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Abstract: With the advent of high-speed and parallel computing, the applicability of computational
optimization in engineering problems has increased, with greater validation than conventional
methods. Pitch angle is an effective variable in extracting maximum wind power in a wind turbine
system (WTS). The pitch angle controller contributes to improve the output power at different wind
speeds. In this paper, the pitch angle controller with proportional (P) and proportional-integral
(PI) controllers is used. The parameters of the controllers are tuned by computational optimization
techniques for a doubly-fed induction generator (DFIG)-based WTS. The study is carried out on a
9 MW DFIG based WTS model in MATLAB/SIMULINK. Two computational optimization techniques:
particle swarm optimization (PSO), a swarm intelligence algorithm, and a genetic algorithm (GA), an
evolutionary algorithm, are applied. A multi-objective, multi-dimensional error function is defined
and minimized by selecting an appropriate error criterion for each objective of the function which
depicts the relative magnitude of each objective in the error function. The results of the output
power flow and the dynamic response of the optimized P and PI controllers are compared with the
conventional P and PI controller in three different cases. It is revealed that the PSO-based controllers
performed better in comparison with both the conventional controllers and the GA-based controllers.

Keywords: wind turbine system; doubly-fed induction generator; particle swarm optimization (PSO);
genetic algorithm (GA); PI controller; computational intelligence

1. Introduction

Wind energy is the fastest-growing renewable energy technology among other renew-
able energies. The global installed capacity of onshore wind power in 2018 was 542 GW,
which will increase three-fold by 2030 (to 1787 GW) and ten-fold by 2050 (to 5044 GW) [1].
The abundance of clean wind energy on the earth’s surface and the rapid developments in
technology promises such high growth rate. Most wind energy conversion systems (WECS)
integrated into the power grids are variable-speed wind turbine systems (VSWTS), due to
their significant advantages over other wind turbine systems (WTS) [2].

The doubly-fed induction generator (DFIG) is the most popular variable-speed gener-
ator used in WECS. The configuration of VSWTS with DFIG is shown in Figure 1; in such a
configuration, the stator windings of DFIG are directly connected to the grid, and the rotor
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windings are fed through a partially rated power electronic convertor system [3]; usually,
the convertor operates on less power—20–25% of the rated power [4].

Electronics 2022, 11, x FOR PEER REVIEW 2 of 19 
 

 

The doubly-fed induction generator (DFIG) is the most popular variable-speed 
generator used in WECS. The configuration of VSWTS with DFIG is shown in Figure 1; in 
such a configuration, the stator windings of DFIG are directly connected to the grid, and 
the rotor windings are fed through a partially rated power electronic convertor system 
[3]; usually, the convertor operates on less power—20–25% of the rated power [4].  

 
Figure 1. DFIG-based wind turbine model. 

The control system of DFIG has significant importance in achieving good quality and 
maximum power from wind energy at different wind speeds. DFIG-based WTS has high 
nonlinearities and complexities due to unpredictable wind penetrations and a complex 
mechanical to electrical model. To overcome the problems in attaining good quality power 
in uncertain conditions, many nonlinear and adaptive approaches have been made to 
improve the control system. For convertor control, sliding mode control (SMC) is used in 
[5]. The power control of DFIG via output feedback is discussed in [6,7]. A model reference 
adaptive system (MRAS) observer for sensorless control of DFIG is addressed in [8]. The 
perturbation and observation (P&O) method is proposed in [9] to improve power flow 
under fast variations of wind. For maximum power point tracking of DFIG, the grouped 
gray wolf optimizer (GWO) is used in [10].  

Pitch angle control is an essential part of the control system in VSWTS, where rated 
power is determined at rated wind speed. Different control schemes in [11–14] for VSWTS 
are suggested and applied to improve the response and control operations of the system. 

This paper proposed computational optimization techniques to enhance the 
performance of the pitch angle controller by tuning the P and PI controllers used in pitch 
angle control operation. A multi-objective, multi-dimensional error function is 
minimized, not by the weighted sum method used in the previous articulating of 
preference methods in multi-objective optimization (MOO) [15], but rather by selecting 
appropriate error criterion for each objective of the function that depicts the relative 
magnitude of each objective in the error function.  

2. Wind Turbine Model 
A simple model of a wind turbine will extract wind power and convert it into 

mechanical power. The wind power can be computed as [16]: 

31
2windP Avρ=  (1)

where ρ  is air density (1.225 kg/m3 at 15 °C and normal pressure), A is the swept area, 
or area of blades, and v is the wind velocity. 

The mechanical power mechP  is obtained from the wind power windP  and depends 

upon the power coefficient pC  and is defined as [16] 
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The control system of DFIG has significant importance in achieving good quality and
maximum power from wind energy at different wind speeds. DFIG-based WTS has high
nonlinearities and complexities due to unpredictable wind penetrations and a complex
mechanical to electrical model. To overcome the problems in attaining good quality power
in uncertain conditions, many nonlinear and adaptive approaches have been made to
improve the control system. For convertor control, sliding mode control (SMC) is used
in [5]. The power control of DFIG via output feedback is discussed in [6,7]. A model
reference adaptive system (MRAS) observer for sensorless control of DFIG is addressed
in [8]. The perturbation and observation (P&O) method is proposed in [9] to improve
power flow under fast variations of wind. For maximum power point tracking of DFIG,
the grouped gray wolf optimizer (GWO) is used in [10].

Pitch angle control is an essential part of the control system in VSWTS, where rated
power is determined at rated wind speed. Different control schemes in [11–14] for VSWTS
are suggested and applied to improve the response and control operations of the system.

This paper proposed computational optimization techniques to enhance the perfor-
mance of the pitch angle controller by tuning the P and PI controllers used in pitch angle
control operation. A multi-objective, multi-dimensional error function is minimized, not
by the weighted sum method used in the previous articulating of preference methods in
multi-objective optimization (MOO) [15], but rather by selecting appropriate error criterion
for each objective of the function that depicts the relative magnitude of each objective in
the error function.

2. Wind Turbine Model

A simple model of a wind turbine will extract wind power and convert it into mechan-
ical power. The wind power can be computed as [16]:

Pwind =
1
2

ρAv3 (1)

where ρ is air density (1.225 kg/m3 at 15 ◦C and normal pressure), A is the swept area,
or area of blades, and v is the wind velocity.

The mechanical power Pmech is obtained from the wind power Pwind and depends
upon the power coefficient Cp and is defined as [16]

Pmech =
1
2

CpπR3v3 (2)
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where Cp is a function of tip speed ratio λ and pitch angle β and is defined as [17]

Cp(λ, β) = 0.5176
(

116
λi
− 0.4β− 0.002β2.14 − 5

)
e
−21
λi + 0.0068λ (3)

where β is the pitch angle, and tip speed ratio λ is defined as

λ =
ωrR
Va

(4)

where ωr is the rotational speed of the wind turbine rotor in p.u. R is the radius of the
swept area in m and Va is the speed of the wind and λi is expressed as

λi =
1

λ + 0.08β
− 0.035

β3 (5)

The Cp determines, how much wind power can be extracted from an air stream and
its maximum value is defined by the Betz limit, which states that only 59.3% of the power
from an airstream can be extracted. Practically, wind turbines have Cp up to 50%.

3. Pitch Angle Control

Pitch angle control is the easy way to regulate the aerodynamic pressures on the wind
turbine rotor blades when wind speed is beyond the rated speed [18]. It enables servo
operations which adjust the pitch of the blade according to wind velocity to extract optimal
wind power. For DFIG-based wind turbines, different pitch angle controller designs have
been proposed in [19–22].

Pitch angle control is achieved using P and PI-controllers that feed the reference pitch signal
to the actuator to enable the servo motor and change the pitch angle by the desire value [23].
Figure 2 shows an open-loop pitch angle control model with a rate-limited actuator.
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Figure 2. Conventional pitch angle control model for DFIG−based WTS.

Two error signals, e1 = (ωr −ωre f .) and e2 = (Pmeas. − Pre f .), are connected to P and
PI controllers, respectively. e1 is the difference between the generator rotor speed (ωr) and
its reference value (ωre f .) and e2 is the difference between the measured turbine system
power (Pmeas.) and the reference power (Pre f .). The controllers use proportional and integral
gains to process the error signals. Kp1 is the P-controller gain, referred to as pitch control
gain. Kp and Ki are the PI-controller gains, referred to as pitch compensation gains.
The controllers process the error signals to generate a reference pitch signal.

The system is limited as:

β =

{
00 ≤ β ≤ 27

dβ
dt = 100

(6)

For a better dynamic response of the pitch angle controller, the parameters Kp1, Kp,
and Ki must be tuned properly; but due to the non-linearity and high complexity of the
system, it is very difficult to find the optimal values of these parameters traditionally [24].
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Several computational optimization techniques can be used to find the optimal values of
these parameters.

4. Computational Optimization Techniques

Modelling, simulation, and computational optimization are the three requirements in
modern-design practices. Optimization techniques are used in all quantitative disciplines of
the contemporary world [25]. Computational optimization techniques are used for finding
or selecting the best possible solution from a set of possible solutions. Different algorithms
for optimization have been developed and applied since the inception of computational
optimization.

The most popular algorithms for optimizing nonlinear and high complexity problems
are particle swarm optimization (PSO) and genetic algorithm (GA). These algorithms are
overviewed as:

4.1. Particle Swarm Optimization

PSO was developed by Kennedy and Eberhart in 1995 [26]. PSO is a stochastic
optimization technique that is based on population and which virtually imitates bird
flocking or fish schooling behaviours. PSO searches for the best possible solution from
a number of moving particles. Each particle has a position in the problem space and
represents a potential solution. The particles can be represented via a position vector X.
The velocity of the moving swarm particles in the problem space can be represented via
the velocity vector V. At each time, X is utilized to compute the fitness/objective function
f (X). Every particle keeps track of its best position, which is represented via pbest (personal
best). The best position among the entire swarm is also tracked and represented via gbest
(global best). The positions of the particles in each iteration t are updated as follows:

X(t + 1) = X(t) + V(t + 1) (7)

The velocities of the particles in each iteration t are updated as follows;

V(t + 1) = ωV(t) + r1 ϕ1(pbest(t)− X(t)) + r2 ϕ2(gbest(t)− X(t)) (8)

In the velocity update equation, ω is the inertia, and r1 and r2 are random numbers
which are uniformly distributed within the range of 0 and 1; ϕ1 and ϕ2 are acceleration
coefficients. The velocity V is limited by [Vmin, Vmax]. PSO can be utilized for single, as well
as for multi-objective nonlinear optimization problems [27]. The algorithm is terminated
once the optimal solution is found to the desired accuracy or a certain number of iterations
are met. The flow diagram of the PSO algorithm is depicted in Figure 3.
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4.2. Genetic Algorithm

Genetic algorithms are inspired by the processes involved in natural evolution, which
follows the Darwinian principle of the ‘survival of the fittest.’ The GA simulates the
principle of survival of the fittest amongst individuals over a consecutive generation. Each
generation has a population of individuals represented by character strings. Each individual
represents a point in the problem space and a potential solution. The individuals in the
population go through the process of evolution. The individuals compete for resources
and mates. The individuals that perform well will stand out and reproduce more than
others. From the individuals that perform well, genes will propagate so that higher-quality
offspring are produced in the future. Thus, each successive generation’s quality is improved.
The process of evolution is comprised of three stages, i.e., selection, crossover, and mutation,
as depicted in the flow diagram of Figure 4. The crossover and mutation process is scaled
by defining the crossover and mutation probabilities.

Generally, binary string is used in GA to represent a problem solution, and for that pur-
pose ‘encoding’ is very crucial. It has a major impact on the performance of GA. For binary
representation, the determination of number of bits is very important.

The length of a binary string for an integer number x ∈ {a, b} is given by:

L > log2(b− a)

The binary representation of any integer number x ∈ {a, b} can be expressed as:

x = m×
(

CL−1 ∗ 2L−1 + · · ·+ C0 ∗ 20
)
+ a

where m is the given accuracy, C is the coefficient and L is the length of a binary string.
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5. Optimal Pitch Angle Control

To find the optimal values of the control parameters, the pitch control gain (Kp1)
and pitch compensation gains (Kp and Ki) of the pitch angle control system model using
optimization techniques, the objective or fitness function f (X) must be defined. A schematic
diagram of the optimum pitch angle control is presented in Figure 5. Generating a reference
pitch signal is a multi-task operation in the control model, as it utilizes two error signals
e1 and e2 which are processed by the P and PI controllers, respectively. A multi-objective,
multi-dimensional function is designed to obtain a Pareto-optimal solution. The function is
comprised of two objectives:

f1(X) = (ωr −ωre f .)
f2(X) = (Pmeas. − Pre f .)

(9)

Minimize : f (Xi) =
[

f1(Xi) f2(Xi)
]

subject to : Xi(min) ≤ Xi ≤ Xi(max)
(10)

where X =
[

Kp1 Kp Ki
]
.
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This multi-objective error function contours a multi-objective optimization (MOO)
problem. In MOO problems, Pareto optimality is tricky to attain. The weighted sum
method is extensively used for MOO to achieve a Pareto-optimal solution, which reflects
decision-making preferences [15]. However, to narrate the true presumptions, different
weights for multiple objectives are difficult to specify.

Contrary to the conventional weighted sum method, which is used for the implemen-
tation of MOO, this approach proposes implementing MOO without specifying weights to
different objectives; instead, the relative magnitude and importance of each objective in the
objective function is reflected by selecting appropriate range and error criterion.

To minimize the error, there are different error criteria. The well-known error criteria
are MAE, IAE, ITAE, ISE, and ITSE. These criteria are defined as in Table 1:

Table 1. Error criteria.

Error Criteria Definition Mathematical Formulation

MAE Mean of Absolute Error 1
N ∑

i
|ei|

IAE Integral of Absolute Error
T∫
0
|e| dt

ITAE Integral of Time Absolute Error
T∫
0

t · |e| dt

ISE Integral of Square Error
T∫
0

e2 dt

ITSE Integral of Time Square Error
T∫
0

t · e2 dt

In Table 1, e represents an error, T is the total simulation time, t represents a time-step,
and i represents the error-index.

There is no specific priority of any criterion over others in terms of performance. Their
performance may vary from application to application [28]. It is good practice to check all
criteria and make the selection on a performance basis.

For each objective, the error criterion is selected with a minimum performance value.
The error function is minimized as the accumulative projection of both objectives with the
corresponding variable.

Minimize : f (Xi) = w1 ∗ f1(Xi) + w2 ∗ f2(Xi) (11)

The weighing factors are eliminated by selecting w1 = w2 = 1. Instead, the error
criterion for each objective is selected based on its performance value, which depicts the
relative magnitude of each objective in the function. The range of the corresponding
variables of each objective is also set to reflect the relative importance during evaluation.
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The fitness/objective function to be evaluated by the optimization algorithm is defined as:

Minimize : f (Xi) =
∫ T

0
t.
(

ωr −ωre f

)2
dt + mean(|Pmeas − Pre f |) (12)

where
[
Kpi Kp Ki

]
=


Kpi(min) ≤ Kpi ≥ Kpi(max)
Kp(min) ≤ Kp ≥ Kp(max)
Ki(min) ≤ Ki ≥ Ki(max)

(13)

6. Results and Discussion

The optimization was performed on a 9 MW DFIG-based wind farm model in MAT-
LAB/SIMULINK. The simulation data of the wind turbine system is given in the Appendix A, at
the end of the paper, in Tables A1–A4. The parameters related to different regulators in the WTS
are given in Table A5. The algorithms’ specific parameters are tabulated in Tables A6 and A7 of
Appendix A.

The control system model used in the wind turbine simulation is based on the report
presented in [23] for GE 1.5 MW and 3.6 MW WTS; the model is simplified for impact
studies, and it has certain limitations. The improved or optimized pitch angle controller in
this study shows the applicability of optimization techniques in modelling such complex
systems. Results in this paper provide evidence of the potential implications of optimization
techniques like PSO and GA in electrical power systems.

The results are observed in three different cases. The graphs shown compare the results
of the model with conventional P and PI, PSO-optimized, and GA-optimized controllers.
The convergence of PSO and GA are also compared and shown.

Initially, in steady state, the wind turbine is rated 0.9 p.u of its rated power, provided
that the wind speed remains constant at 15 m/s, the pitch angle is 8.7◦, and the generator
speed is 1.2 p.u. Nominal wind speed for maximum Cp of this model must be between
6 m/s and 30 m/s. The pitch angle controller’s operation has the maximum angle of 27◦

and the maximum rate of change of the pitch angle is 10◦/s. The simulation runs for
10 s with a sampling time of Ts = 5 × 10−5 s. Ts is reduced to observe the control system
dynamic performance over relatively short periods of times.

The dynamic simulation results emphasize the pitch angle control dynamics, as they are
moderately fast and have a significant impact on the system. Pitch angle control is a function
of turbine power and generator speed, and this combination results in different operating
conditions. In different scenarios, when the system is addressed by optimization, the dynamic
response is relatively more satisfactory as compared to the system without optimization.

6.1. Case 1

When wind speed remains the same, i.e., 15 m/s and the system is under normal
conditions, meaning there is no fault, the traction in dynamic response is similar for all
types of controllers, but the transition from a transient state to steady state is comparatively
fast, with a noticeable amount for optimized controllers. Although the system is operating
under normal conditions, the optimization algorithms managed the evaluation of the error
functions to their minimum and tuned the controller parameters to optimal values.

Figure 6 shows the system response in Case 1. The system response is faster using
the PSO-optimized controller than using the GA-optimized or conventional controller.
By minimizing the settling time of the pitch angle controller response, the pitch angle value
of 8.7◦ for the wind speed of 15 m/s is achieved in a shorter time using the PSO-optimized
controller, as depicted in Figure 6a. Consequently, the generator speed and output power
are improved with the optimized controllers, as shown in Figure 6b,c, respectively, whereas
Figure 6d shows variations in the active power. The PSO-optimized controller stands out
in rapidly achieving the steady active power.
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6.2. Case 2

When the voltage abruptly changes to 0.5 p.u., it causes oscillation on the DFIG output
power. In this case, a fault is introduced, but only for a very small interval at t = 0.03 s
to t = 0.13 s, which causes transient oscillation, whereas wind speed is kept constant at
15 m/s. Transient oscillations have a significant impact on the dynamic response, and the
system response is robust when such events occur. While these faults are associated with
the electrical control of the system, the response of the optimized pitch angle controller
is fast, as can be seen in Figure 7a, due to the generator speed error being subjected to
optimization. Because the dynamics of the electrical control system are extremely quick
to deal with electrical faults and no controlling variable of pitch control is involved, the
optimized values of the controller parameters are the same as obtained in Case 1 and as
shown in Table 2.
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Table 2. P and PI controllers’ parameter values: original and optimized by the GA and PSO algorithms.

Algorithm Parameters

Kp1 Kp Ki

Case 1
Original 150 3 30

GA 121.93 3.86 37.65
PSO 136.64 4.79 40.76

Case 2
Original 150 3 30

GA 121.93 3.86 37.65
PSO 136.64 4.79 40.76

Case 3
Original 150 3 30

GA 185.73 32.73 92.48
PSO 168.10 39.12 33.79

The optimized model performs better than the conventional model. The error induced
in the generator speed settles to a minimum value rapidly in case of the PSO optimized
controller, comparatively, as visible from Figure 7b,c, which shows that the system’s active
power precisely follows the reference power line for all the controllers, but the PSO based
controller has a better settling response. Figure 7d shows the active power variations
attained by the three controllers.

6.3. Case 3

When wind variations are introduced, the controller modifies the blade pitch. The pitch
angle controller actuator is rate limited, and there is a time constant associated when
translating the controller signal to mechanical output. For fast wind gusts, the controller
response is appropriate, but sluggish due to the time constant. In this case, the model
inherits the fault from the previous case, causing the initial overshoot. The wind variations
are very fast, and hence, the dynamics of conventional and optimized controllers are
observed for comparative system response. The wind is varying, for example, from 0 to 2 s,
the wind speed is 6 m/s, from 2 to 6 s, the wind speed is 25 m/s, and from 6 to 10 s, the
wind is at 15 m/s, as shown in Figure 8.

As shown in Figure 9a, the pitch angle remains zero for lower wind speeds and rises
to a maximum value of 27◦, when wind speed changes to a much higher value. The pitch
angle of 8.7◦ is achieved when the wind speed changes to nominal value. The dynamic
response of the pitch angle controller with fast wind variations is improved with the PSO-
optimized model. The PSO-optimized model shows that it controls the output power flow
more efficiently than do the GA-optimized model or the original model, as depicted in
Figure 9b–d.

The convergence curves for GA and PSO for all three cases have been shown in
Figure 10a–c, respectively. The convergence curves evaluate the performance of the op-
timization algorithm. PSO performed better than GA in all three cases and achieved
minimum fitness values in each case; this is shown in Table 2. Hence, more optimal val-
ues of controller parameters and better system response are achieved in all cases for the
PSO-optimized controller.

The performance criteria defined in Table 1 are calculated for the error functions f1(X)
and f2(X) and tabulated in Table 3 for the three cases. It is obvious from Table 3 that ITSE
has minimum values for f1(X), and MAE has minimum values for f2(X). Prior knowledge
of best performance criteria in MOO eliminates articulating weightage to each objective
during optimization.
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Table 3. Performance evaluation based on different error criteria.

Objective
Function MAE IAE ITAE ISE ITSE

Case 1
f1(X) 0.0052 0.1158 0.2876 0.0115 0.0028
f2(X) 0.0330 0.3309 0.7010 0.0419 0.0458

Case 2
f1(X) 0.0116 0.1163 0.2809 0.00505 0.00293
f2(X) 0.0383 0.3839 0.6805 0.06371 0.04582

Case 3
f1(X) 0.1595 0.9200 4.3958 0.7445 0.0920
f2(X) 0.2003 2.0034 7.7171 1.6095 0.5734
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Table 2 shows the parameter values for the original system and the system optimized
using the GA and the PSO algorithms.

Table 4 shows the optimal values of the objective function defined in (12) for the
three cases. For the minimum value of the objective function, the optimization algorithms
perform better. The initial values of the function are corresponding to the original values
of the controllers’ parameters, as shown in Table 3. These values are attained by running
the objective function as in (12), without optimization, and selecting original controller
parameters as optimal.

Table 4. Best objective values.

f(X) Initial GA PSO

Case 1 0.035922 0.01365 0.01030
Case 2 0.041325 0.03264 0.02010
Case 3 0.38295 0.37115 0.35752
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7. Conclusions

Computational optimization techniques have been used for improving the dynamic
response of the pitch angle controller in three different cases. Using PSO and GA, the
parameters of the pitch angle controller are optimized.

From the results observed in three different cases, it is concluded that computational
optimization is effective in improving the overall response of the system. However, these
results are subject to a better implementation of optimization algorithms and a good choice
of optimization techniques. PSO is found to be more suitable than GA for this specific
application. The results also improved the control of the variables using pitch angle
control. The pitch angle controller is more effective in controlling the output power and
generator speed during wind variations than during a faulty condition. The response of
the controller is improved in all three cases by optimizing the parameter values of the pitch
angle controller.

The proposed methodology is evidently very efficient for optimizing parameters in
the system design, although it is limited for adaptive control schemes because imple-
menting optimization techniques with this approach requires deep analysis and manual
selections for optimal solutions, which contradicts the concept of adaptive control in real
time applications.
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Appendix A

This section presents the parameter used for wind turbine and associated components
in this simulation. Table A1, Table A2, Table A3, Table A4, Table A5, Table A6, and Table A7
shows the parameters for wind turbine, drive train, generator, converter, controller, PSO
and GA algorithm respectively.

Table A1. Turbine Data.

Mechanical output power (W) 1.5 × 106

Wind speed at Cp (max) (must be b/w 6 m/s and 30 m/s) 15
Initial wind speed (m/s) 15

Table A2. Drive Train Data.

Wind turbine inertia constant: H 4.32
Shaft spring constant refers to the high-speed shaft (p.u) 1.11

Shaft mutual damping (p.u) 1.5
Turbine initial speed (p.u) 1.2
Initial output torque (p.u) 0.83
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Table A3. Generator data.

Nominal power, PN (VA) 1.5 × 106

VLL: [Vstator (rms) Vrotor (rms)] (Volts) (575, 1975)
Frequency (Hz) 60

Stator [R L] (p.u) (0.023, 0.18)
Rotor [R L] (p.u) (0.016, 0.16)

Magnetizing inductance Lm (p.u) 2.9
Inertia constant, friction factor, and pair of poles [H F P] (0.685, 0.01, 3)

Table A4. Converter data.

GSC maximum current (p.u) 0.8
Grid-side coupling inductor [L, R] (p.u) (0.3, 0.003)

Nominal DC bus voltage (Volts) 1150
Line filter capacitor (Q = 50) (VAR) 120 × 103

DC bus capacitor (F) 10,000 × 10−6

Table A5. Control parameters.

DC bus voltage regulator gains [Kp Ki] (8, 400)
GSC current-regulator gains [Kp Ki] (0.83, 5)

Speed regulator gains [Kp Ki] (3 0, 0.6)
RSC regulator gains [Kp Ki] (0.6, 8)

Q and V regulator gains [Ki(VAR) Ki(volt)] (0.05, 20)
Pitch controller gain [Kp] (150)

Maximum pitch angle 27
The maximum rate of change of the pitch angle (Deg./s) 10

Table A6. PSO parameters.

ω 0.9
ϕ1 2
ϕ2 2

Population size 5
Maximum iterations 50

Table A7. GA parameters.

Selection Stochastic

Crossover probability 0.8
Mutation probability 0.05

Population size 5
Generations 50
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