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Various applications ranging from spintronic devices, giant magnetoresistance sensors,
and magnetic storage devices, include magnetic parts on very different length scales.
Since the consideration of the Landau-Lifshitz-Gilbert equation (LLG) constrains the
maximum element size to the exchange length within the media, it is numerically not
attractive to simulate macroscopic parts with this approach. On the other hand, the mag-
netostatic Maxwell equations do not constrain the element size, but cannot describe the
short-range exchange interaction accurately. A combination of both methods allows to
describe magnetic domains within the micromagnetic regime by use of LLG and also con-
siders the macroscopic parts by a non-linear material law using the Maxwell equations.
In our work, we prove that under certain assumptions on the non-linear material law,
this multiscale version of LLG admits weak solutions. Our proof is constructive in the

sense that we provide a linear-implicit numerical integrator for the multiscale model such
that the numerically computable finite element solutions admit weak H1-convergence (at
least for a subsequence) towards a weak solution.
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1. Introduction

The understanding of magnetization dynamics, especially on a microscale, is of utter

relevance, for example in the development of magnetic sensors, recording heads, and
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magnetoresistive storage devices. In the literature, a well accepted model for mi-

cromagnetic phenomena is the Landau-Lifshitz-Gilbert equation (LLG), see (2.12).

This non-linear partial differential equation describes the behaviour of the magneti-

zation of some ferromagnetic body under the influence of a so-called effective field.

Existence (and non-uniqueness) of weak solutions of LLG goes back to Ref. 3. As

far as numerical simulation is concerned, convergent integrators can be found, e.g.,

in the works of Refs. 8, 9 or 7, where even coupling to Maxwell’s equations is con-

sidered. For a complete review, we refer to Refs. 13, 16, 24 or the monographs 21,

28 and the references therein. Recently, there has been a major breakthrough in the

development of effective and mathematically convergent algorithms for the numeri-

cal integration of LLG. In Ref. 1, an integrator is proposed which is unconditionally

convergent and only needs the solution of one linear system per time step. The ef-

fective field in this work, however, only covers microcrystalline exchange effects and

is thus quite restricted. In the subsequent works of Refs. 2, 18, 19, 20 the analysis

for this integrator was widened to cover more general (linear) field contributions

while still conserving unconditional convergence.

In our work, we generalize the integrator from Ref. 1 even more and basically al-

low arbitrary field contributions (Section 3). Under some assumptions on those con-

tributions, namely boundedness and some weak convergence property, see (3.12)–

(3.13), our main theorem still proves unconditional convergence towards some weak

solution of LLG (Theorem 3.1). In particular, our analysis allows to incorporate the

approximate computation of effective field contributions like, e.g., the stray field

which cannot be computed analytically in practice, but requires certain FEM-BEM

coupling methods (Section 4.4). Such additional approximation errors have so far

been neglected in the previous works. To illustrate this, we show that the hybrid

FEM-BEM approaches from Refs. 14, 17 for stray field computations does not affect

the unconditional convergence of the proposed integrator (Proposition 4.2, Propo-

sition 4.3).

From the point of applications, the numerical integration of LLG restricts the

maximum element size for the underlying mesh to the (material dependent) ex-

change length in order to numerically resolve domain wall patterns. Otherwise, the

numerical simulation is not able to capture the effects stemming from the exchange

term and would lead to qualitatively wrong and even unphysical results. However,

due to limited memory, this constraint on the mesh-size practically also imposes

a restriction on the actual size of the contemplated ferromagnetic sample. Consid-

ering the magnetostatic Maxwell equations combined with a (non-linear) material

law instead, one does not face such a restriction on the mesh-size (and thus on the

computational domain). On the one hand, this implies that such a rough model

cannot be used to describe short-range interactions like those driving LLG. On the

other hand, this gives us the opportunity to cover larger domains and still maintain

a manageable problem size.

In our work, we show how to combine microscopic and macroscopic domains

to simulate a multiscale problem (Section 2): On the microscopic part, where we
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aim to simulate the configuration of the magnetization, we solve LLG. The influ-

ence of a possible macroscopic part, where the magnetization is not the goal of

the computation, is described by means of the magnetostatic Maxwell equations

in combination with some (non-linear) material law. This macroscopic part then

gives rise to an additional non-linear and nonlocal field contribution (Section 4.5)

such that unconditional convergence of the numerical integrator or even mere exis-

tence of weak solutions in this case is not obvious. For certain practically relevant

material laws, we analyze a discretization of the multiscale contribution by means

of the Johnson-Nédélec coupling and prove that the proposed numerical integrator

still preserves unconditional convergence. Striking numerical experiments for our

approach are given and discussed in Ref. 11.

Outline

The remainder of this paper is organized as follows: In Section 2, we give a motiva-

tion and the mathematical modelling for our multiscale model. While Section 2.1

focuses on the new contribution to the effective field, Section 2.2 recalls the LLG

equation used for the microscopic part. In Section 3, we introduce our numeri-

cal integrator in a quite general framework and formulate the main result (Theo-

rem 3.1) which states unconditional convergence under certain assumptions on the

(discretized) effective field contributions. The remainder of this section is then ded-

icated to the proof of Theorem 3.1. In Section 4, we consider different effective field

contributions as well as possible discretizations and show that the assumptions of

Theorem 3.1 are satisfied. Our analysis includes general anisotropy densities (Sec-

tion 4.1) as well as contributions which stem from the solution of operator equations

with strongly monotone operators (Section 4.3). This abstract framework then cov-

ers, in particular, the hybrid FEM-BEM discretizations from Refs. 14, 17 for the

stray field (Section 4.4) as well as the proposed multiscale contribution to the ef-

fective field (Section 4.5). A short appendix comments on some physical energy

dissipation.

2. Multiscale model

In our model, we consider two separated ferromagnetic bodies Ω1 and Ω2 as schema-

tized in Figure 1. Let Ω1, Ω2 ⊂ R
3 be bounded Lipschitz domains with Euclidean

distance dist(Ω1, Ω2) > 0 and boundaries Γ1 = ∂Ω1 resp. Γ2 = ∂Ω2. On the micro-

scopic part Ω1, we are interested in the domain configuration and thus solve LLG.

On Ω2, we will use the macroscopic Maxwell equations with a (possibly non-linear)

material law instead.

To motivate this setting, we consider a magnetic recording head (see Figures 1

and 2). The microscopic sensor element is based on the giant magnetoresistance

effect (GMR), and it requires the use of LLG in order to describe the short range in-

teractions between the individual layers of the sensor accurately. On the other hand,

the smaller these sensor elements are, the more important becomes the shielding

3
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of the stray field of neighbouring data bits. In practice, this is achieved by means

of some macroscopic softmagnetic shields located directly besides the GMR sensor.

Describing these large components by use of LLG would lead to very large problem

sizes, because the detailed domain structure within the magnetic shields would be

calculated. As proposed in this paper, macroscopic Maxwell equations allow to over-

come this limitation and thus provide a profound method to describe the influence

of the shields in an averaged sense. While this work focuses on the mathematical

model and a possible discretization, we refer to Ref. 11 for numerical simulations

and the experimental validation of the proposed model.

Ωcoil

Ω1

Ω2

Fig. 1. Example geometry which demonstrates model separation into LLG region Ω1 and
Maxwell region Ω2 (and in this case in an electric coil region Ωcoil). Here, Ω1 represents
one grain of a recording media and Ω2 shows a simple model of a recording write head.

Fig. 2. The example setup consists of a microscopic GMR sensor element in between two
macroscopic shields. Beyond the GMR sensor a magnetic storage media is indicated. The
multiscale algorithm is used to calculate the stationary state of the GMR sensor for various
applied external fields.

4
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2.1. Magnetostatic Maxwell equations

The magnetostatic Maxwell equations read

∇ × H = j and ∇ · B = 0 in R
3, (2.1)

where H : R3 → R
3 is the magnetic field strength [A/m] and B : R3 → R

3 is the

magnetic flux density [T ] which are related by

B = µ0(H + M) in R
3 (2.2)

with µ0 = 4π · 10−7 T m/A the permeability of vacuum. The current density j

[A/m2] is the source of the magnetic field strength H . The magnetization field M

[A/m] is non-trivial on the magnetic bodies Ω1 ∪ Ω2, but vanishes in R
3\(Ω1 ∪ Ω2).

The total magnetic field is split into

H = H1 + H2 + F , (2.3)

where Hj : R3 → R
3 is the magnetic field induced by the magnetization M j =

M |Ωj on Ωj and F is the field generated by the current density j in R
3\Ω1 ∪ Ω2.

This implies

∇ × F = j and therefore ∇ × Hj = 0 in R
3. (2.4)

In particular, the induced fields are gradient fields Hj = −∇Uj with certain scalar

potentials Uj : R3 → R. We assume that F is induced by currents only, but not by

magnetic monopoles. Therefore,

∇ · F = 0 in R
3. (2.5)

Moreover, the sources of Hj lie inside Ωj only and hence

∇ · Hj = 0 in R
3\Ωj . (2.6)

From the magnetic flux B, we obtain

0 = ∇ · B = µ0(∇ · H + ∇ · M) = µ0(∇ · Hj + ∇ · M j) in Ωj .

Together with Hj = −∇Uj and (2.6), this reveals

∆Uj = ∇ · M j in Ωj , (2.7a)

∆Uj = 0 in R
3\Ωj . (2.7b)

For the micromagnetic body Ω1, the respective magnetization M1 is computed

by LLG, see Section 2.2 below. The overall transmission problem (2.7) for Ω1,

supplemented by transmission conditions as well as a radiation condition, reads

∆U1 = ∇ · M 1 in Ω1, (2.8a)

∆U1 = 0 in R
3\Ω1, (2.8b)

U ext
1 − U int

1 = 0 on Γ1, (2.8c)

∇(U ext
1 − U int

1 ) · ν1 = −M1 · ν1 on Γ1, (2.8d)

U1(x) = O(1/|x|) as |x| → ∞. (2.8e)

5
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Here, the superscripts int and ext indicate whether the trace is considered from

inside Ω1 (resp. Ω2 in (2.11) below) or the exterior domain R
3\Ω1 (resp. R

3\Ω2

in (2.11) below). Moreover, νj denotes the outer unit normal vector on Γj , which

points from Ωj to the exterior domain R
3\Ωj . For the macroscopic body Ω2, we

assume a non-linear material law

M2 = χ(|H |)H on Ω2 (2.9)

with a scalar function χ : R≥0 → R and | · | the modulus. Some examples for suitable

χ are listed below (see Remark 4.5).

For the computation of the potential U2, we introduce an auxiliary potential

Uapp. Since ∇ × F = 0 in the simply connected domain Ω2, we infer F = −∇Uapp

on Ω2 with some potential Uapp : Ω2 → R. According to (2.5) and up to an additive

constant, Uapp can be obtained as the unique solution of the Neumann problem

∆Uapp = 0 in Ω2, (2.10a)

∇U int
app · ν2 = −F int · ν2 on Γ2, (2.10b)

with
∫

Ω2
Uapp = 0. The transmission problem for the total potential U = U1 + U2 +

Uapp of the total magnetic field H = −∇U in Ω2 and for the potential U2 in R
3\Ω2,

supplemented by a radiation condition, reads

∇ ·
(
(1 + χ(|∇U |))∇U

)
= 0 in Ω2, (2.11a)

∆U2 = 0 in R
3\Ω2, (2.11b)

U ext
2 − U int = −U int

1 − U int
app on Γ2, (2.11c)

(
∇U ext

2 − (1 + χ(|∇U int|))∇U int
)

· ν2 = (H int
1 + F int) · ν2 on Γ2, (2.11d)

U2(x) = O(1/|x|) as |x| → ∞, (2.11e)

where (2.11a) follows from (2.1)–(2.6) and (2.9). The transmission condition (2.11c)

follows from the continuity of U2 on Γ2 and U = U1+U2+Uapp in Ω2. To see (2.11d),

we stress that (2.1) implies (Bext − Bint) · ν2 = 0 on Γ2. Putting (2.2)–(2.3) into

this condition and using H = −∇U in Ω2 as well as (2.9) gives us

(Hext
1 + Hext

2 + F ext − (1 + χ(|∇U int|))∇U int) · ν2 = 0 on Γ2.

Moreover, from (2.5) and (2.6) we infer (F ext − F int) · ν2 = 0 = (Hext
1 − H int

1 ) · ν2

on Γ2. Together with H2 = −∇U2, the transmission condition (2.11d) follows.

Remark 2.1. In case of a linear material law χ(|H|) = χ ∈ R>0 in (2.9), the

transmission problem (2.11) simplifies to (1 + χ)∆U2 = 0 in Ω2, U ext
2 − U int

2 = 0 on

Γ2, and
(
∇U ext

2 − (1 + χ)∇U int
2

)
· ν2 = (H int

1 + F int) · ν2 on Γ2 in (2.11a), (2.11c),

and (2.11d), respectively. In particular, the Neumann problem (2.10) does not have

to be solved. Moreover, we do not have to assume that Ω2 is simply connected.

6
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2.2. Landau-Lifshitz-Gilbert equation

Let α > 0 denote a dimensionless empiric damping parameter, called Gilbert damp-

ing constant, and let the magnetization of the ferromagnetic body Ω1 be character-

ized by the vector valued function

M1 : (0, T ) × Ω1 →
{

x ∈ R
3 : |x| = Ms

}
,

where the constant Ms > 0 refers to the saturation magnetization [A/m]. Then,

the Landau-Lifshitz-Gilbert equation reads

∂M1

∂t
= − γ0

1 + α2
M 1 × Heff − αγ0

(1 + α2)Ms
M 1 × (M 1 × Heff), (2.12a)

supplemented by initial and Neumann boundary conditions

M1(0) = M0 in Ω1, (2.12b)

∂νM1 = 0 on (0, T ) × ∂Ω1. (2.12c)

Here, γ0 = 2, 210173·105 m/(As) denotes the gyromagnetic ratio and M0 : Ω1 → R
3

with |M0| = Ms in Ω1 is a given initial magnetization. The effective field Heff in

[A/m] depends on M 1 and the magnetic field strength H, and is given as the

negative first variation of the Gibbs free energy

µ0 Heff = −δE(M1)

δM1
.

In this work, the energy E(·) consists of exchange energy, anisotropy energy as well

as magnetostatic energy

E(M 1) =
A

M2
s

∫

Ω1

|∇M 1|2 + K

∫

Ω1

φ(M 1/Ms) − µ0

∫

Ω1

H · M 1.

The exchange constant A > 0 [J/m] and anisotropy constant K > 0 [J/m3] de-

pend on the ferromagnetic material. Moreover, φ refers to the crystalline anisotropy

density. The effective field is thus given by

Heff =
2A

µ0M2
s

∆M1 − K

µ0Ms
Dφ(M 1/Ms) + H.

Note that the microscopic LLG equation and the macroscopic Maxwell equations

are coupled through the magnetic field strength H and hence through the effective

field Heff. Altogether, we will thus solve the multiscale problem by solving LLG on

Ω1 and incorporating the effects of Ω2 via this coupling.

3. General LLG equation

In this section, we consider the non-dimensional form of LLG with a quite general

effective field heff which covers the multiscale problem from the previous section.

We recall some equivalent formulations of LLG and then state our notion of a weak

solution, which has been introduced by Alouges & Soyeur, see Ref. 3, for the

7

Multiscale modeling in micromagnetics: Existence of solutions and numerical integration



8 F. Bruckner, M. Feischl, T. Führer, P. Goldenits, M. Page, D. Praetorius, M. Ruggeri, and D. Suess

small-particle limit heff = ∆m and which is now extended to the present situation.

We then formulate a linear-implicit time integrator in the spirit of Refs. 1, 2, 18,

19, 20.

3.1. Non-dimensional form of LLG

We perform the substitution t′ = γ0Mst with t′ being the so-called (non-

dimensional) reduced time, and set T ′ = γ0MsT the scaled final time. Moreover,

we rescale the spatial variable x′ = x/L with L being some characteristic length

of the problem [m], e.g., the intrinsic length scale L =
√

2A/(µ0M2
s ). However, to

simplify our notation, we stick with t, T, x, Ωj instead of t′, T ′, x/L, Ωj/L, respec-

tively, and abbreviate the space-time cylinder Ωt = [0, t] × Ω1 for all 0 ≤ t ≤ T .

We set m := M1/Ms, m0 := M0/Ms, heff := Heff/Ms. With these notations, the

(sought) magnetization m : ΩT →
{

x ∈ R
3 : |x| = 1

}
solves the non-dimensional

form of LLG

∂tm = − 1

1 + α2
m × heff − α

1 + α2
m × (m × heff) in ΩT , (3.1a)

supplemented by initial and Neumann boundary conditions

m(0) = m0 in Ω1, (3.1b)

∂νm = 0 in (0, T ) × ∂Ω1. (3.1c)

The non-dimensional effective field reads

heff =
2A

µ0M2
s L2

∆m − K

µ0M2
s

Dφ(m) + f − ∇u1 − ∇u2,

where u1 solves (2.8) with M1 being replaced by m and where u2 solves (2.11)

with, e.g., F replaced by f , H1 replaced by −∇u1, etc. For the non-linearity χ,

we introduce some χ̃ in the non-dimensional formulation. Details are elaborated in

Section 4.5.

Remark 3.1. Note that (3.1a) implies 0 = m · ∂tm = ∂t|m|2/2, i.e., the time

derivative ∂tm belongs to the tangent space of m. In particular, the modulus con-

straint |m| = 1 in ΩT also follows from the PDE formulation (3.1a) and |m0| = 1

in Ω1.

3.2. Notation and function spaces involved

In this brief section, we collect the necessary notation as well as the relevant function

spaces that will be used throughout. By L2, we denote the usual Lebesgue space

of square integrable functions and by H1 the Sobolev space of functions in L2

that additionally admit a weak gradient in L2. For vector fields and corresponding

spaces, we use bold symbols, e.g., for f ∈ L2(Ω1), we write

‖f‖2
L2(Ω1) =

3∑

i=1

‖fi‖2
L2(Ω1).

8
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For the space-time cylinder ΩT = [0, T ] × Ω1, we consider the function spaces

L2(L2) := L2
(
[0, T ], L2(Ω1)

)
= L2(ΩT ), L2(H1) := L2

(
[0, T ], H1(Ω1)

)
, and

H1(ΩT ) which are associated with the norms

‖f‖2
L2(L2) := ‖f‖2

L2(ΩT ) =

∫ T

0

‖f(t)‖2
L2(Ω1) dt,

‖f‖2
L2(H1) := ‖f‖2

L2([0,T ],H1(Ω1)) =

∫ T

0

‖f(t)‖2
L2(Ω1) + ‖∇f(t)‖2

L2(Ω1) dt,

‖f‖2
H1(ΩT ) =

∫ T

0

‖f(t)‖2
L2(Ω1) + ‖∇f(t)‖2

L2(Ω1) + ‖∂tf(t)‖2
L2(Ω1) dt,

respectively. Finally, for appropriate sets Σ, we denote by 〈·, ·〉Σ the scalar product

of L2(Σ). The Euclidean scalar product of vectors x, y ∈ R
3 is denoted by x · y.

In proofs, we use the symbol . to abbreviate ≤ up to some (hidden) multiplica-

tive constant which is clear from the context and independent of the discretization

parameters h and k.

3.3. Equivalent formulations of LLG and weak solution

The dimensionless formulation of LLG that is usually referred to, has already been

stated in (3.1). Supplemented by the same initial and boundary conditions (3.1b)–

(3.1c), the equation can also equivalently be stated as

α∂tm + m × ∂tm = heff − (m · heff) m (3.2)

or

∂tm − αm × ∂tm = heff × m. (3.3)

In this work, (3.2) is exploited for the construction of our numerical scheme. For the

notion of a weak solution, we use the so-called Gilbert formulation (3.3). A rigorous

proof for the equivalence of the above equations can be found, e.g., in Ref. 18,

Section 1.2.

As far as numerical analysis is concerned, our integrator extends the one of

Ref. 1 from the small-particle limit with exchange energy only, to the case under

consideration. Independently, the preceding works of Refs. 2, 18 generalized the

approach of Ref. 1 to an effective field, which consists of exchange energy, stray field

energy, uniaxial anisotropy, and exterior energy, where only the first term is dealt

with implicitly, whereas the remaining lower-order terms are treated explicitly. In

this work, we extend this approach to certain non-linear contributions of the effective

field. For this purpose, we introduce a general contribution π : H1(Ω1) × Y →
L2(Ω1) for some suitable Banach space Y , see Section 4 for examples. We now

write heff in the form

heff = Cexch∆m − π(m, ζ) + f , (3.4a)

where ζ ∈ Y , the exchange contribution and the exterior field f are explicitly

given, while the stray field contribution, the material anisotropy, and the induced

9
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field from the macroscopic part are concluded in the operator π. Our analysis thus

particularly includes the case

π
(
m, ζ

)
:= ∇u1 + Cani Dφ(m) + ∇u2, (3.4b)

but also holds true for general contributions π, which only act on the spatial vari-

able, as long as they fulfil the properties (3.12)–(3.13) below. In (3.4a)–(3.4b), the

constants are given by

Cexch :=
2A

µ0M2
s L2

resp. Cani :=
K

µ0Ms
. (3.4c)

Remark 3.2. For the multiscale formulation (3.4), we employ Y = L2(Ω2) and ζ =

f , since this data is required in (2.10)–(2.11). Details are given in Section 4.5 below.

For the classical contributions like anisotropy field and stray field, the operator π

is independent of ζ and depends only on m.

With these preparations, our definition of a weak solution reads as follows:

Definition 3.1. Let f ∈ L2(Ω1), ζ ∈ Y and m0 ∈ H1(Ω1) with |m| = 1 in Ω1. A

function m is called a weak solution to LLG in ΩT , if

(i) m ∈ H1(ΩT ) with |m| = 1 in ΩT and m(0) = m0 in the sense of traces;

(ii) for all φ ∈ C∞(ΩT ), we have

〈∂tm, φ〉ΩT
− α 〈m × ∂tm, φ〉ΩT

(3.5)

= −Cexch 〈∇m × m, ∇φ〉ΩT
− 〈π(m, ζ) × m, φ〉ΩT

+ 〈f × m, φ〉ΩT
;

(iii) for almost all t ∈ (0, T ), we have

‖∇m(t)‖2
L2(Ω1) + ‖∂tm‖2

L2(Ωt) ≤ C, (3.6)

for some constant C > 0 which depends only on m0 and f .

The existence (and non-uniqueness) of weak solutions has first been shown in

Ref. 3 for the small particle limit, where π and f are omitted. We stress, however,

that our convergence proof is constructive in the sense that the analysis does not

only show convergence towards, but also existence of weak solutions without any

assumptions on the smoothness of the quantities involved.

Remark 3.3. Under certain assumptions on π, the energy estimate (3.6) can be

improved. We refer to Proposition A.1 in the appendix.

3.4. Linear-implicit integrator

We discretize the magnetization m and its time derivative v = ∂tm in space by

lowest-order Courant finite elements

Vh :=
{

nh : Ω1 → R
3 continuous : nh|T affine for all T ∈ T Ω1

h

}
,

10
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where T Ω1

h is a quasi-uniform and conforming triangulation of Ω1 into tetrahedra

T ∈ T Ω1

h with mesh-size h ≃ diam(T ). Let Nh denote the set of nodes of T Ω1

h . For

fixed time tj , the discrete magnetization is sought in the set

m(tj) ≈ m
j
h ∈ Mh :=

{
nh ∈ Vh : |nh(z)| = 1 for all z ∈ Nh

}
,

whereas the discrete time derivative is sought in the discrete tangent space

v(tj) ≈ v
j
h ∈ K

m
j
h

:=
{

nh ∈ Vh : nh(z) · m
j
h(z) = 0 for all z ∈ Nh

}
.

For the time discretization, we impose a uniform partition Ik of the time interval

[0, T ] with time step-size k = T/N and time steps tj = jk, j = 0, . . . , N .

Let πh be a numerical realization of π which maps m(tj) ≈ m
j
h ∈ Mh and

ζ(tj) ≈ ζj
h ∈ Y to some πh(mj

h, ζj
h) ∈ L2(Ω1). Finally, let f

j
h ∈ L2(Ω1) be an

approximation of f (tj) specified below. Then, our numerical time integrator reads

as follows:

Algorithm 3.1. Input: Initial datum m0
h ∈ Mh, parameters α > 0 and 0 ≤ θ ≤ 1,

data
{

ζi
h

}
i=0,...,N−1

. Then, for all i = 0, . . . , N − 1 iterate:

(i) Compute vi
h ∈ Kmi

h
such that for all ψh ∈ Kmi

h
, it holds

α
〈
vi

h, ψh

〉
Ω1

+ Cexchkθ
〈
∇vi

h, ∇ψh

〉
Ω1

+
〈
mi

h × vi
h, ψh

〉
Ω1

(3.7)

= −Cexch

〈
∇mi

h, ∇ψh

〉
Ω1

−
〈
πh(mi

h, ζi
h), ψh

〉
Ω1

+
〈
f i

h, ψh

〉
Ω1

.

(ii) Define mi+1
h ∈ Mh by mi+1

h (z) =
mi

h(z) + kvi
h(z)

|mi
h(z) + kvi

h(z)| for all nodes z ∈ Nh.

Output: Discrete time derivatives vi
h and magnetizations mi+1

h , for i = 0, . . . , N −1.

The input as well as the output of Algorithm 3.1 consists of discrete-in-time

values γi
h, e.g., γi

h ∈ {mi
h, vi

h} ⊆ Vh. By (3.8) we define continuous-in-time inter-

pretations, where we consider continuous and piecewise affine in time (denoted

by S1) resp. piecewise constant in time (denoted by P0): For ti ≤ t < ti+1,

γhk ∈ S1(Ik; Vh) ⊂ H1(ΩT ) and γ−
hk ∈ P0(Ik; Vh) ⊂ L2(H1) are defined by

γhk(t) :=
t − ik

k
γi+1

h +
(i + 1)k − t

k
γi

h (3.8a)

γ−
hk(t) := γi

h. (3.8b)

We note that ∂tγhk = (γi+1
h − γi

h)/k. The same notation is used for f−
hk ∈

P0(Ik; L2(Ω)) and ζ−
hk ∈ P0(Ik; Y ).

Lemma 3.1. Algorithm 3.1 is well-defined, and it holds ‖mhk‖L∞(ΩT ) =

‖m−
hk‖L∞(ΩT ) = 1.

Proof. Problem (3.7) is a linear problem on a finite dimensional space. Therefore,

existence and uniqueness of vi
h ∈ Kmi

h
follow from the fact that the corresponding

11
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bilinear form is positive definite. By definition of the discrete tangent space Km
i
h
, it

holds |mi
h +kvi

h|2 = 1+k2 |vi
h|2 ≥ 1 nodewise. Therefore, Step (ii) in Algorithm 3.1

is well-defined. By use of barycentric coordinates, an elementary calculation finally

proves the pointwise estimates |m−
hk| ≤ 1 as well as |mhk| ≤ 1, see, e.g., Ref. 1.

By definition of mi+1
h in Step (ii) of Algorithm 3.1, the following two auxiliary

results follow from elementary geometric considerations (see Refs. 1, 2, 18).

Lemma 3.2. For all i = 0, . . . , N − 1, it holds nodewise |mi+1
h − mi

h| ≤ k |vi
h|.

Lemma 3.3. For all i = 0, . . . , N − 1, it holds nodewise |mi+1
h − mi

h − kvi
h| ≤

1
2 k2 |vi

h|2.

These nodal estimates shall be used together with the following elementary

lemma which follows from standard scaling arguments.

Lemma 3.4. For any discrete function wh ∈ Vh and all 1 ≤ p < ∞, it holds

C−1
1 ‖wh‖p

Lp(Ω) ≤ h3
∑

z∈Nh

|wh(z)|p ≤ C1 ‖wh‖p
Lp(Ω).

The constant C1 > 0 depends only on p and the shape of the elements in T Ω1

h .

3.5. Main theorem

The following theorem is the main result of this work. It states convergence of

the numerical integrator (at least for a subsequence) towards a weak solution of

the general LLG equation. Afterwards, we will show that the operator π and its

discretization πh of the multiscale LLG equation satisfy the general assumptions

posed. In particular, the concrete problem is thus covered by the general approach.

Theorem 3.1. (a) Let 1/2 < θ ≤ 1 and suppose that the spatial meshes T Ω1

h are

uniformly shape regular and satisfy the angle condition

〈∇ηi, ∇ηj〉Ω1
≤ 0 for all nodal hat functions ηi, ηj ∈ S1(T Ω1

h ) with i 6= j. (3.9)

We suppose that

f−
hk ⇀ f weakly in L2(ΩT ) (3.10)

as well as

m0
h ⇀ m0 weakly in H1(Ω1). (3.11)

Moreover, we suppose that the spatial discretization πh of π satisfies

‖πh(n, y)‖L2(Ω1) ≤ C2 (1 + ‖∇n‖L2(Ω1)) (3.12)

for all h, k > 0 and all n ∈ H1(Ω1) with |n| ≤ 1 and all y ∈ Y with ‖y‖Y ≤ C3

for some y-independent constant C3 > 0. Here, C2 > 0 denotes a constant that is

12
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independent of h, k, n, and y, but may depend on C3 and Ω1. We further assume

‖ζj
h‖Y ≤ C3 for all j = 1, . . . , N . Under these assumptions, Algorithm 3.1 yields

strong L2(ΩT )-convergence of some subsequence of m−
hk as well as weak H1(ΩT )-

convergence of some subsequence of mhk towards the same limit m ∈ H1(ΩT )

which additionally satisfies m ∈ L∞(H1) with |m| = 1 in ΩT .

(b) In addition to the above, we suppose

πh(m−
hk, ζ−

hk) ⇀ π(m, ζ) weakly in L2(ΩT ) for some subsequence. (3.13)

Then, the limit m ∈ H1(ΩT ) from (a) is a weak solution of general LLG in the

sense of Definition 3.1.

Remark 3.4. (i) Suppose that the applied exterior field is continuous in time, i.e.,

f ∈ C([0, T ]; L2(Ω1)). Let f
j
h = f (tj) denote the evaluation of f at time tj . Then,

assumption (3.10) is satisfied since f−
hk → f strongly in L∞(L2).

(ii) Suppose that the applied exterior field is continuous in space-time, i.e., f ∈
C(ΩT ). Let f

j
h denote the nodal interpolant of f(tj) ∈ C(Ω1) in space. Then,

assumption (3.10) is satisfied since f−
hk → f strongly in L∞(ΩT ).

(iii) Suppose ζ is continuous in time, i.e., ζ ∈ C([0, T ], Y ) and let ζj
h = ζ(tj) denote

the evaluation of ζ at time tj . Then, we have ζ−
hk → ζ strongly in L∞(Y ) and

‖ζj
h‖Y ≤ supt∈[0,T ] ‖ζ(t)‖Y .

Remark 3.5. The angle condition (3.9) is a technical ingredient for the convergence

analysis. It is automatically fulfilled for tetrahedral meshes with dihedral angles that

are smaller than π/2. If the condition is satisfied by the initial mesh T0, it can be

preserved by the mesh-refinement strategy (see, e.g., Ref. 35, Section 4.1).

The remainder of this section consists of the proof of Theorem 3.1 which is

roughly split into three steps:

(i) Boundedness of the discrete quantities and energies.

(ii) Existence of weakly convergent subsequences.

(iii) Identification of the limits with weak solutions of LLG.

Lemma 3.5. For all j = 0, . . . , N , the discrete quantities m
j
h and

{
vi

h

}
i=0,...,j−1

satisfy

‖∇m
j
h‖2

L2(Ω1) + k

j−1∑

i=0

‖vi
h‖2

L2(Ω1) + (θ − 1/2)k2

j−1∑

i=0

‖∇vi
h‖2

L2(Ω1) ≤ C4. (3.14)

The constant C4 > 0 depends only on f , m0, and the final time T , but is indepen-

dent of h and k.

Proof. In (3.7), we use the test function ψh = vi
h ∈ Kmi

h
and get

α‖vi
h‖2

L2(Ω1) + Cexchθ k‖∇vi
h‖2

L2(Ω1) = − Cexch

〈
∇mi

h, ∇vi
h

〉
Ω1

+
〈
f i

h, vi
h

〉
Ω1

−
〈
πh(mi

h, ζi
h), vi

h

〉
Ω1

.

13
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The angle condition (3.9) ensures ‖∇mi+1
h ‖2

L2(Ω1) ≤ ‖∇(mi
h + kvi

h)‖2
L2(Ω1), see

Refs. 1, 2, 18. We thus get

1

2
‖∇mi+1

h ‖2
L2(Ω1) ≤ 1

2
‖∇mi

h‖2
L2(Ω1) + k

〈
∇mi

h, ∇vi
h

〉
Ω1

+
k2

2
‖∇vi

h‖2
L2(Ω1)

≤ 1

2
‖∇mi

h‖2
L2(Ω1) − (θ − 1/2)k2‖∇vi

h‖2
L2(Ω1) (3.15)

− α k

Cexch
‖vi

h‖2
L2(Ω1) +

k

Cexch

〈
f i

h, vi
h

〉
Ω1

− k

Cexch

〈
πh(mi

h, ζi
h), vi

h

〉
Ω1

.

Next, we sum up over i = 0, . . . , j − 1 to see

1

2
‖∇m

j
h‖2

L2(Ω1) ≤1

2
‖∇m0

h‖2
L2(Ω1) − (θ − 1/2)k2

j−1∑

i=0

‖∇vi
h‖2

L2(Ω1)

− αk

Cexch

j−1∑

i=0

‖vi
h‖2

L2(Ω1) +
k

Cexch

j−1∑

i=0

( 〈
f i

h, vi
h

〉
Ω1

−
〈
πh(mi

h, ζi
h), vi

h

〉
Ω1

)
.

Using the inequalities of Young and Hölder, this can be further estimated by

1

2
‖∇m

j
h‖2

L2(Ω1) +
k

Cexch
(α − ε)

j−1∑

i=0

‖vi
h‖2

L2(Ω1) + (θ − 1/2)k2

j−1∑

i=0

‖∇vi
h‖2

L2(Ω1)

≤ 1

2
‖∇m0

h‖2
L2(Ω1) +

k

2Cexchε

j−1∑

i=0

(
‖f i

h‖2
L2(Ω1) + ‖πh(mi

h, ζi
h)‖2

L2(Ω1)

)

for any ε > 0. With the boundedness (3.12) of πh, the last sum is estimated by

k

j−1∑

i=0

(‖f i
h‖2

L2(Ω1)+‖πh(mi
h, ζi

h)‖2
L2(Ω1)) . ‖f−

hk‖2
L2(ΩT )+k

j−1∑

i=0

(1 + ‖∇mi
h‖2

L2(Ω1))

. ‖f−
hk‖2

L2(ΩT ) + T + k

j−1∑

i=0

‖∇mi
h‖2

L2(Ω1).

Choosing ε < α, we altogether obtain

‖∇m
j
h‖2

L2(Ω1) + k

j−1∑

i=0

‖vi
h‖2

L2(Ω1) + (θ − 1/2)k2

j−1∑

i=0

‖∇vi
h‖2

L2(Ω1)

. ‖f−
hk‖2

L2(ΩT ) + T + k

j−1∑

i=0

‖∇mi
h‖2

L2(Ω1).

According to weak convergence (3.10)–(3.11), there holds uniform boundedness

‖f
−
hk‖2

L2(ΩT ) +‖∇m0
h‖2

L2(Ω1) ≤ C. Consequently, the discrete Gronwall lemma (see,

e.g., Ref. 34, Lemma 10.5) applies and concludes the proof.

As a consequence of the energy estimate (3.14), we obtain uniform boundedness of

the discrete quantities.

14
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Lemma 3.6. For 1/2 ≤ θ ≤ 1, it holds

‖m−
hk‖L∞(H1) + ‖mhk‖L∞(H1) + ‖∂tmhk‖L2(ΩT )

+ ‖v−
hk‖L2(ΩT ) +

√
(θ − 1/2)k ‖∇v−

hk‖L2(ΩT ) ≤ C5,
(3.16)

where C5 > 0 does not depend on h or k.

Proof. Estimate (3.14) reveals

max
j=0,...,N

‖∇m
j
h‖2

L2(Ω1)+‖v−
hk‖2

L2(ΩT ) + (θ − 1/2)k ‖∇v−
hk‖2

L2(ΩT ) . C4.

Clearly, it holds

‖∇mhk‖2
L∞(L2) + ‖∇m−

hk‖2
L∞(L2) . max

j=0,...,N
‖∇m

j
h‖2

L2(Ω1).

Together with ‖mhk‖L∞(ΩT ) = 1 = ‖m−
hk‖L∞(ΩT ), this bounds the L∞(H1)-norms

of mhk and m−
hk. For tj ≤ t < tj+1, Lemma 3.2 and Lemma 3.4 prove

‖∂tmhk(t)‖2
L2(Ω1) = ‖(mj+1

h − m
j
h)/k‖2

L2(Ω1) . ‖v
j
h‖2

L2(Ω1),

whence ‖∂tmhk‖2
L2(ΩT ) . ‖v−

hk‖2
L2(ΩT ). This concludes the proof.

Using (3.16), we can extract weakly convergent subsequences.

Lemma 3.7. There exist functions m ∈ H1(ΩT ) and v ∈ L2(ΩT ) such that

mhk ⇀ m weakly in H1(ΩT ),

mhk, m−
hk ⇀ m weakly in L2(H1),

mhk, m−
hk → m strongly in L2(ΩT ),

v−
hk ⇀ v weakly in L2(ΩT ),

as (h, k) → (0, 0) independently of each other. Here, the convergences are to be

understood for one particular subsequence that is successively extracted.

Proof. Due to the uniform boundedness (3.16), one may extract weakly convergent

subsequences (with possibly different limits). It thus only remains to show, that the

limits coincide, e.g.,

m−
hk ⇀ m weakly in L2(ΩT ) and L2(H1),

where mhk ⇀ m weakly in H1(ΩT ). Due to the Rellich compactness theorem, we

have mhk → m strongly in L2(ΩT ). We rewrite mhk for tj ≤ t < tj+1 as

mhk(t) = m
j
h +

t − tj

k
(mj+1

h − m
j
h).

15

Multiscale modeling in micromagnetics: Existence of solutions and numerical integration



16 F. Bruckner, M. Feischl, T. Führer, P. Goldenits, M. Page, D. Praetorius, M. Ruggeri, and D. Suess

Lemma 3.2 and Lemma 3.4 thus yield

‖mhk − m−
hk‖2

L2(ΩT ) =

N−1∑

j=0

∫ tj+1

tj

‖m
j
h +

t − tj

k
(mj+1

h − m
j
h) − m

j
h‖2

L2(Ω1)

≤
N−1∑

j=0

∫ tj+1

tj

k2
∥∥∥

m
j+1
h − m

j
h

k

∥∥∥
2

L2(Ω1)
. k3

N−1∑

j=0

‖v
j
h‖2

L2(Ω1) → 0.

This proves the result for L2(ΩT ). From the uniqueness of weak limits and the

continuous inclusion L2(H1) ⊆ L2(ΩT ), we also conclude the result for L2(H1).

Next, we identify the limit function v.

Lemma 3.8. It holds v = ∂tm.

Proof. For tj ≤ t < tj+1, Lemma 3.3 and Lemma 3.4 prove

‖∂tmhk(t) − vhk(t)‖L1(Ω1) = ‖(mj+1
h − m

j
h)/k − v

j
h‖L1(Ω1) . k ‖v

j
h‖2

L2(Ω1).

Integration in time yields

‖∂tmhk − vhk‖L1(ΩT ) . k‖vhk‖2
L2(ΩT ).

Exploiting weak semi-continuity of ‖ · ‖L1(ΩT ), we obtain

‖∂tm − v‖L1(ΩT ) ≤ lim inf
(h,k)→0

‖∂tmhk − vhk‖L1(ΩT ) = 0

and thus prove the desired result.

So far, we have only used the boundedness assumptions (3.10)–(3.12) and θ ≥
1/2. To conclude the proof of Theorem 3.1 (a), it remains to prove that |m| = 1 in

ΩT (Definition 3.1 (i)). We also note that bounded energy (Definition 3.1 (iii)) is

already a direct consequence of Lemma 3.6.

Verification of Definition 3.1 (i). From

‖|m| − 1‖L2(ΩT ) ≤ ‖|m| − |m−
hk|‖L2(ΩT ) + ‖|m−

hk| − 1‖L2(ΩT )

and

‖|m−
hk(t, ·)| − 1‖L2(Ω1) ≤ h max

j=0,...,N
‖∇m

j
h‖L2(Ω1),

we deduce |m| = 1 almost everywhere in ΩT . Together with mhk(0) = m0
h, the

equality m(0) = m0 in the trace sense follows from the convergences m0
h ⇀ m0

weakly in H1(Ω1) as well as mhk ⇀ m weakly in H1(ΩT ) (at least for a subse-

quence) and thus weak convergence of the traces.

To prove Theorem 3.1 (b), it remains to show that the limit function m also sat-

isfies Definition 3.1 (ii). This is done in the following and requires assumption (3.13)

as well as θ > 1/2.

16
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Verification of Definition 3.1 (ii). Let φ ∈ C∞(ΩT ) be arbitrary. We define

test functions by ψh := Ih(m−
hk × φ), where Ih : C(Ω) → Vh denotes the nodal

interpolation operator which only acts on the spatial variable. Note that ψh(t) ∈
K

m
j
h

for all tj ≤ t < tj+1. Integration of (3.7) in time thus gives

α

∫ T

0

〈
v−

hk, ψh

〉
Ω1

+ Cexchkθ

∫ T

0

〈
∇v−

hk, ∇ψh

〉
Ω1

+

∫ T

0

〈
m−

hk × v−
hk, ψh

〉
Ω1

= −Cexch

∫ T

0

〈
∇m−

hk, ∇ψh

〉
Ω1

−
∫ T

0

〈
πh(m−

hk, ζ−
hk), ψh

〉
Ω1

+

∫ T

0

〈
f−

hk, ψh

〉
Ω1

.

Exploiting the approximation properties of Ih for ψ = m−
hk × φ, we get

∫ T

0

〈
αv−

hk + m−
hk × v−

hk, m−
hk × φ

〉
Ω1

+ Cexchkθ

∫ T

0

〈
∇v−

hk, ∇(m−
hk × φ)

〉
Ω1

+ Cexch

∫ T

0

〈
∇m−

hk, ∇(m−
hk × φ)

〉
Ω1

+

∫ T

0

〈
πh(m−

hk, ζ−
hk), m−

hk × φ
〉

Ω1

−
∫ T

0

〈
f−

hk, m−
hk × φ

〉
Ω1

= O(h).

Next, we proceed as in Refs. 1, 18 to see that

∫ T

0

〈
αv−

hk + m−
hk × v−

hk, m−
hk × φ

〉
Ω1

−→
∫ T

0

〈α∂tm + m × ∂tm, m × φ〉Ω1
,

k θ

∫ T

0

〈
∇v−

hk, ∇(m−
hk × φ)

〉
Ω1

−→ 0, and (3.17)

∫ T

0

〈
∇m−

hk, ∇(m−
hk × φ)

〉
Ω1

=

∫ T

0

〈
∇m−

hk, m−
hk × ∇φ

〉
Ω1

−→
∫ T

0

〈∇m, m × ∇φ〉Ω1
.

Here, we have used the boundedness of
√

k‖∇v−
hk‖L2(ΩT ), which follows from (3.16)

and 1/2 < θ ≤ 1. From the convergence m−
hk × φ → m × φ strongly in L2(ΩT ) and

the assumptions (3.10) and (3.13) on f−
hk and πh(m−

hk, ζ−
hk), we conclude

∫ T

0

〈
πh(m−

hk, ζ−
hk), m−

hk × φ
〉

Ω1
−→

∫ T

0

〈π(m, ζ), m × φ〉Ω1
, and

∫ T

0

〈
f−

hk, m−
hk × φ

〉
Ω1

−→
∫ T

0

〈f , m × φ〉Ω1
.

Altogether, we have now shown

α

∫ T

0

〈∂tm, m × φ〉Ω1
+

∫ T

0

〈m × ∂tm, m × φ〉Ω1
=

− Cexch

∫ T

0

〈∇m, ∇(m × φ)〉Ω1
−

∫ T

0

〈π(m, ζ), m × φ〉Ω1
+

∫ T

0

〈f , m × φ〉Ω1
.

Using the identity (m × ∂tm) · (m × φ) = ∂tm · φ, we conclude (3.5).

17
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Remark 3.6. Note that in case of the Crank-Nicholson-type scheme (θ = 1/2)

one needs an additional bound for ∇v−
hk in (3.17). As in Refs. 1, 2, 18, this can be

obtained from an inverse estimate. In this case, however, we end up with a (weak)

coupling of h and k, but still prove convergence as long as k/h tends to 0.

4. Effective field contributions for multiscale LLG equation

In this section, we give examples for contributions π and corresponding discretiza-

tions πh which guarantee the assumptions (3.12)–(3.13) of Theorem 3.1. In par-

ticular, we show that the contributions of our multiscale LLG model satisfy these

assumptions.

4.1. Pointwise operators and anisotropy energy contribution

With B :=
{

x ∈ R
3 : |x| ≤ 1

}
the compact unit ball in R

3, let φ : B → R

be a continuously differentiable anisotropy density. Possible examples include the

uniaxial density φ(x) = − 1
2 (x·e)2 with a given easy axis e ∈ R

3 with |e| = 1 as well

as the cubic density φ(x) = K1(x2
1x2

2 + x2
2x2

3) + K2x2
1x2

2x2
3 with certain constants

K1, K2 ≥ 0. The anisotropy contribution to the effective field reads

π(n, ζ) = π(n) = Dφ ◦ n for n ∈ L2(Ω1),

and πh = π. Note that in this case, we neglected a possible dependence on ζ, i.e.,

formally Y = {0} and ζ−
hk denotes the constant zero sequence.

Proposition 4.1. Suppose that Φ ∈ C(B), e.g., Φ(x) = Dφ(x), and πh(n) :=

π(n) := Φ ◦ n. Then, the assumptions (3.12)–(3.13) of Theorem 3.1 are satisfied.

Proof. Clearly, (3.12) holds with C2 = ‖Φ‖L∞(B). Part (a) of Theorem 3.1 thus

predicts convergence of a subsequence m−
hk → m strongly in L2(ΩT ). Now, choose

sequences hℓ → 0, kℓ → 0 such that mℓ := m−
hℓkℓ

converges strongly in L2(ΩT ) to

m. By extracting a subsequence, we may in particular assume that mℓ converges to

m even pointwise almost everywhere in ΩT . This implies π(mℓ) → π(m) pointwise

almost everywhere in ΩT . Moreover and because of (3.12), |π(m) − π(mℓ)| ≤ 2C2

is uniformly bounded in L∞(ΩT ). Finally, the Lebesgue dominated convergence

theorem thus applies and proves even strong convergence of π(mℓ) to π(m) in

L2(ΩT ).

4.2. Notation and function spaces

This section collects the notational and mathematical preliminaries needed for the

discretization of the stray field (Section 4.4) as well as the multiscale contribution

(Section 4.5).

18
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4.2.1. Function spaces and trace operators

By γint
j : H1(Ωj) → H1/2(Γj), we denote the interior trace operator on Γj = ∂Ωj ,

i.e., γint
j = v|Γj for functions v ∈ C(Ωj). Likewise, γext

j denotes the exterior trace

operator. Let H1
∗ (Ωj) :=

{
v ∈ H1(Ωj) : 〈v, 1〉Ωj

= 0
}

and H1
0 (Ωj) :=

{
v ∈

H1(Ωj) : γint
j v = 0

}
.

With the unit normal vector νj on Γj which points from Ωj to R
3\Ωj, we denote

by δint
j resp. δext

j the interior resp. exterior normal derivative with respect to νj .

These are formally defined by the first Green’s formula for functions v ∈ H1(Ω)

with ∆v ∈ L2(Ω). For smooth functions, it holds δint
j v = ∇v · νj = δext

j v.

Let T Ωj

h denote a quasi-uniform and conforming triangulation of Ωj into tetra-

hedra T ∈ T Ωj

h with mesh-size h ≃ diam(T ). We denote by S1(T Ωj

h ) the space of

piecewise affine and globally continuous functions on T Ωj

h . We define the discrete

function spaces S1
∗ (T Ωj

h ) = H1
∗ (Ωj) ∩ S1(T Ωj

h ) resp. S1
0 (T Ωj

h ) = H1
0 (Ωj) ∩ S1(T Ωj

h ).

The triangulation T Ωj

h induces a conforming triangulation of the boundary which

is denoted by T Ωj

h |Γj . Additionally, we define the discrete space P0(T Ωj

h |Γj ) ={
ψ : ψ|E constant for all E ∈ T Ωj

h |Γj

}
of all piecewise constant functions on the

boundary.

Finally, for Banach spaces X and Y , L(X, Y ) denotes the space of all linear and

continuous operators S : X → Y .

4.2.2. Integral operators and mapping properties

The following applications need two integral operators for either Γj, namely the

double-layer potential K̃j and the simple-layer potential Ṽj , which formally read

(K̃jv)(x) =
1

4π

∫

Γj

(x − y) · ν(y)

|x − y|3 v(y) dΓ(y),

(Ṽjφ)(x) =
1

4π

∫

Γj

1

|x − y|φ(y) dΓ(y),

for all x ∈ R
3\Γj. These operators may be extended to bounded, linear operators

K̃j : H1/2(Γj) → H1(R3\Γj) and Ṽj : H−1/2(Γj) → H1
ℓoc(R

3), see, e.g., Refs. 22,

25, 30, 33. There holds

∆K̃jv = 0 = ∆Ṽjφ on R
3\Γj and K̃jv, Ṽjφ ∈ C∞(R3\Γj). (4.1)

Via restriction to the boundary Γj , one obtains

γint
j K̃jv = (Kj − 1/2)v and γint

j Ṽjφ = Vjφ,

where the operators Kj : H1/2(Γj) → H1/2(Γj) and Vj : H−1/2(Γj) → H1/2(Γj)

coincide formally with K̃j and Ṽj , but are evaluated on the boundary Γj . There

hold the following jump properties across Γj , see, e.g., Ref. 30, Theorem 3.3.1:

γext
j K̃jv − γint

j K̃jv = v, δext
j K̃jv − δint

j K̃jv = 0,

γext
j Ṽjφ − γint

j Ṽjφ = 0, δext
j Ṽjφ − δint

j Ṽjφ = −φ.

19
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4.3. Strongly monotone operators

We consider the frame of the Browder-Minty theorem, see Ref. 36, Section 26.2:

Let X be a separable Hilbert space with dual space X∗, A : X → X∗ be a strongly

monotone and hemicontinuous (non-linear) operator, and b ∈ X∗. Under these

assumptions, the Browder-Minty theorem states that the operator equation

Aw = b (4.2)

has a unique solution w ∈ X . Arguing as in the original proof, one has the following:

For h > 0, let Xh ⊆ X be finite dimensional subspaces of X with Xh ⊆ Xh′ for

h > h′ and
⋃

h>0 Xh = X . Let bh ∈ X∗
h. Then, the Galerkin formulation

〈Awh, vh〉X∗×X = 〈bh, vh〉X∗×X for all vh ∈ Xh

admits a unique solution wh ∈ Xh. Provided ‖bh‖X∗

h
≤ M < ∞ for all h > 0, the

sequence of Galerkin solutions is bounded, i.e., ‖wh‖Xh
≤ C < ∞ for all h > 0, and

the h-independent constant C > 0 depends only on M and the coercivity constant

of A. In particular, the sequence {wh}h>0 admits a weakly convergent subsequence

in X with limit w ∈ X . If bh → b strongly in X∗ for h → 0, this limit solves the

operator equation (4.2). Finally, strong monotonicity implies that there even holds

strong convergence wh → w in X of the entire sequence.

This framework is now used in the following lemma which guarantees the as-

sumptions (3.12)–(3.13) of Theorem 3.1 for certain energy contributions:

Lemma 4.1. Suppose that X and A : X → X∗ satisfy the foregoing assumptions.

Let Y be a Banach space and let S, Sh ∈ L
(
X, L2(Ω1)

)
, and R, Rh ∈ L

(
H1−ε(Ω1)×

Y, X∗
)

for some 0 ≤ ε ≤ 1 with

Shx ⇀ Sx weakly in L2(Ω1) for all x ∈ X, (4.3)

Rh(n, y) → R(n, y) strongly in X∗ for all n ∈ H1−ε(Ω1), y ∈ Y , (4.4)

and π := SA−1R : H1(Ω1) × Y → L2(Ω1). For h > 0, n ∈ H1(Ω1), and y ∈ Y ,

define πh(n, y) := Shuh, where uh is the unique solution of

〈Auh, vh〉X∗×X = 〈Rh(n, y), vh〉X∗×X for all vh ∈ Xh. (4.5)

For all y ∈ Y , it then holds that

‖πh(n, y)‖L2(Ω1) ≤ C6 (1 + ‖∇n‖L2(Ω)). (4.6)

for all n ∈ H1(Ω1) with |n| ≤ 1 and for all h > 0. The constant C6 > 0 does

not depend on h and n, but only on A, ‖y‖Y , Ω1, and the operators Sh and Rh.

Moreover, suppose that ‖m−
hk‖L2(H1) + ‖ζ−

hk‖L∞(Y ) ≤ C7 and (m−
hk, ζ−

hk) → (m, ζ)

strongly in L2
(
[0, T ]; L2(Ω1) × Y

)
= L2(L2(Ω1) × Y ) for some subsequence as

(h, k) → (0, 0). Then,

πh(m−
hk, ζ−

hk) ⇀ π(m, ζ) weakly in L2(ΩT ) (4.7)
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for the same subsequence.

Proof. The Banach-Steinhaus theorem implies uniform boundedness of the oper-

ator norms CS := suph>0 ‖Sh : X → L2(Ω1)‖ < ∞ and CR := suph>0 ‖Rh :

H1−ε(Ω1) × Y → X∗‖ < ∞. For fixed n ∈ H1(Ω1) with |n| ≤ 1, y ∈ Y , and

bh := Rh(n, y), this implies

‖bh‖X∗ ≤ CR‖(n, y)‖H1−ε(Ω1)×Y .
(
‖n‖H1(Ω1) + ‖y‖Y

)
=: M < ∞.

Strong monotonicity of A shows

‖uh‖2
X . 〈Auh − A(0), uh〉X∗×X = 〈bh − A(0), uh〉X∗×X

. ‖bh − A(0)‖X∗‖uh‖X .

Thus, we infer with |n| ≤ 1

‖uh‖X . ‖∇n‖L2(Ω1) + |Ω1|1/2 + ‖y‖Y + ‖A(0)‖X∗ . 1 + ‖∇n‖L2(Ω1),

where the hidden constant C > 0 depends only on A, CR, and ‖y‖Y . Consequently,

this proves (4.6) with C6 = CCS .

Next, we show that πh(nh, yh) ⇀ πh(n, y) weakly in L2(Ω1) as h → 0 provided

that (nh, yh) → (n, y) strongly in H1−ε(Ω1)×Y . Assumption (4.4) and the uniform

boundedness of Rh imply that Rh(nh, yh) = Rh(n, y) − Rh

(
(n − nh, y − yh)

)
→

R(n, y) strongly in X∗ as h → 0. Therefore, the Browder-Minty theorem for strongly

monotone operators guarantees uh → u strongly in X , where u = A−1R(n, y) and

uh ∈ Xh solves (4.5) with (n, y) replaced by (nh, yh). The convergence assump-

tion (4.3) and the uniform boundedness of Sh thus show πh(nh, yh) = Shuh =

Shu − Sh(u − uh) ⇀ Su = π(n, y) weakly in L2(Ω1) as h → 0.

Finally, we prove πh(m−
hk, ζ−

hk) ⇀ π(m, ζ) weakly in L2(ΩT ) for a subse-

quence as (h, k) → (0, 0). To that end, we choose sequences hℓ → 0, kℓ → 0 such

that (mℓ, ζℓ) := (m−
hℓkℓ

, ζ−
hℓkℓ

) converges strongly in L2
(
L2(Ω1) × Y

)
to (m, ζ).

According to interpolation theory (see, e.g., Ref. 10, Section 5), interpolation of

L2(ΩT ) = L2(L2) and L2(H1) yields L2(Hs) for all 0 < s < 1. From strong con-

vergence m−
hk → m in L2(L2) and boundedness ‖m−

hk‖L2(H1) . 1, we thus infer

strong convergence m−
hk → m in L2(H1−ε). By extracting a further subsequence

(not relabeled), we may assume that mℓ(t) → m(t) strongly in H1−ε(Ω1) as well

as ζℓ(t) → ζ(t) strongly in Y , for almost all times t. Define πℓ := πhℓ
and let

φ ∈ L2(ΩT ). Then,

〈πℓ(mℓ, ζℓ) − π(m, ζ), φ〉ΩT
=

∫ T

0

〈πℓ(mℓ(t), ζℓ(t)) − π(m(t), ζ(t)), φ(t)〉Ω1
dt.

Due to πℓ(mℓ(t), ζℓ(t)) ⇀ π(m(t), ζ(t)) weakly in L2(Ω1) as ℓ → ∞ for almost

all t ∈ [0, T ], we see pointwise convergence of the integrand to zero. According

to (4.6) and the assumption ‖mℓ‖L2(H1) + ‖ζℓ‖L∞(Y ) . 1, the Lebesgue dominated

convergence theorem thus proves

〈πℓ(mℓ, ζℓ) − π(m, ζ), φ〉ΩT
→ 0 as ℓ → ∞.
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This concludes the proof.

Remark 4.1. (i) Similar arguments as in the proof of Lemma 4.1 reveal that strong

convergence Shx → Sx in (4.3) also results in strong convergence πh(m−
hk, ζ−

hk) →
π(m, ζ) in L2(ΩT ) as h, k → 0.

(ii) The abstract framework applies, in particular, to linear contributions πh = Rh

of the effective field heff , where X = L2(Ω1), Y = {0}, and the operators A = Ah

as well as S = Sh are just the identities. In this case, ζ−
hk = 0 for all (h, k) > 0. In

particular, we may therefore write πh(m−
hk, ζ−

hk) = πh(m−
hk).

(iii) For the multiscale approach, we use Y = L2(Ω2), ζ−
hk = f−

hk, and ζ = f ,

respectively.

Remark 4.2. Provided that R, Rh ∈ L
(
L2(Ω1) × Y, X∗

)
with Rh(n, y) → R(n, y)

strongly in X∗ for all (n, y) ∈ L2(Ω1)×Y in (4.4), the assumptions on the nonlinear

operator A can be weakened: Instead of strong monotonicity, uniform monotonicity

of A is sufficient. Then, ‖bh‖X∗ ≤ CR‖n‖L2(Ω) ≤ CR|Ω|1/2 =: M proves ‖uh‖X ≤ C

for some constant C = C(M) > 0, see Ref. 36, Section 26.2. The remaining part of

the proof of Lemma 4.1 remains unchanged with the formal choice ε = 1.

4.4. Application: Hybrid FEM-BEM stray field computations

In the following, we present the hybrid FEM-BEM approaches of Fredkin and

Koehler, see Ref. 14, and Garćıa-Cervera and Roma, see Ref. 17, for the ap-

proximate computation of the stray field. We show that it satisfies the assumptions

of Lemma 4.1. Given any m ∈ L2(Ω1), the non-dimensional form of (2.8) reads

∆u1 = ∇ · m in Ω1,

∆u1 = 0 in R
3\Ω1,

γext
1 u1 − γint

1 u1 = 0 on Γ1,

δext
1 u1 − δint

1 u1 = −m · ν1 on Γ1,

u1(x) = O(1/|x|) as |x| → ∞,

where the target for our LLG integrator is the stray field π(m) = ∇u1 on Ω1.

4.4.1. Fredkin-Koehler approach

The approach of Fredkin and Koehler (Ref. 14) relies on the superposition

principle

u1 =

{
u11 + u12 in Ω1,

u12 in R
3\Ω1,

(4.8)

where u11 ∈ H1
∗ (Ω1) satisfies

〈∇u11, ∇v〉Ω1
= 〈m, ∇v〉Ω1

for all v ∈ H1
∗ (Ω1) (4.9)
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and u12 = K̃1γint
1 u11 ∈ H1(R3\Γ1). Since the integration of LLG only requires u1

on Ω1, we note that u12 ∈ H1(Ω1) solves

γint
1 u12 = (K1 − 1/2)γint

1 u11 and 〈∇u12, ∇v〉Ω1
= 0 for all v ∈ H1

0 (Ω1). (4.10)

To discretize the equations (4.9)–(4.10), let u11h ∈ S1
∗(T Ω1

h ) be the unique FE

solution of

〈∇u11h, ∇vh〉Ω1
= 〈m, ∇vh〉Ω1

for all vh ∈ S1
∗ (T Ω1

h ). (4.11)

Since an FE approximation u12h ∈ S1(T Ω1

h ) of (4.10) cannot satisfy continuous

Dirichlet data (K1 − 1/2)u11h, we need to discretize them. To that end, let IΩ1

h :

H1(Ω1) → S1(T Ω1

h ) be the Scott-Zhang projection from Ref. 32. Since IΩ1

h is H1-

stable and preserves discrete boundary data, it induces a stable projection IΓ1

h :

H1/2(Γ1) → S1(T Ω1

h |Γ1 ) with γint
1 IΩ1

h v = IΓ1

h (γint
1 v) for all v ∈ H1(Ω1), see, e.g.,

Ref. 5. Let u12h ∈ S1(T Ω1

h ) be the unique solution of the inhomogeneous Dirichlet

problem

γint
1 u12h = IΓ1

h (K1 − 1/2)γint
1 u11h and 〈∇u12h, ∇vh〉Ω1

= 0 for all vh ∈ S1
0 (T Ω1

h ).

(4.12)

The resulting approximate stray field πh(m) = ∇u11h + ∇u12h is indeed covered

by our approach from Section 4.3.

Proposition 4.2. The operator πh(m) = Rh(m) := ∇u11h + ∇u12h defined

via (4.11)–(4.12) satisfies πh ∈ L(L2(Ω1); L2(Ω1)), and convergence (4.4) towards

π(m) = R(m) := ∇u1 holds even strongly in L2(Ω1). In particular, Lemma 4.1 ap-

plies with X := L2(Ω1) and Y := {0} and guarantees the assumptions (3.12)–(3.13)

of Theorem 3.1.

Proof. First, note that the FE solution u11h of (4.11) is a Galerkin approximation

of (4.9). Therefore, stability and density arguments prove ‖u11 − u11h‖H1(Ω1) → 0

as h → 0. Next, we consider the unique solution ũ12h ∈ S1(T Ω1

h ) of the auxiliary

problem

γint
1 ũ12h = IΓ1

h (K1 − 1/2)γint
1 u11 and 〈∇ũ12h, ∇vh〉Ω1

= 0 for all vh ∈ S1
0 (T Ω1

h ).

Note that γint
1 ũ12h = IΓ1

h γint
1 u12. Therefore, the Céa lemma for inhomogeneous

Dirichlet problems (see Prop. 2.3 in Ref. 6) and density arguments prove

‖u12 − ũ12h‖H1(Ω1) . min
vh∈S1(T

Ω1
h

)

‖u12 − vh‖H1(Ω1)
h→0−−−→ 0.

Third, stability of the inhomogeneous Dirichlet problem provides

‖u12h − ũ12h‖H1(Ω1) . ‖γint
1 (u11 − u11h)‖H1/2(Γ1) . ‖u11 − u11h‖H1(Ω1),

and the triangle inequality reveals

‖u12 − u12h‖H1(Ω1) ≤ ‖u12 − ũ12h‖H1(Ω1) + ‖u12h − ũ12h‖H1(Ω1)
h→0−−−→ 0.

23

Multiscale modeling in micromagnetics: Existence of solutions and numerical integration



24 F. Bruckner, M. Feischl, T. Führer, P. Goldenits, M. Page, D. Praetorius, M. Ruggeri, and D. Suess

Finally, the triangle inequality yields

‖πh(m) − π(m)‖L2(Ω1) ≤ ‖∇(u11 − u11h)‖L2(Ω1) + ‖∇(u12 − u12h)‖L2(Ω1) → 0

for all m ∈ X = L2(Ω1). Together with Lemma 4.1, we conclude the proof.

Remark 4.3. Instead of the Scott-Zhang projection IΓ1

h , any Clément-type oper-

ator IΓ
h : L2(Γ1) → S1(T Ω1

h |Γ1) can be employed. The assertion of Proposition 4.2

holds accordingly, see Ref. 18, Section 4.3. We note that Ref. 14 employs nodal

interpolation which is not suitable for the numerical analysis as H1-functions are

not continuous, in general.

4.4.2. Garćıa-Cervera-Roma approach

The approach of Garćıa-Cervera and Roma, see Ref. 17, relies also on the su-

perposition (4.8), where now u11 ∈ H1
0 (Ω1) satisfies

〈∇u11, ∇v〉Ω1
= 〈m, ∇v〉Ω1

for all v ∈ H1
0 (Ω1) (4.13)

and u12 = Ṽ1(m · ν1 − δint
1 u11) ∈ H1

ℓoc(R3). Note that u12 ∈ H1(Ω1) solves

γint
1 u12 = V1(m · ν1 − δint

1 u11) and 〈∇u12, ∇v〉Ω1
= 0 for all v ∈ H1

0 (Ω1). (4.14)

To discretize (4.13)–(4.14), we employ the L2-projection Πh : L2(Γ1) → P0(T Ω1

h |Γ1 )

as well as the Scott-Zhang projection IΓ1

h and solve for u11h ∈ S1
0 (T Ω1

h ) with

〈∇u11h, ∇vh〉Ω1
= 〈m, ∇vh〉Ω1

for all vh ∈ S1
0 (T Ω1

h ) (4.15)

and for u12h ∈ S1(T Ω1

h ) with

γint
1 u12h = IΓ1

h V1(Πh(m · ν1) − ∂u11h/∂ν1), (4.16a)

〈∇u12h, ∇vh〉Ω1
= 0 for all vh ∈ S1

0 (T Ω1

h ). (4.16b)

The resulting approximate stray field πh(m) = ∇u11h + ∇u12h is indeed covered

by our approach from Section 4.3. Unlike the Fredkin-Koehler approach, however,

the numerical analysis is slightly more involved, since the well-posedness of (4.14)

requires at least that the normal trace m · ν1 exists in H−1/2(Γ1) which prevents

to consider m ∈ L2(Ω1) only.

Proposition 4.3. There exists some ε > 0 such that the operator

πh(m) = Rh(m) := ∇u11h + ∇u12h defined via (4.15)–(4.16) satisfies

πh ∈ L(H1−ε(Ω1); L2(Ω1)) as well as convergence (4.4) towards π ∈
L(H1−ε(Ω1); L2(Ω1)), π(m) = R(m) := ∇u1 = ∇u11 + ∇u12. In particular,

Lemma 4.1 applies with X := L2(Ω1) and Y := {0} and guarantees the assump-

tions (3.12)–(3.13) of Theorem 3.1.
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Proof. We argue essentially as in the proof of Proposition 4.2. First, we see that

‖u11 − u11h‖H1(Ω1) . min
vh∈S1

0 (T
Ω1

h
)

‖u11 − vh‖H1(Ω1)
h→0−−−→ 0,

for all m ∈ L2(Ω1). Moreover, for m ∈ H1(Ω1), elliptic regularity for the Dirichlet

problem (4.13) even predicts u11 ∈ H3/2+µ(Ω1) and hence ‖u11 − u11h‖H1(Ω1) =

O(h1/2+µ) for some µ > 0 which depends only on the shape of the polyhedral Lips-

chitz domain Ω1, see, e.g., Ref. 27, Theorem 3.8. By interpolation, these observations

yield the existence of some (small) 0 < ε < 1/2 such that

u11 ∈ H3/2+ε(Ω1) with ‖u11 − u11h‖H1(Ω1) = O(h1/2+ε) for all m ∈ H1−ε(Ω1).

(4.17)

From now on, we assume m ∈ H1−ε(Ω1) and note that, in particular, δint
1 u11 =

∂u11/∂ν1 exists in L2(Γ1). The trace inequality (e.g. Ref. 15, Lemma 3.4) proves

for any face E ∈ T Ω1

h |Γ1 with corresponding element T ∈ T Ω1

h (i.e., E ⊂ ∂T ∩ Γ1)

that

‖δint
1 u11 − ∂u11h/∂ν1‖2

L2(∂T ∩Γ1)

. h−1‖∇(u11 − u11h)‖2
L2(T ) + ‖∇(u11 − u11h)‖L2(T )‖D2(u11 − u11h)‖L2(T ).

With D2u11h = 0 on T , we sum over all elements T ∈ T Ω1

h and obtain

‖δint
1 u11 − ∂u11h/∂ν1‖2

L2(Γ1)

. h−1‖∇(u11 − u11h)‖2
L2(Ω1) + ‖∇(u11 − u11h)‖L2(Ω1)‖D2u11‖L2(Ω1) = O(h2ε).

Together with the continuous inclusion H−1/2(Γ1) ⊆ L2(Γ1), it follows ‖δint
1 u11 −

∂u11h/∂ν1‖H−1/2(Γ1) → 0 as h → 0. Let ũ12h ∈ S1(T Ω1

h ) be the unique solution of

the auxiliary problem

γint
1 ũ12h = IΓ1

h V1(m · ν1 − δint
1 u11) and 〈∇ũ12h, ∇vh〉Ω1

= 0 for all vh ∈ S1
0 (T Ω1

h ).

Again, it holds γint
1 ũ12h = IΓ1

h u12 and hence ‖u12 − ũ12h‖H1(Ω1) → 0 as h → 0.

Stability of the inhomogeneous Dirichlet problem proves

‖ũ12h − u12h‖H1(Ω1) . ‖IΓ1

h V1

(
(1 − Πh)m · ν1 − (δint

1 u11 − ∂u11h/∂ν1)
)
‖H1/2(Γ1)

. ‖(1 − Πh)m · ν1‖H−1/2(Γ1) + ‖δint
1 u11 − ∂u11h/∂ν1‖H−1/2(Γ1).

We already saw that the second term on the right-hand side vanishes as h → 0. For

the first term, a duality argument (see, e.g., Ref. 12, Section 4) proves

‖(1 − Πh)m · ν1‖H−1/2(Γ1) . h1/2‖m · ν1‖L2(Γ1) . h1/2‖m‖H1−ε(Ω1),

where we also used 0 < ε < 1/2 to admit a continuous trace operator γint
1 :

H1−ε(Ω1) → L2(Γ1). Overall, we thus see

‖u12 − u12h‖H1(Ω1) ≤ ‖u12 − ũ12h‖H1(Ω1) + ‖ũ12h − u12h‖H1(Ω1)
h→0−−−→ 0. (4.18)

The combintation of (4.17)–(4.18) concludes ‖π(m) − πh(m)‖L2(Ω1) → 0 as h → 0,

for all m ∈ H1−ε(Ω1).
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R̃ Ã−1 S

Input: m

Input: f

Solve (4.9) to obtain
u11 on Ω1

Solve (4.19) to obtain
u1 on Ω2

Solve (4.22) to obtain

u on Ω2 and δext
2

u2 on Γ2

Solve (4.24) to obtain
u2 on Ω1

Solve (4.20) to obtain
uapp on Ω2

Output: π(m, f) = ∇u2 on Ω2

Fig. 3. Overview on the computation of π(m, f) = ∇u2 on Ω1.

4.5. Application: Multiscale approach for total magnetic field

We aim to apply Lemma 4.1 to the model problem posed in Section 2.1, i.e., the

computation of π(m, f) = ∇u2 on Ω1. In the following, we consider the subprob-

lems needed for the computation of ∇u2 as well as their discretizations. An overview

illustration is given in Figure 3. Throughout this section, we let

• X := H−1/2(Γ2) × H1(Ω2),

• Y := L2(Ω2).

We recall that H−1/2(Γ2) is the dual space of the trace space H1/2(Γ2) and that

H̃−1(Ω2) is the dual space of H1(Ω2), where duality is understood according to the

respective L2-scalar products. In particular, the dual space of X is X∗ = H1/2(Γ2)×
H̃−1(Ω2).

4.5.1. Continuous formulation

To compute ∇u2 on Ω1, we proceed as implicitly outlined in Section 2.1. For a

magnetization m ∈ L2(Ω1), we compute u1 ∈ H1(Ω1) as solution of the stray

field operator on the microscopic part. Recall from Section 4.4 that in R
3\Ω1 ⊃ Ω2

it holds u1 = u12 = K̃1γint
1 u11 with u11 ∈ H1

∗ (Ω1) being the solution of (4.9).

According to (4.1), u1 on Ω2 thus solves the inhomogeneous Dirichlet problem

γint
2 u1 = γint

2 K̃1γint
1 u11 and 〈∇u1, ∇v〉Ω2

= 0 for all v ∈ H1
0 (Ω2). (4.19)

Recall ∇·f = 0 from (2.5), whence
〈
f · ν2, γint

2 v
〉

Γ2
= 〈f , ∇v〉Ω2

for all v ∈ H1(Ω2).

For the auxiliary potential uapp ∈ H1
∗ (Ω2), the non-dimensional weak formulation

of (2.10) reads

〈∇uapp, ∇v〉Ω2
= − 〈f , ∇v〉Ω2

for all v ∈ H1
∗ (Ω2). (4.20)

In the next step, we then compute the total magnetostatic potential u = u1 +

u2 + uapp on the macroscopic domain Ω2. With χ̃(|∇u|) = χ
(
Ms|f − ∇u1 − ∇u2|

)
,
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the non-dimensional form of (2.11) reads

∇ ·
(
(1 + χ̃(|∇u|))∇u

)
= 0 in Ω2, (4.21a)

∆u2 = 0 in R
3\Ω2, (4.21b)

γext
2 u2 − γint

2 u = −γint
2 (u1 + uapp) on Γ2, (4.21c)

δext
2 u2 − (1 + χ̃(|∇u|))∇u · ν2 = f · ν2 − δint

2 u1 on Γ2, (4.21d)

u2(x) = O(1/|x|) as |x| → ∞. (4.21e)

Let V2 : H−1/2(Γ2) → H1/2(Γ2) and K2 : H1/2(Γ2) → H1/2(Γ2) denote the

simple-layer potential and the double-layer potential with respect to Γ2 (see Sec-

tion 4.2.2). The transmission problem (4.21) is then equivalently stated by means

of the Johnson-Nédélec coupling from Ref. 23,

〈(1 + χ̃(|∇u|))∇u, ∇v〉Ω2
−

〈
φ, γint

2 v
〉

Γ2
=

〈
δint

2 u1, γint
2 v

〉
Γ2

−〈f , ∇v〉Ω2
, (4.22a)

V2φ + (1/2 − K2)γint
2 u = (1/2 − K2)γint

2 (u1 + uapp), (4.22b)

for all v ∈ H1(Ω2), see Ref. 4 for the non-linear case and Refs. 23, 31 for the

linear one. The coupling formulation (4.22) provides the total potential u ∈ H1(Ω2)

as well as the exterior normal derivative φ = δext
2 u2 ∈ H−1/2(Γ2). Existence and

uniqueness of the solution (φ, u) ∈ X = H−1/2(Γ)×H1(Ω) of (4.22) hinges strongly

on the material law χ̃ and will be discussed in Section 4.5.4 below.

Since u2 solves −∆u2 = 0 in R
3\Ω2, u2 can be computed by means of the

representation formula

u2 = −Ṽ2δext
2 u2 + K̃2γext

2 u2 in R
3\Ω2 ⊃ Ω1, (4.23)

see, e.g., Ref. 30, Theorem 3.1.6. To lower the computational cost for the later

implementation, we will, however, not use the representation formula (4.23) on Ω1,

but only on Γ1 and solve an inhomogeneous Dirichlet problem instead. It holds

γext
2 u2 = γint

2 u2 = γint
2 (u − u1 − uapp). With φ = δext

2 u2 on Γ2, we obtain

−∆u2 = 0 in Ω1, (4.24a)

γint
1 u2 = γint

1

(
− Ṽ2φ + K̃2γint

2 (u − u1 − uapp)
)

on Γ1. (4.24b)

4.5.2. Discrete formulation

As for the stray field, we solve (4.11) to obtain an approximation u11h ∈ S1
∗(T Ω1

h )

of u11. To discretize (4.19), let u1h ∈ S1(T Ω2

h ) solve

γint
2 u1h = IΓ2

h K1γint
1 u11h and 〈∇u1h, ∇vh〉Ω2

= 0 for all vh ∈ S1
0 (T Ω2

h ). (4.25)

The discrete version of (4.20) reads as follows: Let uapp,h ∈ S1
∗ (T Ω2

h ) solve

〈∇uapp,h, ∇vh〉Ω2
= − 〈f , ∇vh〉Ω2

for all vh ∈ S1
∗ (T Ω2

h ). (4.26)
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For the numerical solution of (4.22), we compute (φh, uh) ∈ Xh := P0(T Ω2

h |Γ2) ×
S1(T Ω2

h ) such that

〈(1 + χ̃(|∇uh|))∇uh, ∇vh〉Ω2
− 〈φh, vh〉Γ2

= 〈∂u1h/∂ν2, vh〉Γ2
−〈f , ∇vh〉Ω2

,

〈V2φh + (1/2 − K2)uh, ψh〉Γ2
= 〈(1/2 − K)(u1h + uapp,h), ψh〉Γ2

(4.27)

for all (ψh, vh) ∈ Xh. Existence and uniqueness of (φh, uh) is discussed in Sec-

tion 4.5.4 below. To discretize (4.24), let u2h ∈ S1(T Ω1

h ) solve

γint
1 u2h = IΓ1

h γint
1

(
− Ṽ2φh + K̃2γint

2 (uh − u1h − uapp,h)
)

〈∇u2h, ∇vh〉Ω1
= 0 for all vh ∈ S1

0 (T Ω1

h ).
(4.28)

4.5.3. Operator formulation

With respect to the abstract notation of Lemma 4.1, the solutions of the prob-

lems (4.19)–(4.20) and (4.25)–(4.26) give rise to the continuous linear operators

R̃, R̃h : H1(Ω1) × L2(Ω2) → H1/2(Γ2) × H̃−1(Ω2),

R̃(m, f ) :=
(
(1/2 − K2)γint

2 (u1 + uapp), (γint
2 )∗δint

2 u1 − ∇∗f
)
,

R̃h(m, f ) :=
(
(1/2 − K2)γint

2 (u1h + uapp,h), (γint
2 )∗∂u1h/∂ν2 − ∇∗f

)
,

(4.29)

where (γint
2 )∗ : H−1/2(Γ2) → H̃−1(Ω2) denotes the adjoint of the trace operator

γint
2 : H1(Ω2) → H1/2(Γ2) and ∇∗ : L2(Ω2) → H̃−1(Ω2) is the adjoint gradient.

Note that R̃, R̃h are also well-defined and bounded operators on L2(Ω1) × L2(Ω2)

and hence by interpolation, for all 0 < s < 1, also on Hs(Ω1) × L2(Ω2).

The left-hand side of the coupling formulation (4.22) gives rise to the non-linear

operator

Ã : H−1/2(Γ2) × H1(Ω2) → H1/2(Γ2) × H̃−1(Ω2) (4.30)

and is then equivalently stated by

Ã(φ, u) = R̃(m, f). (4.31)

Note that the FEM-BEM coupling (4.27) takes the abstract form
〈

Ã(φh, uh), (ψh, vh)
〉

X∗×X
=

〈
R̃h(m, f), (ψh, vh)

〉
X∗×X

(4.32)

for all (ψh, vh) ∈ Xh := P0(T Ω2

h |Γ2 ) × S1(T Ω2

h ). In the subsequent Section 4.5.4, we

comment on the existence and uniqueness of the solutions of (4.31)–(4.32).

Finally, the solution of (4.24) resp. its discretization (4.28) give rise to the con-

tinuous linear operators

S, Sh : H−1/2(Γ2) × H1(Ω2) → L2(Ω1),

S(φ, u) := ∇u2, Sh(φh, uh) := ∇u2h.
(4.33)
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Overall, it holds

π(m, f ) := SÃ−1R̃(m, f ) = ∇u2 and πh(m, f) := Sh(φh, uh) = ∇u2h (4.34)

where (φh, uh) ∈ Xh := P0(T Ω2

h |Γ2 ) × S1(T Ω2

h ) solves (4.27) resp. (4.32).

Remark 4.4. Note that the formal definition of the operator S (resp. Sh) once

again requires the solution of (4.19)–(4.20) (resp. (4.25)–(4.26)) to provide γint
2 (u1 +

uapp) on the right-hand side of (4.24) (resp. (4.28) with according discrete traces).

Theoretically, this can be dealt with by considering the extended operators

R̂
(
m, f

)
=

(
R̃(m, f), γint

2 (u1 + uapp)
)
,

Â
(
φ, u, γint

2 (u1 + uapp)
)

=
(
Ã(φ, u), γint

2 (u1 + uapp)
)

Ŝ
(
φ, u, γint

2 (u1 + uapp)
)

= ∇u2.

Then, Ŝ and R̂ are still linear and continuous. Provided A satisfies the assumptions

of the Browder-Minty theorem for strongly monotone operators, the inverse of Â

is well-defined and continuous so that (an obvious extension of) Lemma 4.1 still

applies.

4.5.4. Well-posedness of Johnson-Nédélec coupling

The following lemma provides sufficient conditions such that the non-linear part

of (4.22) is strongly monotone and Lipschitz continuous (4.36). The elementary

proof is left to the reader.

Lemma 4.2. Let χ̃ : R≥0 → R be a continuous function such that the function

g : R≥0 → R, g(t) = t + χ̃(t)t

is differentiable and fulfils

g′(t) ∈ [γ, L] for all t ≥ 0 (4.35)

with constants L ≥ γ > 0. Then, the (non-linear) operator

A : L2(Ω2) → L2(Ω2), Aw = (1 + χ̃(|w|))w

is Lipschitz continuous and strongly monotone, i.e., there holds

L−2 ‖Au − Av‖2
L2(Ω2) ≤ ‖u − v‖2

L2(Ω2) ≤ γ−1 〈Au − Av, u − v〉Ω2
(4.36)

for all u, v ∈ L2(Ω2).

We stress that the operator Ã from (4.22) resp. (4.30) is not strongly monotone

as, e.g., the left-hand side of (4.22) is zero for (φ, u) = (0, 1). To overcome this

problem, we define the linear operator

L : X∗ → X∗, Lx∗ := x∗ + 〈x∗, (1, 0)〉X∗×X

〈
Ã(·, ·), (1, 0)

〉
X∗×X

, (4.37)
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where 1 ∈ P0(T Ω2

h |Γ2) denotes the constant function. As observed in Ref. 4, Sec-

tion 4, the Johnson-Nédélec coupling equations can then be equivalently rewritten

as follows:

Lemma 4.3. The operator L : X∗ → X∗ from (4.37) is well-defined, linear, and

continuous. Let Ã be the operator from (4.22) resp. (4.30). Define A := LÃ. Let X⋆

be a closed subspace of X = H−1/2(Γ2) × H1(Ω2) with (1, 0) ∈ X⋆. Then, for any

x̃∗ ∈ X∗ and x∗ := Lx̃∗, the pair (φ⋆, u⋆) ∈ X⋆ solves the operator formulation
〈

Ã(φ⋆, u⋆), (ψ⋆, v⋆)
〉

X∗×X
= 〈x̃∗, (ψ⋆, v⋆)〉X∗×X for all (ψ⋆, v⋆) ∈ X⋆

if and only if

〈A(φ, u), (ψ⋆, v⋆)〉X∗×X = 〈x∗, (ψ⋆, v⋆)〉X∗×X for all (ψ⋆, v⋆) ∈ X⋆.

Under the assumptions of Lemma 4.2 with γ > 1/4, the operator A = LÃ is Lip-

schitz continuous and strongly monotone. In particular, it fulfils the assumptions

of the Browder-Minty theorem for strongly monotone operators. In this case, A as

well as Ã are, in particular, invertible, and Ã−1x̃∗ = A−1x∗.

For γ > 1/4, the preceding lemma applies to X⋆ = X = H−1/2(Γ2) × H1(Ω2)

as well as X⋆ = Xh = P0(T Ω2

h |Γ2 ) × S1(T Ω2

h |Γ2 ) and thus proves that (4.31) as well

as (4.32) admit unique solutions.

Finally, we give some examples of material laws χ̃, covered by Lemma 4.3.

Remark 4.5. (i) Consider the material law

χ̃(t) = C8 tanh(C9t)/t for t > 0, χ̃(0) = C8C9

with dimensionless constants C8, C9 > 0. Then, g(t) = t + C8 tanh C9t fulfils (4.35)

with γ = 1 and L = 1 + C8C9.

(ii) According to Ref. 29, it is reasonable to approximate the magnetic susceptibility

in terms of a rational function, e.g.,

χ̃(t) =
C10 + C11t

1 + C12t + C13t2

with certain, material-dependent constants C10, C11, C12, C13 > 0. For typical mate-

rials, it holds (4.35) with γ = 1 and some L > 1 that depends on C10, C11, C12, C13,

see Ref. 29, Table 1.

4.5.5. Convergence Analysis

The main result of this section is the following proposition.

Proposition 4.4. In addition to f ∈ L2(ΩT ), suppose that f ∈ L∞(L2(Ω2)).

Adopt the notation of Section 4.5.3 for the operators R̃, Rh from (4.29), Ã

from (4.30) and S̃, Sh from (4.33). Under the assumptions of Lemma 4.2 with
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γ > 1/4, the operator π := SÃ−1R̃ and its discretization πh from (4.34) satisfy the

assumptions (3.12)–(3.13) of Theorem 3.1.

Proof. With Lemma 4.3, there exists a linear and continuous operator L : X∗ →
X∗ such that A := LÃ is Lipschitz continuous and strongly monotone. It holds

π = SA−1R with R := LR̃ and πh(m, f) = Sh(φh, uh), where (φh, uh) solves with

Rh := LR̃h the variational formulation

〈A(φh, uh), (ψh, vh)〉X∗×X = 〈Rh(m, f), (ψh, vh)〉X∗×X for all (ψh, vh) ∈ Xh.

Therefore, the claim follows from Lemma 4.1 if we prove that there exists some

ε > 0 such that

(i) R̃h(m, f) → R̃(m, f ) strongly in X∗ for all (m, f) ∈ H1−ε(Ω1) × L2(Ω2);

(ii) S̃hx → S̃x strongly in L2(Ω1) for all x ∈ X .

To verify (i), we argue as in the proofs of Proposition 4.2 and Proposition 4.3. First,

elliptic regularity for the Neumann problem (4.9) (see, e.g., Ref. 27, Theorem 3.8)

provides some ε > 0 such that, for m ∈ H1−ε(Ω1), it holds ‖u11 − u11h‖H1(Ω1) =

O(h1/2+ε). Second, recall that u1 = K̃1γint
1 u11 ∈ C∞(Ω2) ⊂ H2(Ω2). Hence, the

inhomogeneous Dirichlet problem (4.9) leads to

‖u1 − u1h‖H1(Ω2) . min
vh∈S1(T

Ω2
h

)

‖u1 − vh‖H1(Ω2) + ‖u11 − u11h‖H1(Ω1) = O(h1/2+ε).

Third, arguing as in the proof of Proposition 4.3, we derive

‖δint
2 u1 − ∂u1h/∂ν2‖H−1/2(Γ2) = O(hε).

Fourth, the discretization of the auxiliary potential guarantees

‖uapp − uapp,h‖H1(Ω1) . min
vh∈S1(T

Ω1
h

)

‖uapp − vh‖H1(Ω1)
h→0−−−→ 0.

By definition (4.29) of the operators R̃ and R̃h, the combination of the foregoing

three convergences proves (i).

The verification of (ii) follows along the same lines. This concludes the proof.

Appendix A. Improved energy estimate

Under some additional assumptions on the general field contribution π and on the

applied field f , as well as on their respective discretizations, we can derive the

following physically meaningful energy estimate. In this section, we neglect any

possible dependence of π and πh on a second quantity ζ.

Proposition A.1. Let π : L2(Ω1) → L2(Ω1) be a linear, bounded, and self-adjoint

operator, satisfying

‖π(w)‖L4(Ω1) ≤ C14‖w‖L4(Ω1) for all w ∈ L4(Ω1) (A.1)
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with a constant C14 > 0. Let πh satisfy

πh(m−
hk) → π(m) strongly in L2(ΩT ) for some subsequence. (A.2)

Let the applied field f ∈ L4(Ω1) be constant in time. Assume that f
j+1
h = f

j
h = fh

for all j, and

fh → f strongly in L2(Ω1). (A.3)

Then, the energy

E (m(t)) :=
Cexch

2
‖∇m(t)‖2

L2(Ω1) +
1

2
〈π(m(t)), m(t)〉Ω1

− 〈f , m(t)〉Ω1
(A.4)

satisfies

E (m(t)) + α‖∂tm‖2
L2(Ωt) ≤ E (m0) (A.5)

for almost every t ∈ (0, T ).

Proof. Given an arbitrary t ∈ (0, T ), let j = 0, . . . , N − 1 such that t ∈ [tj , tj+1).

Let i = 0, . . . , j. From the stability estimate (3.15), we get

E(mi+1
h ) − E(mi

h) ≤ −αk‖vi
h‖2

L2(Ω1) − Cexch(θ − 1/2)k2‖∇vi
h‖2

L2(Ω1)

+
1

2

〈
π(mi+1

h ), mi+1
h

〉
Ω1

− 1

2

〈
π(mi

h), mi
h

〉
Ω1

− k
〈
πh(mi

h), vi
h

〉
Ω1︸ ︷︷ ︸

=:T1

−
〈
f , mi+1

h

〉
Ω1

+
〈
f , mi

h

〉
Ω1

+ k
〈
fh, vi

h

〉
Ω1︸ ︷︷ ︸

=:T2

.

Since π is linear and self-adjoint, straightforward calculations show

T1 = k
〈
π(mi

h) − πh(mi
h), vi

h

〉
Ω1

+
1

2
k

〈
π(mi+1

h − mi
h), vi

h

〉
Ω1

+
1

2

〈
π(mi+1

h + mi
h), mi+1

h − mi
h − kvi

h

〉
Ω1

,

and

T2 = −k
〈
f − fh, vi

h

〉
Ω1

−
〈
f , mi+1

h − mi
h − kvi

h

〉
Ω1

.

Combining the Cauchy-Schwarz inequality with Lemma 3.2, Lemma 3.4, and the

L2-stability of π, we get

k
∣∣〈π(mi+1

h − mi
h), vi

h

〉∣∣ . k‖mi+1
h − mi

h‖L2(Ω1)‖vi
h‖L2(Ω1) . k2‖vi

h‖2
L2(Ω1).

The Hölder inequality, together with assumption (A.1), Lemma 3.3, and Lemma 3.4

yields
∣∣〈π(mi+1

h + mi
h), mi+1

h − mi
h − kvi

h

〉∣∣
≤ C14‖mi+1

h + mi
h‖L4(Ω1)‖mi+1

h − mi
h − kvi

h‖
L4/3(Ω1)

. k2‖mi+1
h + mi

h‖L4(Ω1)‖vi
h‖2

L8/3(Ω1)

. k2‖vi
h‖2

L8/3(Ω1)
.
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The same argument also shows
∣∣〈f , mi+1

h − mi
h − kvi

h

〉∣∣ ≤ ‖f‖L4(Ω1)‖mi+1
h −mi

h−kvi
h‖

L4/3(Ω1) . k2‖vi
h‖2

L8/3(Ω1).

The log-convexity of Lebesgue norms and the Sobolev embedding H1(Ω1) ⊂ L4(Ω1)

yield

‖vi
h‖2

L8/3(Ω1)
. ‖vi

h‖L2(Ω1)‖vi
h‖L4(Ω1) . ‖vi

h‖L2(Ω1)‖vi
h‖H1(Ω1).

Altogether, we thus obtain

E(mi+1
h ) − E(mi

h) + αk‖vi
h‖2

L2(Ω1) − k
〈
π(mi

h) − πh(mi
h), vi

h

〉
Ω1

+ k
〈
f − fh, vi

h

〉
Ω1

. k2
(

‖vi
h‖2

L2(Ω1) + ‖vi
h‖L2(Ω1)‖vi

h‖H1(Ω1)

)
.

Analogously to (3.8b), we define m+
hk ∈ P0(Ik; Vh) by m+

hk(t) := mi+1
h for ti ≤

t < ti+1. Arguing as in Lemma 3.7, one proves that m+
hk → m strongly in L2(ΩT )

for a subsequence. Summing the last estimate over i = 0, . . . , j, we obtain

E(m+
hk(t)) − E(m0

h) + α‖v−
hk‖2

L2(Ωt)

−
〈
π(m−

hk) − πh(m−
hk), v−

hk

〉
Ωtj+1

+
〈
f − fh, v−

hk

〉
Ωtj+1

. k
(

‖v−
hk‖2

L2(Ωtj+1
) + ‖v−

hk‖L2(Ωtj+1
)‖∇v−

hk‖L2(Ωtj+1
)

)
.

Exploiting the available convergence results on m±
hk and v−

hk, the boundedness of√
k‖∇v−

hk‖L2(ΩT ) and ‖v−
hk‖L2(ΩT ) from Lemma 3.6, and assumptions (A.2)–(A.3),

we can use standard arguments with lower semicontinuity for the limit (h, k) →
(0, 0) and derive the desired result (A.5).

Remark A.1. The operator π is linear, L2-bounded and self-adjoint in many

concrete situations, e.g., when it comprises the uniaxial anisotropy contribution

from Section 4.1 and the stray field contribution. In this case π is also well-defined

and bounded as operator π : Lp(Ω1) → Lp(Ω1) for all 1 < p < ∞, see Ref. 26, and

Assumption (A.1) is therefore satisfied. Assumptions (A.2) and (A.3) are slightly

stronger than (3.13) and (3.10), respectively. However, they are fulfilled in many

actual realizations πh and fh, see Section 4.4 and Remark 3.4.
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terfaces, SIAM J. Numer. Anal. 47 (2009), 3451–3463.
32. L.R. Scott, S. Zhang: Finite element interpolation of nonsmooth functions satisfy-

ing boundary conditions, Math. Comp., 54 (1990), 483–493.
33. O. Steinbach: Numerical approximation methods for elliptic boundary value prob-

lems: Finite and boundary elements, Springer, New York, 2008.
34. V. Thomée: Galerkin finite element methods for parabolic problems, Springer, New

York, 2006.
35. R. Verfürth: A review of a posteriori error estimation and adaptive mesh-refinement

techniques, Teubner, Stuttgart, 1996.
36. E. Zeidler: Nonlinear functional analysis and its applications, part II/B, Springer,

New York, 1990.

35

Multiscale modeling in micromagnetics: Existence of solutions and numerical integration




