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Beam dynamic study of a Ka‑band 
microwave undulator and its 
potential drive sources
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Colin G. Whyte1 & Adrian W. Cross1,2

Microwave undulators (MUs) have great potential to be an alternative solution to permanent magnet 
undulators in a free electron laser (FEL) when shorter undulator periods are required. In this paper, 
the factors that affect the choice of the high‑power drive sources were studied via a Ka‑band cavity‑
type MU with a corrugated waveguide proposed for the CompactLight X‑ray FEL. They include the 
technology of the high‑power vacuum electronic devices, the quality factor of the MU cavity that was 
demonstrated by prototyping a short section of the MU structure, and the beam dynamic study of the 
electrons’ trajectories inside the MU. It showed that at high beam energy, a high‑power oscillator is 
feasible to be used as the drive source. At low beam energy, the maximum transverse drift distance 
becomes larger therefore an amplifier has to be used to minimize the drift distance of the electrons by 
controlling the injection phase.

Since the free-electron laser (FEL) was first demonstrated by John Madey at Stanford in  19771, its capability in 
producing high-power ultrashort-wavelength, and spatially coherent radiation opened various applications in 
biophysical and materials science, surface studies, chemical technology, medical applications, and solid-state 
physics. FELs with higher average power, higher repetition rate and shorter wavelengths at the X-ray frequency 
range have been in operation in recent years. They allow exploration of new studies in various fields of science 
that were not feasible  before2,3.

The undulator is an essential component in an FEL. It interacts with the relativistic electrons to generate 
coherent radiation. Traditionally, an undulator is made of periodic permanent  magnets4,5. The radiation wave-
length produced by a permanent magnet undulator (PMU) is given by

where �u is the undulator period, which is the same as the period of the magnet, γ is the relativistic factor, and θ 
is the observation angle. k is the undulator strength parameter defined by k = 0.0931 B0[T]�u[mm] . Meanwhile, 
the gain of an FEL is determined by the dimensionless Pierce parameter ρ , which is

where J is the Bessel function factor, Ie is the electron peak current, IA=17 kA is the Alfven current and σ is the 
RMS transverse size of the electron  beam4.

Equation (1) shows short wavelength radiation can be achieved by either increasing the beam energy or reduc-
ing the undulator period. For example, to achieve 1Ȧ (12.4 keV) radiation, the Swiss-XFEL has a beam energy 
of 5.8 GeV and an undulator period of 15  mm6. An acceleration section with a total length of 440 m is used to 
achieve the required beam energy. Higher beam energy requires a longer acceleration section, which is costly. 
The use of a short period undulator enables a low energy beam to produce radiation of a certain wavelength as 
compared to a longer period undulator which would require a higher energy beam. From Eq. (2), lower beam 
energy will also help to increase the Pierce parameter. An undulator with a short period and a high magnetic 
field is of great importance for a compact X-ray FEL facility. The state-of-the-art PMU used in the Swiss-FEL has 
a magnetic field strength of 1.29 T at the period of 15 mm. Due to the limit of the physical size of the permanent 
magnets, it is challenging to reduce the period of a PMU while keeping a large beam aperture and maintaining 
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a high magnetic field. Superconducting magnets and cryogenic permanent magnets that can achieve higher 
magnetic fields attract great research interest and have made significant progress in recent  years7–9.

The electromagnetic (EM) wave naturally has a periodic magnetic field. It can be used as an undulator if a 
suitable EM mode is chosen. One of the big advantages of the EM undulator is the relatively large aperture for the 
electron beam. The beam aperture can be of the same order as the period of the EM undulator, which is physically 
not possible in a PMU where the aperture must reduce as the magnet period reduces to achieve a reasonable 
magnetic field. The short undulator period of the EM undulator can be achieved through operating at a high 
frequency. A conceptual design showed that the laser-driven undulator could generate X-ray radiation with a 
MeV-level electron  beam10. The challenge is the electron bunch requires ultralow-emittance and ultrashort bunch 
length. Another advantage of the EM undulator is the fast-electrical tuning capability. The magnetic field strength 
can be adjusted by the drive power, and the polarization can be controlled by the polarization of the input wave.

In the microwave frequency range, such as ∼ 10 GHz, its undulator period is close to the state-of-the-art PMU. 
A metallic cavity structure that generates a periodic transverse magnetic field through a standing wave was used 
in earlier  studies11. A MU that employed a rigid rectangular waveguide at 2.856 GHz was developed to prove 
the operating principle in the 1980s. It achieved a magnetic field Bu of 4.5 mT, resulting in a k factor of 0.2412. 
Its performance was limited by the high-power microwave source and microwave breakdown. Recent progress 
of the MU demonstrated a Bu of 0.65 T and an undulator period of 13.9 mm operating at 11.424  GHz13. At a 
higher frequency of 91.392 GHz, a special MU structure was also designed to maintain a large beam aperture 
radius of 1.2  mm14.

In this paper, the power level needed to drive the MU and the potential high-power microwave sources to 
achieve multi-MW output power were investigated. Further detailed parameters were obtained from the design 
and the prototype of a MU operating at 36 GHz for CompactLight XFEL R&D15–17 are presented. The feasibil-
ity of using an oscillator as the drive source was also numerically studied from the beam dynamics inside the 
designed MU.

Power needed and potential high‑power microwave sources to drive a MU
The electron beam in a MU interacts with the backward wave to generate short wavelength  radiation12,18–20. 
The backward wave exists in a cavity as a standing wave or a waveguide as a traveling wave. Therefore, the MU 
can be classified as a cavity-type or waveguide-type  MU21–23. For the waveguide-type MU, in the ideal case, the 
entire EM wave energy is confined within the region of the beam aperture Rb in radius. Assuming a planer wave, 
the relation between the input power P, energy W inside the MU, the magnetic field B, as well as the effective 
interaction length Leff  are given by

where f is the operating frequency, L is the length of the undulator, νb and νwave are the velocity of the electron 
beam and the wave, respectively. The magnetic field as a function of the input power for a waveguide-type 
undulator, or the flying-type undulator, is

In a cavity-type MU, at the balanced state where the input power is equal to the Ohmic loss, W = Q0P/(2π f ) . 
The magnetic field and the effective interaction length are

GW-level power is required to achieve a 1.0 T equivalent magnetic field strength for the flying-type undula-
tor with Rb = 1 mm, while MW-level input power could reach a similar field strength when a high Q cavity is 
used. The flying-type undulator can have a certain frequency bandwidth (equivalent to continuously tuning the 
undulator period), while the cavity-type MU can only operate at discrete frequencies due to the high Q factor. 
However the effective interaction length is shorter in the flying-type undulator and its one undesired feature 
is the magnetic field along the wave propagation direction will taper due to the Ohmic loss in the waveguide.

The cavity-type MU is more attractive in experiments due to the better availability of the MW-level drive 
sources compared with the GW-level sources. The experimental setup of the MU is shown in Fig. 1. The electron 
bunch generated from a photocathode RF electron gun will be accelerated by the linac and pre-modulated in 
a modulator for better interaction with the MU. The MU will be driven by a high-power microwave amplifier 
through a low-loss transmission  line24.

The choice of the drive source is determined by the techniques of the high-power microwave sources (mainly 
the vacuum electronic devices) at different operating frequencies, the Q factor that the MU structure can achieve, 
as well as the dynamic of the electron bunch in the MU. Possible high-power microwave sources to drive the 
cavity-type MUs at different frequencies and the output power efficiencies are listed in Table 1. In X-band or 
lower frequencies, MW-level RF sources such as klystrons and magnetrons are commercially available and widely 
used to drive the accelerator structures. The SLAC klystron can achieve an output power of 75 MW at 11.424 
 GHz25 and has been used in MU experiments. To drive shorter period MUs, higher frequency high-power RF 
sources are therefore more interesting for the future development of the MU. However as the operating frequency 
increases, the output power from a conventional klystron or magnetron drops dramatically. The gyro-devices, 
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based on the cyclotron resonant maser (CRM) instability and with larger dimensions of the interaction circuit, 
can achieve high output power at higher  frequency33,34. A gyroklystron amplifier operating at 36 GHz was 
designed to generate 3 MW output with a pulse width of 2 µs and a repetition rate of 1  kHz35. Higher output 
power from a gyroklystron has been demonstrated in pulsed mode using a coaxial interaction  circuit26. At the 
higher frequency range over 100 GHz, the gyrotron oscillator with an overmoded interaction circuit can achieve 
1 MW continuous output power at 170 GHz and larger power (5 MW) in the pulsed mode of  operation31. The 
Cyclotron Auto-Resonance Maser (CARM), which is also a member of the gyro-device family, can generate 
high power at higher frequencies however it requires a high quality electron beam at MeV  energy36. The IAP in 
Russia has demonstrated 30 MW output power at 35.7 GHz with an efficiency of 10% in short pulse  mode28. At 
high frequency, a CARM operating at 250 GHz with 0.5 MW output power was also investigated for the electron 
cyclotron resonance heating (ECRH) system for the DEMO fusion  reactor32. Another advantage of using the 
gyrotrons as the drive source for the cavity-type MU is that different modes can be excited, enabling step tuning 
of the undulator period. The high power dual frequency gyrotron, for instance, can operate at either 105 GHz 
or 140 GHz through switching the external magnetic field, while maintaining ∼ 1 MW CW output  power37.

Amplifiers were used in the existing MU experiments. However, in the practical realization of the high-power 
microwave sources above Ka-band, the oscillators such as gyrotrons are less challenging compared with the 
amplifiers, such as gyroklystrons or gyrotron travelling wave amplifiers, due to the shorter interaction circuits, 
no need for the input coupling structures and the higher interaction efficiency. In the following sections, the 
power requirement is further investigated from a practical design of a MU cavity operating at 36 GHz. And the 
feasibility of an oscillator as the drive source is studied by investigation of the electron bunch dynamics in the MU.

Key parameters of the 36 GHz MU cavity
The fundamental differences between a permanent magnet undulator and a microwave undulator have been 
studied and presented in Refs.17,23. In the cavity-type MU, the relativistic electrons see both electric and magnetic 
fields. If the microwave undulator operates at the desired TE mode with Ez = 0 and an appropriate electric field 
polarization with Ey = 0 , the electron’s motion along the x axis can be written

where E0 is the peak electric field strength in the MU cavity. Zw and ς are the wave impedances in the cavity and 
free space, respectively. Equation (6) contains two terms. The first term is the force from a backward traveling 
wave, which has an opposite propagating direction to the electron bunch and the second term is the force of a 
forward traveling wave. From Eq. (6), it can be seen that the side effects of the MU include the undesired modula-
tion of the electrons due to the forward traveling wave and the axial electric field strength if Ez  = 0 . To minimize 
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Figure 1.  Experimental setup of the microwave undulator.

Table 1.  Potential drive sources for MUs.

Frequency Sources Specifications

X-band Klystron 11.424 GHz, 75 MW, 55%25

Ka-band

Gyroklystron 35.4 GHz, 15 MW, 33%26

Gyroklystron 30.0 GHz, 15 MW, 40%27

CARM 35.7 GHz, 30 MW, 10%28

Gyrotron 35.0 GHz, 250 MW, 10%29

W-band Gyrotron 94.4 GHz, 5.6 MW, 23%30

D-band
Gyrotron 170 GHz, 2 MW, 48%31

CARM 250 GHz, 20 MW, 20%32
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the impact of side effects on the performance of the MU, there are a few criteria for the MU cavity design that 
need to be taken into account. To achieve a high Q factor, the operating mode will have the maximum field 
strength at the beam path (normally at the cavity center) and minimum field strength on the waveguide wall to 
reduce the Ohmic loss. The TE-like mode is preferred to maximize the transverse magnetic field and avoid the 
axial electric field modulating the electron beam. Also to reduce the effect of the forward wave components of 
the standing wave, the impedance of the forward wave should be close to the vacuum impedance. This means the 
cavity structure should be overmoded and the operating frequency should be far away from the cut-off frequency 
of the operating mode in the waveguide of the main body.

The quasi-optical HE11 mode, existing in a circularly corrugated waveguide, suits all of these requirements 
well. With proper geometry parameters, the HE11 mode has a high similarity with the Gaussian mode which has 
Ez = 0 . Therefore it is also called a quasi-optical mode. In the numerical simulations, the Ex component field 
strength is ~620 times larger than the Ez field strength. In a FEL, the interaction between the electron bunch and 
the Ex field is small, around 0.1% . The Ez component is very small compared with the electron energy therefore it 
can be ignored. MUs operating using an HE11 mode have been designed to operate at different  frequencies13,14,17. 
An MU operating at 36 GHz was designed for the EU CompactLight XFEL. The corrugated waveguide was 
designed based on the surface impedance approach, and the coupler structure was designed based on the empiri-
cal equations derived from FDTD simulations. Using these two approaches a scalable design was achieved at 
different operating frequencies and different undulator lengths (different period numbers of the regular cor-
rugation sections). More details can be referred to  in16,17. Its main properties are shown in Table 2. When the 
MU structure with an overall length of ∼ 1 meter was driven by a 50 MW input power, the equivalent magnetic 
field was 1.25 T and the undulator period was 4.34 mm. At the same equivalent magnetic field, the drive power 
needed is nearly proportional to the length of the MU cavity. Simulation results showed the coupler structure 
had a larger Ohmic loss compared with the regular corrugated waveguide section. The Q factor increased as the 
number of regular corrugation sections of the MU structure increased. A lower drive power will lead to a lower 
k value and the FEL will require a longer MU for interaction to achieve the saturated output radiation. For better 
visualizing the field inside the MU, Fig. 2a shows the transverse electric field and the electric and magnetic fields 
along the axis at 72 periods of the regular corrugation sections.

The manufactured MU cavity will have a smaller Q factor due to the surface roughness and the machining 
tolerance. This results in a higher input power to maintain the same equivalent magnetic field. To investigate the 
differences between the design and manufactured Q values, prototypes of the MU cavity with 72 regular periods 
were manufactured. Both the electroforming method and direct machining were used as shown in Fig. 3. In the 
electroforming method, the aluminium mandrel, see Fig. 3a, a negative of the corrugated surface, was directly 
machined from a solid rod using a CNC lathe. Copper was electrodeposited on the mandrel to a minimum 
radial thickness of 4 mm. The aluminium material was removed in a sodium hydroxide solution resulting in the 
copper corrugated waveguide. While the corrugated waveguide was directly machined using a CNC lathe. The 
electroforming method allows the manufacture of a long MU structure in a single piece, which helps to improve 
the vacuum sealing and reduce the tolerance in the assembly. While the direct machining will require joining 
a few corrugated waveguide sections into one piece due to the limited length of the machining tool. The other 
parts of the MU cavity, including the end cap and the coupler, were directly machined using a CNC lathe. All 
these components were assembled and measured using a Vector Network Analyser (VNA).

The measurement is shown in Fig. 3c, the resonance frequency was 35.967 GHz and the Q factor was 53540 for 
the corrugated waveguide made by the electroforming method. And the values were 35.970 GHz and 71940 for 
the direct machining method. Both of the resonance frequencies were close to the designed value with an error 
of less than 0.14%, which indicates the geometrical tolerance is small. The frequency can be slightly increased 
by machining off a small length of the corrugated waveguide ( ∼ 0.1 mm) without significantly changing the 
field pattern and the Q factor. The electroforming method has a poorer surface roughness compared with direct 
machining, and both Q factors were smaller than the simulations. Further electropolishing techniques or using 
diamond tools to directly machine the undulator may help to improve the surface finish and achieve a higher 
Q factor. The HE11 mode has a much higher Q factor compared with the other adjacent modes, which was 
also confirmed from the eigenmode simulations using CST microwave studio. The frequency separation of the 
operating mode was about 0.02 GHz. An additional method to improve the Q factor is to cool down the MU to 
a low temperature, or machine the MU cavity from superconducting  material38. The prototype of the Ka-band 
MU indicates a high Q factor can be achieved close to the designed value, and will not dramatically increase the 
power needed to drive the MU.

Table 2.  Key parameters of the 36 GHz cavity-type microwave undulator.

Operating mode HE11

Operating frequency, f (GHz) 36.02

Q factor, Q 91380

Undulator period, �u (mm) 4.34

Equivalent magnetic field, Bu (T) 1.25

Input power (MW) 50

Overall length (mm) 1048

Undulator parameter, k 0.49
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Electron trajectories in the MU
The electrons in a MU will be modulated by both the transverse electric and magnetic fields. The dynamics of 
the electrons were therefore studied to avoid the electrons striking the cavity wall since the electric field is large. 
The maximum drift distance of the electrons will also limit the minimum beam aperture and affect the required 
drive power of the MU. The motion of a relativistic electron in the electric and magnetic fields is given by

When the interaction efficiency of the FEL is low, the energy loss of the electrons in the undulator is small 
and was ignored in the calculation. If the space-charge force of the electron bunch is ignored then the trajecto-
ries of the electrons can be solved numerically using the electric and magnetic fields exported from the cavity 
simulations. The trajectories of the electrons inside the MU cavity with a total length ∼ 1 m were calculated. The 
�E and �B fields were 3D distributions exported from the eigenmode simulations. Their axial fields were similar to 
Fig. 2b however with more regular periods.

Figure 4 shows the results at a beam energy of 5.5 GeV. The maximum drift distance was nearly proportional 
to the length of the MU, which limits the maximum length of the MU that can be used. The drift distance on the 
x-axis is much larger than the y-axis due to the much stronger field strength. Therefore, the motion in the y-axis 
can be neglected, and only Eq. (8) needs to be solved. Equation (7) can be further simplified with v = c based on 
the fact that the beam energy is large in high-frequency FELs, and Ex , By are more than 2 orders of magnitude 
larger than Ey , Ez and Bx , Bz , respectively, for a linearly polarized wave. Only the motion in the x-axis needs to 
be solved from the equation

where ϕ is the phase difference between the microwave field and the injected electrons. Ex(t = 0) , and By(t = 0) 
are the electric and magnetic field components in the MU. The results from calculations using Eqs. (7)–(8) were 
in good agreement. The detailed trajectories showed a small modulation component with a long period, which 
corresponds to the forward wave component in the cavity. The modulation period matches the long radiation 
period modulation of �ul = �g�u/(�g − �u) , which is 103.4 mm for the 36 GHz MU.

The maximum drift distance at the exit of the MU is shown in Fig. 5. At high beam energy such as 5.5 GeV, the 
maximum drift distance is only 0.03 mm. In this case, a high-power oscillator, which is much easier to achieve 
the required power compared with an amplifier, can be used as the drive source. At lower beam energy, the drift 
is larger due to the smaller γ value. At beam energy of 250 MeV, the maximum drift distance is 0.6 mm, which is 
still less than the aperture radius 2.0 mm of the 36 GHz MU. A high-power oscillator may still work. However a 
high-power amplifier that can synchronize the phase between the injected electron beam and the electromagnetic 
field inside the MU is preferred. The simulations showed that the drift distance can be minimized by choosing 
proper injection phases ϕ . For the designed 36 GHz MU, minimum drift distances can be achieved if ϕ = 41◦ or 
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Figure 2.  The electric field pattern of the MU cavity with 72 periods of regular corrugation sections (a), and the 
magnetic and electric fields on-axis (b).
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Figure 3.  Machined structures of the Ka-band MU by (a) electroforming, (b) direct machining, and (c) the 
measurement results.
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221◦ . In the cases of beam energy lower than 250 MeV or a longer undulator structure, high-power amplifiers 
have to be used as the drive sources.

Electron trajectories and FEL radiation simulated by SPECTRA 
The electron trajectories in the MU taking into account the FEL interaction were simulated using SPECTRA 39,40 
with an equivalent static spatial magnetic field profile of the HE11 mode in the MU. This also allows simulating 
the photon flux of the FEL radiation at the same time. Using t = z/(βc) in Eq. (8) gives

The equivalent spatial magnetic field profile along the z axis becomes

The equivalent on-axis transverse magnetic field at the optimal injection phase was imported into SPECTRA 
as the user-defined light source. The electron bunch parameters listed in Table 3 were used in the  calculations15. 
The flux densities and the photon energies are shown in Fig. 6, as well as the results at lower electron energies. 
The MU was able to generate a similar level of photon energy at lower beam energy. For example, photon energy 
of 17.4 keV can be generated with a 3.0 GeV electron energy, compared with a 5.5 GeV electron energy used 
for a state-of-the-art PMU. Similar photon fluxes will be generated by the MU and PMU if they have the same 
period length and number along with peak transverse magnetic fields. It is challenging for the MU to achieve a 
higher photon flux while it is relatively easy for the PMU through increasing the undulator period number since 
its magnetic field is determined by the magnet structure itself. However for the MU, the Ohmic loss increases 
proportionally to the number of periods. At the fixed driving power, the longer the undulator, the smaller the 
peak transverse magnetic field will be. The drive power will be the major factor to limit the photon flux generated 
from MU. One possible solution can be operating multiple MUs driven by separate microwave sources. This is 

(9)
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Figure 4.  Trajectories of the electrons with 5.5 GeV energy at different phase shifts ϕ inside the MU.

Figure 5.  The maximum drift distance as a function of phase shift ϕ at different beam energies.
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feasible for the amplifiers using drive sources such as klystrons and gyroklystrons. However it will be a challenge 
to phase synchronise the microwave radiation in each MU using oscillators such as the gyrotron.

Figure 7 is the result at 3.0 GeV beam energy at the optimal injection phase, which clearly shows the effect 
in each part of the MU structure. The wave is cut off in the beam tunnel therefore the drift distance linearly 
increases due to the beam emittance. The electrons were then modulated by the field at the coupler section and 
had periodic oscillation at the regular corrugation section. The long period seen in Fig. 7 corresponds to the 
long radiation period which is the same as the previous analysis. The maximum drift distance was about 0.6 µm 
which also agreed with the value solved from Eq. (8).

Discussion and conclusion
Microwave undulator (MU) has the advantage of short undulator periods by operating at high frequency, which 
is attractive for compact X-ray FEL facilities. MW-level microwave sources as the driver and high Q factor MU 
cavities are required for realization of a practical cavity-type MU. In this paper, the potential, and a few factors 
that affect the choice of, high-power microwave sources to drive the cavity-type MUs were discussed. The high 
Q cavity was achieved by the low-loss HE11 mode existing in the corrugated waveguide, and prototypes of a short 

Table 3.  Electron bunch parameters.

Maxmimum beam energy (GeV) 5.5

Peak current (A) 5000

Normalized emittance (mm mrad) 0.65

RMS energy spread 0.50%

Repetition rate (Hz) 100

Figure 6.  Radiation flux density as the function of radiation energy at different electron beam energies.

Figure 7.  The trajectory of the electron calculated by SPECTRA.



9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:7071  | https://doi.org/10.1038/s41598-022-11101-2

www.nature.com/scientificreports/

section of the Ka-band MU were machined and tested. The eigen frequency from the measurement is close to 
the simulation. The Q factor is lower due to the imperfect surface roughness. However it is feasible to achieve the 
design value and ensure no higher drive power is needed by cooling down the cavity structure or machining the 
cavity from superconducting material. Simulation results of the electron trajectories in the MU showed that at 
low beam energy, the maximum drift distance of the electrons in the transverse direction is larger. By controlling 
the injection phase, a close to zero drift distance can be achieved, which requires a high-power amplifier as the 
drive source. At high beam energy, the drift distance is small therefore an oscillator, which is less challenging 
compared with an amplifier at the same power level, can be used as the drive source.

For the designed 36 GHz MU, the maximum drift distance was 0.6 mm when the beam energy was 250 MeV. 
It was smaller than the undulator aperture radius of 2 mm therefore an oscillator, such as a gyrotron oscillator, 
can be used as the drive source to demonstrate the soft X-ray radiation in a 250 MeV linac. It also opens the 
feasibility to operate the MU at different modes and step tuning of the radiated photon energy at similar power 
levels when driven by a high-power multiple-frequency gyrotron.

It should be noted that currently no MW-level Ka-band microwave sources can be used directly to fully 
demonstrate the performance of the 36 GHz microwave undulator. Different from the well-developed perma-
nent magnetic undulator, the microwave undulator is still in the research stage and the major barrier is the lack 
of available microwave drive sources. One reason for the slow progress in this area has been the lack of urgent 
demand through its application. No commercial sources with sufficient stability and long life time has been 
produced. In recent years, it is encouraging to see increased demand for high-power microwave/millimeter-wave 
sources, in different applications such as to drive harmonic linearizer for X-ray FELs, or High Q cavities in the 
search for dark photons, and for heating and current drive in fusion plasma. We hope these demands will bring 
long-term support to the vacuum electronics community, and allow stable and reliable multi-MW Ka-band 
gyroklystrons and gyrotrons to be built and tested for MU applications.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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