paradoxically, sustain the endemicity of the infection. Both these effects have
been observed during the current COVID-19 pandemic.

Table 1: Statistics related to figure 2
Figure Panel BRN p M50% mean SD median min max
1 A 15 1 (classic SIR) 93.27 25.05 100 0.01 100
1 A 15 1 200 88.97 23.65 95.23 0.01 96.72
1 A 15 1 50 86.56 23.42 92.87 0.01 95.50
1 A 15 1 10 81.21 22.97 87.70 0.01 92.75
1 B 2 1 (classic SIR) 39.80 39.83 0.27 0.01 83.07
1 B 2 1 200 24.12 24.35 0.16 0.01 58.56
1 B 2 1 50 16.61 17.68 0.08 0.01 49.58
1 B 2 1 10 1.33 2.35 0.04 0.01 92.75
1 C 15 1 (classic SIR) 69 20 71 <1 173
1 C 15 1 200 173 53 178 <1 371
1 C 15 1 50 434 131 454 <1 797
1 C 15 1 10 1260 381 1344 <1 1995
1 D 2 1 (classic SIR) 83 80 44 <1 297
1 D 2 1 200 289 297 31 <1 1212
1 D 2 1 50 456 496 20 <1 1966
1 D 2 1 10 116 192 13 <1 1705
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(A) (B)

(C) (D)

Figure 2: The memoryless case for p = 1: effects ofM50% on the simulated distributions of the final attack rate
and of the extinction time. Left Panels: BRN = 15; Right Panels: BRN = 2. Higher Panels: PDFs of the final
attack rate. Lower Panels: PDFs of the extinction time.

The PDFs of the maximum reached prevalence and of the time of occurrence of such maximum are reported in
the upper and the lower panels of figure 3, respectively. For both BRN = 15 and BRN = 2, the mean maximum
epidemic size (upper panels of figure 3) and its variance are rapidly increasing asM50 increases. For BRN = 15,
the mean and the variance of the time of occurrence of such maximum (lower panels of figure 3) are increasing as
M50 decreases. Instead, for BRN = 2, the mean is non–monotone withM50%, whereas the variance increases.
Summary statistics of the various PDFs of figures 2 and 3 are reported, respectively, in Tables 1 and 2.

19

Multiple epidemic waves as the outcome of stochastic SIR epidemics with behavioral responses



(A) (B)

(C) (D)

Figure 3: The memoryless case for p = 1: impact ofM50%. Left Panels: BRN = 15; Right Panels: BRN = 2.
Higher Panels: effects ofM50% on the PDF of the maximum prevalence. Lower Panels: effects ofM50% on PDF
of time at the maximum prevalence.
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Table 2: Statistics related to figure 3
Figure Panel BRN p M50% mean SD median min max
2 A 15 1 (classic SIR) 70.34 18.90 75.37 0.01 77.59
2 A 15 1 200 15.45 4.12 16.51 0.01 18.15
2 A 15 1 50 5.48 1.49 5.86 0.01 6.86
2 A 15 1 10 1.42 0.40 1.52 0.01 1.97
2 B 2 1 (classic SIR) 7.81 7.82 0.10 0.01 18.44
2 B 2 1 200 0.93 0.92 0.07 0.01 2.58
2 B 2 1 50 0.33 0.33 0.05 0.01 1.03
2 B 2 1 10 0.09 0.09 0.03 0.01 0.37
2 C 15 1 (classic SIR) 6 2 6 <1 11
2 C 15 1 200 16 4 17 <1 25
2 C 15 1 50 23 8 24 <1 50
2 C 15 1 10 45 25 41 <1 208
2 D 2 1 (classic SIR) 32 31 26 <1 135
2 D 2 1 200 41 43 17 <1 210
2 D 2 1 50 66 87 9 <1 846
2 D 2 1 10 51 99 5 <1 1197

4.2.2 The effects of the shape of the response function

The effects of the shape of the behavioral response function β(M), in absence of delays, is summarized by param-
eter p. Of course, even the thresholdM50% plays a fundamental role. Figure 4 reports a sample of the simulated
time–series of the infectious prevalence withM50% = 200, for different values of p (we keep BRN = 15). This
shows three main effects of increaasing p. The first is related to the fact that, for p > 1, the function β(I; p)
decreases slower with I , thereby increasing extinction time. This effects is better illustrated by the corresponding
PDFs in figure 5. The second and the third are more interesting: i) the maximum epidemic size decreases with p
and ii) the disease prevalence remains at large values for a larger time w.r.t. the case p = 1. Particularly interest-
ing is the case p = 100, whose behavior can be better understood by resorting to the following approximation of
function β(I)

β(I) ≈


β(0) if I < M50%

0.5 if I =M50%

0 if I ≥M50%

Initially, since for I < M50% it holds β(I) ≈ β(0), the epidemic grows free up to the level I = M50%. Sooner
or later I switches to the valueM50% where β = 0.5β(0). However, sooner or later the next contagion event will
occur, so that prevalence I reaches the value M50% + 1 and the transmission rate abruptly falls to β = 0. This
means that the contagion stops and prevalence will remain constant at the level I =M50%+1 until the next removal
event occurs, so that the system now switches back and forth aoundM50%. In other words, I(t) will experience for
a long time small stochastic oscillations around I = M50% until when, through a series of removal events disease
extinction is reached.
By decreasing M50% the minimal extinction time remarkably increases. This is better shown in figure 5. As for
the total number of infected people, the corresponding simulated PDF gradually switches rightwards as p increases
(see supplementary figures). For the sake of completeness, Figures 8 and 9 report analogous results for the case
BRN = 2. Note in particular the much larger stochasticity arising compared to BRN = 15, a well-known fact.
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(A) (B) (C)

Figure 4: The stochastic model in the memoryless case. Effects of parameter p on the time-course of infectious
prevalence I(t) (a sample of 100 realizations) forBRN = 15 andM50% = 200. (A) p = 2 (B) p = 5 (C) p = 100

(A) (B) (C)

Figure 5: The stochastic model in thememoryless case. Effects of parameter p on the simulated PDF of the infection
extinction time for BRN = 15 and different values ofM50%. A) p = 2 (B) p = 5 (C) p = 100

(A) (B)

Figure 6: The stochastic model in the memoryless case. Effects of parameter p on the time-course of infectious
prevalence I(t) (a sample of 100 realizations) for BRN = 2 andM50% = 200 (A) p = 2 (B) p = 100
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(A) (B)

Figure 7: PDF of infection extinction time for BRN = 2: impact of p andM50%. (A) p = 2 (B) p = 100. Other
values of p produces PDFs similar to that of panel (B).

5 Results. Exponentially fading kernels and multiple stochastic epidemic waves

In this section we investigate the effects of delayed social distancing response function β(M) on the epidemic
course. In particular, we will study the EFK case by considering two possible values for the parameter a tuning
the delayed response: a = 0.1/day and a = 0.05/day, corresponding to an average response delay of 10 and 20
days, respectively.

We assessed the effects of a delayed behavioral response in both the stochastic and in the deterministic case
(see appendix), forBRN = 15 (figure 8) andBRN = 2 (figure 9) and for distinct values of p (p = 1, 2, 10). Both
deterministic and stochastic simulations show that multiple epidemic waves can actually occur, as a consequence
of the behavioral response of individuals, when lagged information is used in the response process. The different
cases reported in the figures clarify mechanisms and determinants of these waves. Notably, these waves cannot
occur in the absence of the delay. In particular, the oscillatory pattern will be more marked the larger the amplitude
of the time delay (i.e., the lower a), the sudden the behavioral response (i.e., the larger p), and the larger the response
thresholdM50%.

5.1 Statistical features of simulated epidemics

In what follows, we reports the main statistics of our simulative result where multiple waves occur. To do so, in
the computation of the simulated PDFs we did not include those realizations where no second peak was clearly
detectable. In the present experiments we keep M50% = 50, whereas a ∈ {0.05, 0.1}, p = 1, 2, 10, BRN ∈
{2, 15}. Figure (10) shows the PDF of infectious prevalence at the first epidemic peak. We note that of course in
all cases there is a peak at low prevalence levels, corresponding to a rapid extinction of the epidemic. A second peak
occurs for larger values of prevalence. We note that forBRN = 2 (bottom part of the Figure) the PDFs are located
at low values of prevalence, they are overlapping and the average values are increasing with p. On the contrary, for
BRN = 15 (top part of the Figure), the PDFs are located at large values of the prevalence, they are not overlapping
and the average values are decreasing with p. Obviously, the larger the delay in the behavioral response, the larger
the expected magnitude at the first peak. Figure (11) reports the PDF of the infectious prevalence at the second
epidemic peak. As detailed before, this is done only for the case of a large value of the BRN (BRN = 15),
in order to magnify occurrence and detectability of the second wave. For a = 0.1 the prevalence at the second
time–series peak decreases with p, whereas forBRN = 15 and a = 0.05 the histograms overlap but their location
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Figure 8: Stochastic multiple epidemic waves of infectious prevalence for an exponentially fading behavioral
response, under BRN = 15, for different values of the memory rate a, and of parameters p andM50% tuning the
behavioral response. Left panels: a = 0.1; right panels: a = 0.05. Upper panels: p = 1; central panels: p = 2;
lower panels: p = 10. Black curves: M50% = 200,Red curves: M50% = 50, Blue Curves: M50% = 10.
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Figure 9: Stochastic multiple epidemic waves of infectious prevalence for an exponentially fading behavioral
response, under BRN = 2, for different values of the memory rate a, and of parameters p andM50% tuning the
behavioral response. Left panels: a = 0.1; right panels: a = 0.05. Upper panels: p = 1; central panels: p = 2;
lower panels: p = 10. Black curves: M50% = 200,Red curves: M50% = 50, Blue Curves: M50% = 10.
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Figure 10: The stochastic model in the case of an exponentially fading memory kernel. Histograms of the PDF of
the infectious prevalence at the first epidemic peak for p = 1, 2, 10 andM50% = 50. Left panels: a = 0.1; right
panels: a = 0.05. Upper panels: BRN = 15; lower panels: BRN = 2.
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appears somewhat non monotone with p. As for the simulated PDF of the time of occurrence of the first epidemic

Figure 11: The stochastic model in the case of an exponentially fading memory kernel. Histograms of the PDF of
the infectious prevalence at the second epidemic peak for BRN = 15, p = 1, 2, 10 andM50% = 50. Left panel:
a = 0.1; right panel: a = 0.05.

peak (Figure 12 ), we note that (disregarding the initial peak due to stochastic extinction) for BRN = 15, the
PDFs are well-separated with an average peak-time decreasing in p (from 4 to 8 days), while for BRN = 2, the
PDFs largely overlap especially for longer behavioral response delays. In particular, the effects of the response
delay are essentially negligible on the timing of the first peak. Instead, the corresponding PDFs of the time at the
second epidemic peak (still drawn for BRN = 15 only) reveal (Figure 13) a marked effect of the time-delay in
the behavioral response.
We report in the Table (3) the main summary statistics of the PDFs shown in the previous figures.

Table 3: Statistics related to figure 13 - times of second peak
Figure Panel BRN a p mean SD median min max
13 A 15 0.1 1 70 7 69 53 195
13 A 15 0.1 2 55 8 53 46 170
13 A 15 0.1 10 44 1 44 41 63
13 B 15 0.05 1 104 5 104 86 132
13 B 15 0.05 2 79 2 79 71 96
13 B 15 0.05 10 71 1 71 67 76

For the sake of completeness, we report also the PDFs of the time to epidemic extinction (Figure 14). Still
disregarding initial stochastic extinction, it can be noted that no relevant role was played by the delay in the be-
havioral response. However, the dependency on p and the BRN remains more complicated. As for the epidemic
final attack rate, the corresponding simulated PDFs (Figure 15), suggest - as usual - a major role of the shape of
the behavioral response (tuned by p) for BRN = 2. For BRN = 15 a counter-intuitive role of the delay emerges
at high values of p: for p = 10 and a = 0.05, the PDF of the final attack rate has two nontrivial modes. One of
these is the traditional one at high levels of the FAR. The second one occurs for levels of the FAR around value
20%. This second mode reflects the interesting fact by which a too delayed behavioral response cannot prevent
the occurrence of the outbreak but, if the response is sufficiently intense, it can halt it and bringing it to extinction.
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Figure 12: The stochastic model in the case of an exponentially fading memory kernel. Histograms of the simulated
PDF of the time at the first epidemic peak for p = 1, 2, 10 and M50% = 50.Left panels: a = 0.1; right panels:
a = 0.05. Upper panels: BRN = 15; lower panels: BRN = 2.
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Figure 13: The stochastic model in the case of an exponentially fading memory kernel. Histograms of the PDF
of the time at the second epidemic peak for BRN = 15, p = 1, 2, 10 andM50% = 50. Left panel: a = 0.1; right
panel: a = 0.05.

Finally, the PDF of the number of nontrivial peaks (Figure 16) in the more interesting case (BRN = 15), reveals
the number of (detectable) peaks increases with the delay of the behavioral response (that is, for a = 0.05 compared
to a = 0.1).

5.2 The filtering effect

For BRN = 2, figure 17 compares, for a single realization of the stochastic process, the simulated time series of
the information indexM(t) and that of the infectious prevalence I(t). The figure well shows the analogy between
the concept of an exponentially fading memory and the concept of ’low–pass filter’ used in system control theory.
Calling these quantities as the (original) ’signal’ (I(t)) and the ’filtered signal’ (M(t)), it happens that the signal
is noisy and the filtered signal is smooth, for a = 0.01 and for (a, p) = (0.1, 1), whereas in all the other cases also
the filtered signal is noisy, especially for a = 0.05. This is a natural consequence of the fact that the ’low–pass
frequency’ a is too close to the typical frequency of the stochastic events of I(t). Case BRN = 15 is shown in
the Appendix.

6 Concluding Remarks

This article investigated the effects of agents’ behavioral responses on the dynamics of stochastic SIR models for
epidemic outbreaks. The agents’ behavioral response was represented bymeans of an information-dependent trans-
mission rate specified as a function of an appropriate information index, as first proposed in [15,17]. In particular,
agents were assumed to respond either to the current or past prevalence of infection, where the latter was specified
according either to an exponentially fading memory or to an acquisition-fading memory. This resulted in a family
of hybrid stochastic models. In order to numerically simulate specific models belonging to the family, we
needed a suitable extension of classical Gillespie algorithm. In particular, we developed analytical formulas
valid for two classes of models.
Our analysis provides a thorough classification of the possible outcomes of behaviorally–modulated stochastic SIR
epidemics depending, besides basic reproduction numbers, on: (i) the form and strength of the behavioral response,
(ii) the information time-lag with which this behavioral response is enacted by individuals.
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Figure 14: The stochastic model in the case of an exponentially fading memory kernel. Histograms of the simulated
PDF of epidemic extinction time for p = 1, 2, 10 andM50% = 50.Left panels: a = 0.1; right panels: a = 0.05.
Upper panels: BRN = 15; lower panels: BRN = 2.

30

Multiple epidemic waves as the outcome of stochastic SIR epidemics with behavioral responses



Figure 15: The stochastic model in the case of an exponentially fading memory kernel. Histograms of the simulated
PDF of the final attack rate for p = 1, 2, 10 andM50% = 50.Left panels: a = 0.1; right panels: a = 0.05. Upper
panels: BRN = 15; lower panels: BRN = 2.
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Figure 16: The stochastic model in the case of an exponentially fading memory kernel. Histograms of the simulated
PDF of the number of epidemic peaks forBRN = 15, p = 1, 2, 10 andM50% = 50 of the PDF. Left panel a = 0.1,
Right panel a = 0.05.

This offers a range of theoretical results. For example, even in the absence of delays in the behavioral response
(i.e., when the agents’ response is only based on current prevalence), the behavioral response may substantially
increase the variance of the extinction time, thereby favoring infection persistence (especially for highly trans-
missible infections). This behavior-triggered persistence might link with other factors, such as demographics or
the appearance of new variants of the pathogen, favoring endemicity, as might sadly be the case with COVID-19.
These phenomena becomes richer when the behavioral response is also modulated by past information. In this
case, we showed that multiple epidemic waves can result from delayed agents’ responses already in the underlying
deterministic models, and remain also in the stochastic formulation.
In general the topic of recurrent waves, especially in relation to endemic infectious diseases (e.g. for measles) has
been a major topic of mathematical epidemiology over decades [6]. Instead, the issue of multiple waves during
an epidemic outbreak has become popular during the pandemic preparedness in the early 2000s. This started from
retrospective studies on the 1918–1919 Spanish flu pandemic and developed after the H1N1 2009 pandemic. A
variety of explanations were proposed, ranging from exogenous changes in transmissibility [42], to policy inter-
vention [43], to the presence of multiple strains [44], up to behavioral changes [45]. Recently, elegant analytical
work has stressed the role of inter–regional commuting in inducing multiple (behavior–unrelated) epidemic
waves [46]. The multiple waves observed during the COVID-19 pandemic in industralized countries were primar-
ily due to the activation and relaxation of social distancing measures during the first pandemic year and to the onset
of new variants of concern during 2021 [47], but also behavioral explanations were proposed [48].
In relation to the previous debate, the main innovation of this work lies in the fact that it represents the
first general theoretical assessment of the role of delayed behavioral responses in promoting multiple waves
in the most basic stochastic setting. This in turn required to consider an innovative formal setting, namely
that of Stochastic Hybrid Automata, whose continuous component mirrors (in our case) a distributed de-
lay/memory.
Of course, the proposed model is minimalistic: many refinements can be considered. First, the model repre-
sents spontaneous individual behaviors in the simplest manner i.e., implicitly by the information index ap-
proach [15, 17]. As such, the model might also represent a situation where a government uses the same
information index to implement a policy of forced behavior change in individuals as e.g., a lockdown. Mod-
eling behavior in an explicit manner [7, 15, 16] can refine such scenarios.
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(A) (B)

(C) (D)

(E) (F)

Figure 17: Exponentially Fading Kernel: effect of ’filtering’with BRN = 2. Plot of I(t) (green lines) andM(t)
(black lines) for a single instance of the stocastic process. Left panels: a = 0.1, Right panels: a = 0.05. (A) and
(B): p = 1; (C) and (D): p = 2; (E) and (F): p = 10.
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Further improvements might include: (i) further epidemiological detail, e.g. the presence of a latency period; ii)
the effects of exogenous seasonal fluctuations in transmission; (iii) the combination of individuals’ behavior with
governmental responses; (iv) the spatial dimensionmodeled as continuous or by a discrete metapopulation ap-
proach ( [46]): it is well–known that the metapopulation network topology can relevantly impact on disease
spread [7, 49] ; (v) the presence of multiple pathogen strains; (vi) the possibility that, besides the transmis-
sion rate, the behavioral response affect also the recovery rate. For COVID-19 this surely occurred e.g.,
in the propensity to testing and self-isolating by pauci-symptomatic individuals ; (vii) the modeling of the
propagation of information through its articulated interpersonal and virtual networks [49–51].
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APPENDIX

A Global Stability of the Endemic Equilibrium in the no–memory case

In this appendix we show the Global Stability of the Endemic Equilibrium in the no–memory case K(x) = δ(x)
without imposing technical conditions. In paper [36] , it was shown that the endemic equilibrium is globally
stable provided that F (I) = Iβ(I) is either increasing or having at most an inflexion point. Here we remove this
requirement.
Since model (1)–(2) has a stable manifold the set I = 0 it is convenient to investigate (in our case in the set

Γ = {(S, I)|S ≥ 0, I > 0, S + I ≤ 1}
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) an appropriately chosen topologically equivalent dynamical system (TEDS) obtained by multpiplying the velocity
field by aDulacmultiplier [52]. In our case, we employed the followingmultiplier: 1/(Iβ(I)). The resulting TEDS
reads as follows

d

dτ
S =

A(I)

I
µ(1− S)− S (36)

d

dτ
I = S − cA(I) (37)

where we set for the sake of notation simplicity: N = 1 , A(I) = 1/β(I), and c = γ + µ. The rescaled time τ is
linked to the original time t by

τ =

∫ τ

0
I(t)β(I(t))dt.

Note that at the endemic equilibrium it is
µ(1− Se) = cIe,

which implies that at equilibrium the Jacobi matrix J is such that

J12 = ∂I

(
d

dτ
S

)
= µ(1− Se)

(
A′(Ie)

Ie
− A(Ie)

I2e

)
= c

(
A′(Ie)−

A(Ie)

Ie

)
.

Thus the characteristic equation reads as follows

λ2 +

(
cA′(Ie) + 1 + µ

A(Ie)

Ie

)
λ+ c

A(Ie)

Ie

(
1 + µA′(Ie)

)
= 0

which cannot have positive real part roots or zero roots. Thus, the endemic equilibrium is LAS.Moreover, applying
the Dulac-Bendixon theorem yields

div

(
d

dτ
S,

d

dτ
I

)
= −1− A(I)

I
− cA′(I) < 0

It easiy follows that the Endemic Equilibrium of system of (36)–(37) is GAS in the set Γ. Due to the topological
equivalence, even the endemic equilibrium of model (1)–(2) is GAS in Γ.

B The deterministic Memoryless case

B.1 Effects ofM50% in the deterministic case with p = 1

The output of the deterministic model for p = 1 is reported in figure 18, where the effects of three different values
of parameter M50% are shown.

B.2 The effects of the shape of the response function in the deterministic case

For sake of comparison with our stochastic simulation, in figure 19 the behavior of the deterministic model in the
memoryless case is reported for two values of p.

C Exponentially fading kernels and multiple deterministic epidemic waves

Here we illustrate the effects of a delayed behavioral response in the deterministic case, for BRN = 15 (figure
20) and BRN = 2 (figure 21) and for distinct values of p (p = 1, 2, 10).
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Figure 18: Pattern of infectious prevalence in the deterministic model forBRN = 15, and amemoryless behavioral
response with p = 1. Black curve: M50% = 200, red curve: M50% = 50, blue curveM50% = 10.

Figure 19: The deterministic model in the memoryless case. Effects of parameter p on the time-course of infectious
prevalence for BRN = 15. Left panel: p = 2, right panel: p = 10. Black curves: M50% = 200, red curves:
M50% = 50, blue curvesM50% = 10.
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Figure 20: Deterministic multiple epidemic waves of infectious prevalence for an exponentially fading behavioral
response, under BRN = 15, for different values of the memory rate a, and of parameters p andM50% tuning the
behavioral response. Left panels: a = 0.1; right panels: a = 0.05. Upper panels: p = 1; central panels: p = 2;
lower panels: p = 10. Black curves: M50% = 200,Red curves: M50% = 50, Blue Curves: M50% = 10.
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Figure 21: Deterministic multiple epidemic waves of infectious prevalence for an exponentially fading behavioral
response, under BRN = 2, for different values of the memory rate a, and of parameters p andM50% tuning the
behavioral response. Left panels: a = 0.1; right panels: a = 0.05. Upper panels: p = 1; central panels: p = 2;
lower panels: p = 10. Black curves: M50% = 200,Red curves: M50% = 50, Blue Curves: M50% = 10.
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D Exponentially fading Memory: the filtering effect for BRN = 15

Figure 22 illustrates the effect of ’filtering’ with BRN = 15 induced by an Exponentially Fading Kernel.

(A) (B)

(C) (D)

(E) (F)

Figure 22: Exponentially Fading Kernel: effect of ’filtering’with BRN = 15. Plot of I(t) (green lines) andM(t)
(black lines) for a single instance of the stochastic process. Left panels: a = 0.1, Right panels: a = 0.05. (A) and
(B): p = 1; (C) and (D): p = 2; (E) and (F): p = 10.
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E Multiple Stochastic Epidemic Waves: the case of the Acquisition Fading Ker-
nel

In this section, we will illustrate the results of the simulations in case of Acquisition Fading Kernel. Since the
acquisition phase is short, we set a1 = 1, whose characteristic time is T1 = 1. On the contrary, the fading phase is
much slower so we considered two values: a2 = 0.1, i.e. T2 = 10 >> T1, and a2 = 0.05, i.e. T2 = 20 >> T1.

E.1 Determistic and Stochastic Multiple Waves

Deterministic simulations for (a1, a2) = (1, 0.1) and (a1, a2) = (1, 0.0.05) are shown, respectively, in left and
right panels of figure 23, where BRN = 15. The deterministic model suggests that multiple epidemic waves
can occur for BRN = 15 for large populations. Similarly, multiple waves are also observed for BRN = 2 (not
shown).
Patterns ofmultiple waves are also observed in the stochasticmodel, for bothBRN = 15 (figure 24) andBRN = 2
(figure 25).

E.2 Statistical Assessment

Figure (26) shows that the prevalence at the first peak. For BRN = 15 it is interesting to note as the location of
the PDFs depends non–monotonicaly on p. As far as the prevalence at the second peak, Figure (27) shows that
for a2 = 0.1 the PDF for p = 1 overlaps with the PDF for p = 2, which for a2 = 0.05 moves rightwards and
overlaps partially with the PDF for p = 10. As far as the time of the first peak, Figure (28) shows that the PDFs
seem mixtures between an unimodal PDF and an exponential PDF (faster decaying for RBN = 15 , slower for
BRN = 2). As far as the time of at the second peak, Figure (29) shows that forBRN = 15 the average decreases
with p ans also the variance. The distribution of the time at epidemic extinction time is of interest (see figure 30) .
Indeed for (BRN, a2) = (15, 0.1) the location of the PDFs is increasing with p but the PDF for p = 10 has also
an appreciable earlier mode. On the contrary; for (BRN, a2) = (15, 0.05) all the three PDF have an earlier peak;
which in the case p = 10 is the largest one. For BRN = 2 the PDFs overlaps are mixtured between unimodal
and fastly decaying exponentials. Finally, even the distribution of the final attack rates are of some interest (figure
31). Indeed, for (BRN, a2) = (15, 0.1) the PDF are increasing with p but for p = 10 the PDF has a smaller but
appreciable earlier mode. For (BRN, a2) = (15, 0.05), all the three PDFs have an intermediate mode, and for
p = 10 this mode is the largest one. Finally, figure 32 shows as p is a key factor infuencing the average and shape
of the histogram of main peaks.
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Figure 23: Acquisition FadingKernel: Multiple EpidemicWaves predicted by the deterministic model. Left panels:
a = 0.1; right panels: a = 0.05. Upper panels: p = 1; central panels: p = 2; lower panels: p = 10. Black curves:
M50% = 200,Red curves: M50% = 50, Blue Curves: M50% = 10.
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Figure 24: Acquisition FadingKernel: Multiple EpidemicWaves predicted by the stochasticmodel forBRN = 15.
Left panels: a2 = 0.1; right panels: a2 = 0.05. Upper panels: p = 1; central panels: p = 2; lower panels: p = 10.
Black curves: M50% = 200,Red curves: M50% = 50, Blue Curves: M50% = 10.
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Figure 25: Acquisition Fading Kernel: Multiple EpidemicWaves predicted by the stochastic model forBRN = 2.
Left panels: a2 = 0.1; right panels: a2 = 0.05. Upper panels: p = 1; central panels: p = 2; lower panels: p = 10.
Black curves: M50% = 200,Red curves: M50% = 50, Blue Curves: M50% = 10.
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Figure 26: Acquisition Fading Kernel. Histograms for p = 1, 2, 10 andM50% = 50 of the PDF of the prevalence
at the first epidemic peak. (A) (BRN, a2) = (15, 0.1), (B) (BRN, a2) = (15, 0.05); (C) (BRN, a2) = (2, 0.1).
(D) (BRN, a2) = (2, 0.05)
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Figure 27: Acquisition Fading memory kernel. Histograms for p = 1, 2, 10 and M50% = 50 of the PDF of the
prevalence at the second epidemic peak. (A) (BRN, a2) = (15, 0.1), (B) (BRN, a2) = (15, 0.05)
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Figure 28: Acquisition Fading memory kernel. Histograms for p = 1, 2, 10 andM50% = 50 of the PDF of the time
of the first epidemic peak. (A) (BRN, a2) = (15, 0.1), (B) (BRN, a2) = (15, 0.05); (C) (BRN, a2) = (2, 0.1).
(D) (BRN, a2) = (2, 0.05)
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Figure 29: Acquisition Fading memory kernel. Histograms for p = 1, 2, 10 andM50% = 50 of the PDF of the time
of the second epidemic peak. (A) (BRN, a2) = (15, 0.1), (B) (BRN, a2) = (15, 0.05)
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Figure 30: Acquisition Fading Kernel. Histograms for p = 1, 2, 10 and M50% = 50 of the PDF of infection
extinction times. (A) (BRN, a2) = (15, 0.1), (B) (BRN, a2) = (15, 0.05); (C) (BRN, a2) = (2, 0.1). (D)
(BRN, a2) = (2, 0.05)
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Figure 31: Acquisition Fading memory kernel. Histograms for p = 1, 2, 10 and M50% = 50 of the PDF of the
final attack rate. (A) (BRN, a2) = (15, 0.1), (B) (BRN, a2) = (15, 0.05); (C) (BRN, a2) = (2, 0.1). (D)
(BRN, a2) = (2, 0.05)
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Figure 32: Acquisition Fading memory kernel. Histograms for p = 1, 2, 10 and M50% = 50 of the PDF of the
number of peaks. (A) (BRN, a2) = (15, 0.1), (B) (BRN, a2) = (15, 0.05);
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