A self-consistent spin-diffusion model for micromagnetics

Abert, Claas and Ruggeri, Michele and Bruckner, Florian and Vogler, Christoph and Manchon, Aurelien and Praetorius, Dirk and Suess, Dieter (2016) A self-consistent spin-diffusion model for micromagnetics. Scientific Reports, 6 (1). pp. 1-7. 16. ISSN 2045-2322 (https://doi.org/10.1038/s41598-016-0019-y)

[thumbnail of Abert-etal-SR2016-A-self-consistent-spin-diffusion-model-micromagnetics]
Preview
Text. Filename: Abert_etal_SR2016_A_self_consistent_spin_diffusion_model_micromagnetics.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (2MB)| Preview

Abstract

We propose a three-dimensional micromagnetic model that dynamically solves the Landau-Lifshitz-Gilbert equation coupled to the full spin-diffusion equation. In contrast to previous methods, we solve for the magnetization dynamics and the electric potential in a self-consistent fashion. This treatment allows for an accurate description of magnetization dependent resistance changes. Moreover, the presented algorithm describes both spin accumulation due to smooth magnetization transitions and due to material interfaces as in multilayer structures. The model and its finite-element implementation are validated by current driven motion of a magnetic vortex structure. In a second experiment, the resistivity of a magnetic multilayer structure in dependence of the tilting angle of the magnetization in the different layers is investigated. Both examples show good agreement with reference simulations and experiments respectively.