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Abstract—Within state-of-the-art gesture-based upper-limb 
myoelectric prosthesis control, gesture recognition commonly relies 
on the classification of features extracted from electromygraphic 
(EMG) data gathered from the amputee’s residual forearm 
musculature. Despite best efforts in broadly maximizing gesture 
recognition accuracy, there does not yet exist a feature-classifier 
combination accepted as best-practice. In turn, this work 
hypothesizes that no single feature-classifier combination can 
consistently maximize accuracy across subjects, positing instead 
that control schemes should be personalized to the individual. To 
investigate this hypothesis, the study employed the 40-subject, 49-
gesture Ninapro DB2 to compare the performance of 7 different 
historic, more recent and state-of-the-art feature sets, in 
combination with 5 machine learning classifiers commonly seen 
within EMG-based pattern recognition literature. The results 
demonstrate the ability of Linear Discriminant Analysis (LDA) to 
marginally exceed other more computationally intensive classifiers 
in terms of mean accuracy, while the feature set which maximized 
the highest proportion of individuals’ accuracies was shown to vary 
with both classifier choice and gesture count. 

I. INTRODUCTION

Commercial upper-limb myoelectric prostheses have 
afforded amputees a level of independence not previously 
attainable. Despite these benefits, the intuitiveness of such 
devices is often restricted as they rely on simplistic amplitude-
based on-off control schemes, detecting simply open or close 
gestures. Although the users’ degrees-of-freedom may be 
expanded through the use of state-machines or accompanying 
smartphone applications, this has the potential to lead to device 
abandonment as the actions performed by the user are not 
directly mimicked by their prosthesis. It is through pattern-
recognition that one might address these issues, increasing the 
degrees-of-freedom available to user while ensuring control 
remains intuitive, with lab-based investigations showing the 
ability to accurately classify as many as 52 unique hand gestures 
[1], [2]. Despite the success of these studies, there is not yet an 
agreed upon best practice when classifying these highly 
stochastic, multi-channel electromyographic (EMG) signals. 

Traditional EMG pattern-recognition (EMG-PR) generally 
follows a set processing sequence; the signal is first pre-
processed to remove undesirable frequencies (motion artefacts, 
mains interference, high frequency noise etc.), then windowed 
as instantaneous EMG amplitudes present little information 
about the action performed by the user. At this stage, feature 
extraction occurs, allowing the data corresponding to different 
hand gestures to be more easily differentiated during 
classification [3], [4]. It is the selection of these features which 
has been shown to have the largest bearing on classification 
accuracy [5]. As technology has advanced, more complex, 
higher dimensional feature sets have been explored, with time 
and time-frequency domain features showing the greatest 
success [6]. Despite this, there still exist a myriad potential 
feature combinations that can enhance prosthesis control. 

When comparing the accuracies achieved by similar feature 
sets across studies, performance can vary significantly with data 
acquisition, pre-processing and windowing protocols being 
inconsistent. Despite this, computationally low time domain 
feature sets, including that proposed by Phinyomark et al. [6], 
have shown the ability to outperform similar notable time 
domain sets, including the classic Hudgins features which 
represent the closest thing to a standard set within EMG-PR [9], 
[12]. Not included within this comparison were more complex 
features such as the EMG histogram and the notable time-
frequency wavelet features which have been implemented to 
varying degrees of success [11], [13]. The inclusion of these 
within the feature vector have been shown to improve 
performance beyond that of more traditional feature sets, albeit 
only marginally [2], [11]. There also exist more novel feature 
sets such as the Temporal-Spatial Descriptors (TSD) which have 
seen limited use within literature yet have shown the potential to 
outperform all sets mentioned prior, albeit when used with a 
reduced number of gestures and a limited subject pool [14].  

Aside from the choice of feature set, another important 
consideration is the classification algorithm that interprets the 
feature vector to identify the gesture performed by the user. 
Despite the apparent importance of this consideration, D. Tkach 
has stated that ‘the type of classifier used does not significantly 
affect the classification performance’ [8]. While this has been 
shown to be true in part, the widely used, computationally low 
Linear Discriminant Analysis (LDA) has shown potential in 
outperforming other common machine learning algorithms, 
including Support Vector Machines (SVM) and k Nearest 
Neighbors (kNN), when classifying 5 gestures using solely time 
domain features [9]. In a similar study, incorporating an 
increased number of features within both the time and time-
frequency domain to classify 4 unique hand gestures, LDA again 
showed the ability to outperform more complex linear and non-
linear artificial neural networks [10]. In contrast, alternative 
studies employing increased gesture counts have concluded that 
LDA can be outperformed by SVM, kNN as well as Random 
Forests (RF) which maximised the mean classification accuracy 
[2] even when compared with state-of-the-art Convolutional
Neural Networks (CNNs) [11] that have, on occasion,
outperformed more traditional classification schemes [1].

Despite the successes reported when using dimensionally 
heavy feature sets and computationally intensive classifiers, 
there still remains a large gap between what is technically 
feasible and what is fit for implementation. It is for this reason 
that work must continue to explore classical, computationally 
low EMG-PR techniques with a look to understanding which 
feature set, given the classifier, individual and the number of 
gestures they seek to employ, will maximize their gesture 
recognition accuracy. With this in mind, in selecting the feature 
sets and classification algorithms for this investigation, it was 
important to balance novelty and historical relevance. 
Furthermore, this paper will seek to not only investigate how the 
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mean classification accuracy varies across classifiers and feature 
sets, but also which feature sets for each classifier provide the 
highest accuracy for the greatest majority of subjects, as well as 
how these results change as the number of gestures varies.  

II. METHODOLOGY 

This study explored the performance of 7 different feature 
sets classified by 5 common machine learning algorithms. These 
feature sets, described in detail within section II.A., were the 
Hudgins, Phinyomark, Wavelet Packet Transform (WPT), 
Histogram (Hist), Phinyo-Hist (P-H), Time Domain Descriptor 
(TDD) and TSD sets. The chosen classification algorithms were 
LDA, Quadratic Discriminant Analysis (QDA), RF, SVM and 
kNN. All investigations were conducted using MATLAB 
R2020b with EMG data sourced from the publicly available 
Ninapro DB2 [2], [7]. The creation of this dataset is described 
within the paper by M. Atzori et al. [7] and features 6 
consecutive repetitions of 49 unique hand gestures performed by 
40 intact subjects. These signals were windowed at 200 ms with 
a 75 ms overlap. [2],  

In generating the results of Section III., all feature-classifier 
combinations were used for the full 49 gestures. To then allow 
for the reduction of this gesture count, the top performing ‘n’ 
gestures in terms of their mean true positive rate across all 
subjects for each specific feature-classifier combination were 
chosen to represent the gesture subset to be subsequently 
classified. From here, each feature-classifier combination’s 
performance was assessed for their specific top performing 8, 
16, 24, 32 and 40 gestures. 

A. Feature Selection & Extraction 

To allow for a suitable comparison in terms of novel feature 
set performance, the low-complexity standard time domain set 
proposed by Hudgins [12], alongside the similarly low-
complexity Phinyomark (or Phin) set, were selected for 
inclusion within the study. The Hudgins set is comprised of the 
mean absolute value (MAV), zero crossings (ZC), slope sign 
changes (SSC) and waveform length (WL), with Phinyomark’s 
differing in that, following an investigation into individual 
feature redundancy [6], ZC is replaced by the Wilson amplitude 
(WAMP) and 4th order autoregressive coefficient (AR4). 
Hudgins extraction was performed with reference to the 
equations presented by D. Tkach [8], with the additional features 
(AR4, WAMP) required by Phinyomark’s set, extracted in line 
with the paper by A. Phinyomark [6]. 

The WPT, used by Englehart et al. [15], has been shown to 
outperform other time-frequency domain features within EMG-
PR. This set was computed using a db45 wavelet at a 
decomposition level of 3 with statistical features then extracted 
from each of the 8 end nodes to form the final WPT feature set. 
These features were MAV, WL, variance, sum of absolute 
values, simple square integral, standard deviation, RMS natural 
logarithm and base 10 RMS logarithm. 

The EMG histogram, representing the signal amplitude 
distribution across the temporal window [11], has shown the 
greatest success when paired with other time domain features 
[8]. As such, this study paired the histogram with the Hudgins 
and Phinyomark sets to form the Histogram (Hist) and Phinyo-
Hist (P-H) sets. For implementation, the EMG histogram 
distributed the signal amplitudes within each window across 20 
bins in line with literature [2]. 

Beyond these, the TSD set proposed by Khushaba et al. [16] 
involves the extraction of TDD features estimating the signal’s 

power spectrum. TDD features are extracted from each EMG 
channel, as well as the differences between each channel, 
representing how muscles’ relationships change over time [14]. 
It is the concatenation of the correlation coefficients computed 
from the TDD features which forms the TSD set. These were 
computed with reference to the methods outlined by Khushaba 
et al. [16]. 

B. Classifier Implementation 

The five machine learning classifiers  included within this 
study represented those seen most commonly within EMG-PR 
literature. For LDA and QDA, as well as SVM using the default 
linear kernel, the standard Mathworks implementation was 
followed. For RF, a uniform class probability was assumed and 
a forest size of 50 was chosen to allow for suitably high 
accuracies while ensuring computational complexity and the 
probability of overfitting remained low. For kNN, various 
distance functions were assessed in terms of their mean 
classification accuracy before settling on the city block distance 
function with a cluster count equal to the number of classes. To 
confirm the accuracy of the results, a technique akin to leave-
one-out cross-validation was employed. Here, 2 non-adjacent 
repetitions, out of the 6 sequential repetitions of each unique 
gesture, were placed into the testing set and the remaining 4 into 
the training set [2]. This allowed 10 cross-validation iterations, 
ensuring data diversity and improving confidence in results. 

C. Dimensionality Reduction 

When using higher dimensionality feature sets, to ensure 
that long processing times are not incurred, a dimensionality 
reduction technique is often implemented, with the most 
common within EMG-PR being Principal Component Analysis 
(PCA) [17], [18]. With PCA, the data is projected onto 
orthogonal vectors within a new coordinate frame using 
eigenvector decomposition where successive components 
maximize variance, allowing one to explain the majority of the 
data’s variance in a reduced number of dimensions [19]. One 
alternative technique is Spectral Regression (SR) [20], [21], 
whose potential has been shown by Khushaba et al. when 
applied to the TSD set [16]. In contrast to PCA, SR’s 
computation does not involve the eigen-decomposition of the 
feature matrix, instead decomposing the subspace learning into 
two-steps: graph embedding for response learning and 
regression for projective function learning [20]. This reduces the 
computational complexity over PCA, making it better suited for 
real-time control. 

In deciding the dimensionality reduction method for each 
feature set, subjects 1-5 were taken as a representative subgroup 
with all 49 gestures investigated. In each case, all feature-
classifier combinations were explored following SR, PCA and, 
aside from when computation was prohibitively expensive, no 
dimensionality reduction. Results showed that, for the low 
dimensionality Hudgins and Phinyomark’s sets, no 
dimensionality reduction maximized performance. In all other 
cases, SR outperformed PCA both in terms of accuracy and 
runtime. In response, SR was used for all feature sets with the 
exception of Hudgins and Phinyomark’s, where no 
dimensionality reduction was used, and WPT, where PCA was 
employed as this is the standard method used with WPT within 
literature.  
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III. RESULTS 

The full results from this study are presented within Figure 
1 where it can be seen that, for the full 49 gestures, the 
combination of kNN and TDD produced the highest mean 
classification accuracy of 66.0%, closely followed by RF and 
Phinyomark at 65.6%. This was the sole gesture count 
investigated where LDA did not achieve the maximum 
classification accuracy, as indicated by Figure 1b. At 8 gestures, 
LDA and P-H obtained the highest mean accuracy of 85.9% but, 
despite this, only 14% of subjects achieved their highest 
accuracy with P-H compared to 56% maximizing their accuracy 
with Phinyomark’s set. From Figure 1c, it is clear how the utility 
of select feature sets can vary dramatically with gesture count, 
with Phinyomark’s set accounting for 97% of subjects’ maxima 

at 49 gestures with RF reducing to just 11% with 8 gestures 
despite its consistently high classification accuracy when 
compared to the other feature sets. 

Beyond this, the results indicate how feature set 
performance can vary drastically across classifiers, where the 
mean accuracies of the TDD and TSD sets decreased from 
66.0% and 64.9% with kNN, to 6.3% and 6.5% with SVM, when 
using the full 49 gestures. A similar effect, albeit to a lesser 
extent, was seen with WPT whereby the accuracies achieved by 
LDA and QDA remained similar regardless of gesture count, 
while a marked reduction in accuracy was seen when used with 
RF, SVM or kNN, with kNN causing the greatest decrease in 
accuracy.  

Figure 1. Results from the feature-classifier investigation as gesture count varies. a), mean classification accuracy across all subjects for 49 and 8 gestures 
with standard deviation error bars. b), mean classification accuracies across subjects for each feature set as gesture count is reduced from 40 to 16. c), % of 

subjects that presented their highest accuracy with each feature set across all gesture counts. 
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IV. DISCUSSION 

This study acted to explore how the optimal feature-
classifier combinations used for gesture recognition varied with 
gesture count. In general, the results act to partially support D. 
Tkach’s claim that ‘the type of classifier used does not 
significantly affect classification performance’ [8]. This held 
true for Hudgins and Phinyomarks sets, while the results indicate 
that certain classifiers are wholly unsuitable for select feature 
sets. As such, to propose a revision to the original statement, for 
select feature sets, classifier choice affects performance 
minimally, while for others the incorrect choice of classifier has 
the potential to dramatically reduce classification accuracy. 

When evaluating general performance, LDA was seen to 
have the highest mean classification accuracy across all 
combined feature sets. This, in combination with it providing the 
highest mean accuracy for each gesture count other than 49, well 
exemplifies its usefulness within EMG-PR, making it the clear 
choice for evaluating the general performance of novel feature 
sets regardless of the gesture count. This being said, more online 
control studies are needed before being able to say conclusively 
that LDA represents the optimal choice of classifier for real time 
prosthesis control. 

Looking broadly at the results, it is clear how the overall 
mean classification accuracy can be misleading if used with the 
goal of predicting which feature-classifier combination will 
maximize a subject’s accuracy. As an example, if one has 
decided to use SVM to classify 49 gestures and used solely the 
results of Figure 1a to drive their feature set choice, WPT would 
likely be discounted due to its low accuracy which was greatly 
exceeded by the Hudgins, Phinyomark and P-H sets. Despite 
this, 17% of all subjects obtained their highest accuracy with 
WPT, while 11% and 0% obtained their maximum accuracy with 
P-H and Hudgins respectively. This is likely due to the fact that, 
in terms of the information they encode, there is a large overlap 
between Hudgins, Phinyomarks, the Histogram and P-H sets.  

This, in turn, exemplifies the need for a more personalized 
approach when constructing an individual’s control scheme as, 
even if one feature set performs poorly in general, if the 
information it encodes is unique then there is potential for it to 
outperform other more robust feature sets that showed a higher 
mean classification accuracy. The hope is that these results can 
help guide classifier and feature selection for future studies, with 
the goal of understanding how these results translate to real time 
performance such that the intuitiveness of control in upper-limb 
myoelectric prostheses might be improved and the number of 
degrees of freedom available to the end-user are maximized. 

V. CONCLUSION 

In conclusion, this study acted to confirm the idea that no 
single feature-classifier combination explored here can 
consistently maximize gesture recognition accuracy across 
subjects, exemplifying the need for a more individualistic 
approach when considering amputee usability. This being said, 
the power of LDA has again been shown, offering consistently 
high classification accuracies for feature sets where other 
classifiers struggled, making it the clear choice in the assessment 
of novel feature sets. Moving forward, increased resources 
should be spent exploring the best methods of maximizing 
individual online accuracies while ensuring computational 
complexity remains low. This should in turn help in promoting 
further research focused on the clinical translation of EMG-PR 

prosthesis control, a commercially underutilized technology 
with huge potential in enriching the daily lives of upper-limb 
amputees.  
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