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Abstract: Featured in low-speed and high-torque operation, outer-rotor switched reluctance motors
(OSRMs) have the potential to be widely deployed in low-speed commuter and logistics vehicle
applications. In this paper, a five-phase OSRM and the control method featuring torque ripple
reduction has been proposed, which can be applied as the wheel hub motor in the electric vehicles.
The simulation was carried out to analyze the OSRM operation. The electromagnetic characteristics
of single-phase and two-phase hybrid excitation mode, as well as step current excitation mode, were
compared and analyzed. To solve the problem of the large torque ripple of OSRMs under traditional
excitation modes, the torque ripple suppression method based on step current excitation was also
studied. The experiment design, including motor start-up control, speed control, and torque ripple
reduction, are presented to verify the system torque ripple mitigation method.

Keywords: outer-rotor switched reluctance motor (OSRM); wheel hub motors; speed control; torque
ripple; field current

1. Introduction

Hub motor technology integrates vehicle motors with the wheels in order to achieve
a variety of driving schemes, such as front-wheel drive, rear-wheel drive and distributed
drive. This technology significantly simplifies the speed-transmission structure of electric
vehicles (EVs) and offers more space for passengers and cargo in the vehicle. More impor-
tantly, hub motor solutions improve controllability of the vehicle. However, the application
of hub motor technology requires high control accuracy, which still needs a lot of research
and future experimental efforts [1]. Wheel hub motor technology is still under-developed
due to the following reasons,

(1) the wheel hub motor has low power density;
(2) the torque ripple directly leads to the vibration and imbalance of the wheel;
(3) the motor works in a rough environment leading to high requirements being placed

on the sealing;
(4) heat dissipation for the wheel hub motor is challenging.

Switched reluctance machines (SRMs) feature simple structures, low manufactur-
ing costs, and high reliability, enabling flexible driving modes which are widely used in
buses [2,3]. Outer-rotor switched reluctance motors (OSRMs) can be used as wheel hub mo-
tors thanks to their technical advantages of simple structure, high reliability, fault-tolerant
modular phase topology, high starting torque, and low starting current. Thus, OSRMs
can meet various special requirements through the unified and coordinated design of
mechanical and electrical architectures [4]. However, the disadvantages of OSRMs include
large torque ripple and noise issues. These shortcomings can be overcome by optimizing
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the motor body and control scheme [5]. Paper [6] proposes a wireless power transmission
(WPT) topology to drive the OSRM, where each OSRM phase is driven by different frequen-
cies according to the rotor position signal. However, this does not solve the large torque
ripple problem. Ref. [7] optimizes the torque ripple of the switched reluctance hub motor
(SRHM) which is controlled by an asymmetric bridge converter with two diodes per phase.
This arrangement eliminates the gear and need for mechanical differentials. In Ref. [8], the
proposed SRM consisted of two rotors, namely, the outer rotor and the inner rotor. The
displacement of the outer rotor by three degrees can improve the torque characteristics.
Additionally, two outer SRMs (an axial flux segment rotor SRM AFSSRM and an axial
flux-toothed rotor SRM AFTSRM) were compared for EV applications, and an AFSSRM
was found to be more suitable than the AFTSRM in terms of average torque and full load
efficiency [9]. Three kinds of outer rotor SRMs were analyzed and compared in terms of
electromagnetic design, design optimization, current profile framework, etc., showing that
modular and segmented rotor SRMs are superior to conventional configuration motors in
terms of specific torque and efficiency [10]. Additionally, SRMs with higher number of rotor
poles than stator teeth require higher converter volt-ampere ratings [10]. Two segmented
U-shaped single-stator SRMs were designed with inner-rotor and outer-rotor constructions
respectively. The characteristics of these two SRMs were approximately equal in terms
of machine structure, the influence of rotor structure on the ripple, the flux distributions
with different winding polarity configurations, static magnetic characteristics and dynamic
performances. So the proposed SDS-SRM (segment-double-stator SRM, SDS-SRM) can
improve the torque density and reduce the torque ripple [11].

Ref. [12] introduces and analyzes a three-phase six by eight ORSRM, considering
fault evaluation, the amount of eccentricity fault and the direction of fault occurrence. An
in-wheel outer-rotor switched reluctance motor (SRM) was developed to be applied in
dual-motor independently driven EVs [13]. Ref. [5] proposes the design and analysis of a
novel outer-rotor in-wheel SRM. The integration of the motor housing inside the wheel rim
saves significant space and eliminates the need for additional mechanical parts used in the
centralized drivetrain. A three-phase, external-rotor SRM with 6 stator poles and 10 rotor
poles was designed for a representative E-bike. The increased rotor poles yielded improved
torque ripple reduction compared more conventional (i.e., 6–4 and 12–8) SRM designs [1].

Many papers discuss the control methods used to reduce SRM torque ripple and
other SRM problems. An improved direct torque control (DTC) with a sliding mode
controller and observer was developed to reduce the torque ripples of a four-phase SRM
in [14]. The proposed SMSC-ADSMO involved an anti-disturbance sliding mode observer
(ADSMO) combined with a sliding mode speed controller (SMSC) to build a composite
anti-disturbance speed control strategy. A new method based on model predictive flux
control (MPFC) was presented to reduce the torque ripple. The torque hysteresis remaining
in the SRM was similar to DTC and direct instantaneous torque control (DITC) [15].

This paper presents a control method for OSRM drives, including motor start-up control,
speed control, and torque ripple reduction. The torque generation mechanism of the OSRM is
analyzed, considering the torque ripple characteristics of single-phase and two-phase hybrid
traditional excitation current modes. Additionally, a step current excitation mode is proposed
to solve the problem of low torque caused by the single-phase excitation mode and peak
torque caused by the two-phase excitation mode. The step current excitation mode has two
key parameters, namely, an excitation phase overlapping angle and a current reduction factor.
Minimum torque ripple can be obtained by adjusting the parameters of the excitation current
reduction factor and the excitation phase overlapping angle.

The paper is organized as follows. OSRM structure and control strategy are presented
in Section 2. Section 3 presents the OSRM electromagnetic analysis, including single-phase
and two-phase hybrid excitation modes and the torque ripple suppression method of OSRM
based on step current excitation. Section 4 introduces the OSRM drive system hardware
platform and provides the experiment results of start-up and drive control, mechanical
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characteristic, speed regulation, and OSRM torque ripple suppression. Finally, Section 5
concludes this paper.

2. OSRM Structure and Control Strategy

The working principle of OSRMs is the same as that of inner-rotor SRMs, which
follows low reluctance principle, and the magnetic flux is always closed along the path of
minimum reluctance [16]. Switched reluctance drive (SRD) is generally composed of SRM,
a power converter, a digital controller, a position sensor, a current sensor and torque sensor,
as shown in Figure 1 [17]. The controller detects the relative position between the stator
and rotor of SRM from the position signal provided by the position sensor, so as to select
the excitation phase. According to the phase current from the current sensor, the current
value of the current excitation phase is calculated, and the collected current is converted
into digital signal and sent to the controller for calculation. The torque ripple provided
by the torque sensor can be used in direct torque control, torque ripple suppression, and
output power tests.
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Figure 1. SRM speed control system block diagram.

In this paper, an 8 kW five-phase 20/16 pole OSRM is considered for theoretical
analysis, simulation, and experimental verification. Figure 2a shows the single-phase
circuit structure of the motor with an asymmetric half bridge; Figure 2b shows the overall
drive circuit, where each phase is independently controlled, leading to high reliability. The
torque ripple of OSRM is large, mainly due to the characteristics of commutation excitation.
However, the problem of large torque ripple can be solved by optimizing the designs of the
motor body and motor control. When the ORSM is applied as the wheel hub motor of an
EV, the motor can directly drive the wheel without a traditional power transmission system.
Such a design can achieve small volume, high power and high efficiency, simplify the
whole vehicle structure, reduce the whole vehicle weight, and is conductive to increasing
the speed control range of EVs [18].
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Figure 2. SRM circuit topology. (a) One phase (the other four phases are similar); (b) Drive circuit.

3. Microscopic Electromagnetic Analysis of OSRM

This section presents a simulation-based analysis of OSRM using Magnet software. The
stator and rotor initial position of the OSRM finite simulation model is shown in Figure 3.
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Figure 3. Stator and rotor initial position.

The tangential force contributes to the rotation of the motor. At the commutation time,
the inductor current cannot be changed instantaneously, and the tangential force generated
by the next excitation phase cannot reach the tangential force generated by the excitation
phase before commutation. The decrease in the tangential force is dramatic, leading to
torque drop at the commutation time and thereby causing large torque ripple.

At the aligned position, the OSRM normal forces are equal in magnitude and opposite
in direction. If the two symmetrical normal forces are different in magnitude, the motor
body will be deformed and the noise will be generated. The design of the finite element
simulation assumes that the motor structure and electrical parameters are completely
symmetrical, but there are errors and wear in the actual motor manufacturing and control
operation process, resulting in the imbalance of normal force. The tangential force is
analyzed and the method of eliminating torque ripple is studied.

3.1. Single-Phase and Two-Phase Hybrid Excitation Mode

The single-phase and two-phase hybrid excitation mode indicates that one-phase
winding or two-phase winding may be excited at the same time. The excitation angle
of each phase winding can be calculated by (1) where, if a is small, the time slot of the
two-phase excitation is minor or vice versa:

θ3 = aθ1 =
2aπ

Nrm
(1)

where a (1 < a < 2) is a constant, Nr is the number of rotor poles, and m is the number of
motor phases.
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The distribution of magnetic flux and electromagnetic force at different positions of
the OSRM in hybrid excitation mode is simulated in Figure 4. The flux density distribution
of the hybrid excitation mode are between the single-phase excitation and the two-phase ex-
citation modes at position A, B, and C position. Hybrid excitation mode is the combination
of single-phase excitation and two-phase excitation. The angle of single-phase excitation
and two-phase excitation depends on the turn-on angle.

The peak values of normal force and tangential force of the hybrid excitation mode
at position A are close to those of the single-phase excitation mode and the two-phase
excitation mode. At position B, the peak value of normal force of hybrid excitation mode is
3.2 times that of single-phase excitation mode and 0.8 times that of two-phase excitation
mode; the peak value of tangential force of hybrid excitation mode is 3.3 times that of
single-phase excitation mode and 0.83 times that of two-phase excitation mode; the peak
values of normal force and tangential force of the hybrid excitation mode at position C are
close to those of the single-phase excitation mode, which is significantly reduced comparing
to the two-phase excitation mode.

Hybrid excitation can be view as the combination of the single-phase excitation and
two-phase excitation mode, and offer a transitional torque region, which provides an
intuitive basis for the study of OSRM torque ripple elimination.
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Figure 4. The distribution of magnetic lines of force at different positions and the distribution of
electromagnetic force at corresponding positions of OSRM in hybrid excitation mode. (a) Distri-
bution of magnetic flux and shaded plot of flux density at position A in hybrid excitation mode,
(b) distribution of normal force at position A in hybrid excitation mode, (c) distribution of tangential
force at position A in hybrid excitation mode, (d) distribution of magnetic flux and shaded plot of
flux density at position B in hybrid excitation mode, (e) distribution of magnetic flux and shaded plot
of flux density at position C in hybrid excitation mode, (f) distribution of normal force at position B
in hybrid excitation mode, (g) distribution of tangential force at position B in hybrid excitation mode,
(h) distribution of normal force at position C in hybrid excitation mode, (i) distribution of tangential
force at position C in hybrid excitation mode.
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3.2. Torque Ripple Suppression Method of OSRM Based on Step Current Excitation

Considering the large torque ripple in the traditional excitation method, a step current
excitation mode is proposed, as shown in Figure 5, where I2 is the rated phase current
reference, I1 is the designated portion of the reference current I2, c is the proportional
reduction coefficient, and ∆θ is the overlap angle of excitation phase between preceding
phase and the phase followed. So, I1 indicates the first half of current excitation and I2
indicates the second half of current excitation. Although the step excitation current mode
reduces the tangential force of the overlapping part during two-phase excitation through
the step current, it can effectively reduce the torque ripple.
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The specific subsection expressions of the torque generated on the phase N winding
of any OSRM under this excitation mode are given in (2).

TNe =



0 (θN1 ≤ θN < θNon)

1
2

KI1
2 (θNon ≤ θN < θN2)

1
2

KI2
2 (θN2 ≤ θN < θNoff)

0 (θNoff ≤ θN)

(2)

where θN2 = θNon + (θNoff − θNon)/2 − θ, I1 = c·I2 (0 < c < 1), ∆θ is the excitation overlap
angle, θN1 is the starting position of the minimum inductance of the phase N winding, θon
is the turn-on angle of the phase N winding, and θoff is the turn-off angle of the phase N
winding, K = dL(θN)/d(θ).

The step current excitation mode reduces the tangential force of the overlapped part
via the step current so as to reduce the torque ripple. The tangential electromagnetic force
distribution at the same rotor-stator position are extracted. The distribution of the magnetic
flux and the tangential force density in the two excitation modes are presented in Figure 6.
From the distribution curve of tangential force density, it can be seen that the two-phase
excitation mode produces a strong magnetic field during commutation, and the peak value
of tangential force is more than twice of the previous tangential force. Compared with the
two-phase excitation mode, the step current excitation mode produces uniform tangential
force along the sweep contour [15].
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The torque versus position curve was simulated, where the speed of OSRM was set as
300 rpm, the rated current I2 was taken as 5 A, finite element simulation is carried out for
different c and ∆θ, as shown in Figure 7. The optimization process start with tuning of ∆θ
with each fixed I1 value, as illustrated in Figure 7.
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Finite element simulation was carried out for different ∆θ and c under the conditions
of 300 r/min speed, I2 = 5 A, and I2 = 10 A, respectively. The characteristic curve of 4T
with ∆θ and c is shown in Figure 8, where optimal excitation parameters can be found
based on the curved surface. The optimal excitation interval of I2 = 5 A is the surrounding
area with c = 0.4 and ∆θ = 0.7◦ as the center, and the optimal excitation interval of I2 = 10 A
is the surrounding area with c = 0.4 and ∆θ = 0.4◦ as the center. As can be seen in the step
current excitation, the torque ripple of OSRM is affected by the excitation phase overlap
angle ∆θ and excitation current reduction coefficient c. Adjust ∆θ and c synchronously can
reduce the torque ripple4T quickly and effectively. New control structures based on this
excitation mode and the traditional SRM double closed-loop control method can therefore
be proposed. The minimum 4T is obtained by adjusting the step current excitation to
suppress the torque ripple.
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The control block diagram based on step current excitation mode and the traditional
SRM double closed-loop control is shown in Figure 9. In the double closed-loop control
structure of the outer current loop and the inner speed loop, a torque ripple regulator is
added. According to the given speed w*, the calculated Iref and the real-time calculated
4T, the optimal ∆θ and c are determined, and the minimum4T is obtained by adjusting
the stepped current excitation to realize the torque pulsation suppression.
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Figure 9. OSRM Speed-current-torque ripple closed-loop system.

The OSRM torque ripple is larger when using the traditional excitation method because
of the characteristics of commutation excitation according to the position information. The
torque ripple generated by the new step current excitation is smaller than that generated
by the traditional excitation current. The torque ripple regulator is added to the traditional
double closed-loop control. The optimal ∆θ and c are determined by the given speed
w*, the calculated Iref, and the real-time acquisition-calculated ∆T. The minimum ∆T
is obtained by adjusting the step current excitation to suppress the torque ripple. The
overlap angle of excitation phase ∆θ and the factor c are important parameters affecting the
torque ripple of OSRM.

4. OSRM Speed Regulation Experiment
4.1. OSRM Drive System Platform

A OSRM drive system platform was built based on the TMS320F28335 micro-controller.
According to the position signal read by the photoelectric encoder, the excitation phase was
determined. According to the real-time phase current and speed, the corresponding driving
signal was calculated and output through the controller. A speed regulation experiment
was carried out. The structure block diagram of the speed regulation system of a five-
phase 20/16 pole OSRM is shown in Figure 10, and the platform of the speed regulation
system prototype is shown in Figure 11. The speed regulation experiment of the five-phase
20/16 pole OSRM included start-up, speed regulation without load, speed regulation with
load, mechanical characteristics measurement, and efficiency calculation, which will be
presented in the following subsections.
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Figure 10. Five-phase 20/16 pole OSRM structure block diagram of the speed regulation system.



Energies 2022, 15, 2852 11 of 15

Energies 2022, 15, x FOR PEER REVIEW 11 of 15 
 

 

Figure 10. Five-phase 20/16 pole OSRM structure block diagram of the speed regulation system. 

Torque meter

Magnetic powder brake OSRM Driver

 
Controller

D
ri

v
er

 

(a) (b) 

Figure 11. Experimental platform. (a) Machine system; (b) Driver system. 

Hardware components and parameters are shown in Table 1. 

Table 1. Hardware specifications. 

Component Model 

Control chip TMS320F28335 

Photoelectric switch ITR9606 

Photoelectric encoder E6B2-CWZ6C 

IGBT FGH40N60 

Diode MUR3060PT 

Drive Optocoupler CPL-3120 

Electrical Parameters Specifications 

Rated power Pn 8 kW 

Rated current In 20 A 

Rated voltage Vn 400 V 

Rated rotation ωn 250 r/min 

Phase inductance maximum Lmax 130 mH 

Phase inductance minimum Lmin 30 mH 

4.2. Start-Up and Drive Control Experiments 

Five seconds before the start-up of OSRM, the soft start was set to limit the current 

increase rate, that is, the current of each phase was controlled to rise slowly according to 

the given step, so as to avoid an excessive starting current. The current waveforms of 

phase A and E during the start-up process are shown in Figure 12, where both phase cur-

rents rise in a controlled manner within the limit. 

Figure 11. Experimental platform. (a) Machine system; (b) Driver system.

Hardware components and parameters are shown in Table 1.

Table 1. Hardware specifications.

Component Model

Control chip TMS320F28335
Photoelectric switch ITR9606

Photoelectric encoder E6B2-CWZ6C
IGBT FGH40N60
Diode MUR3060PT

Drive Optocoupler CPL-3120

Electrical Parameters Specifications

Rated power Pn 8 kW
Rated current In 20 A
Rated voltage Vn 400 V
Rated rotation ωn 250 r/min

Phase inductance maximum Lmax 130 mH
Phase inductance minimum Lmin 30 mH

4.2. Start-Up and Drive Control Experiments

Five seconds before the start-up of OSRM, the soft start was set to limit the current
increase rate, that is, the current of each phase was controlled to rise slowly according to
the given step, so as to avoid an excessive starting current. The current waveforms of phase
A and E during the start-up process are shown in Figure 12, where both phase currents rise
in a controlled manner within the limit.

When the speed is higher than the rated speed, CCC (Current Chopping Control) is
used for drive control. The phase current waveform and drive signal are shown in Figure 13.
The driving signal PWMA of phase A winding corresponds to the phase A current. When
IphaseA < Iref, PWMA is 16 V, and IphaseA increases. When IphaseA > Iref, PWMA is −8 V,
IGBT is turned off, and IphaseA decreases until IphaseA < Iref. The phase A current can be
controlled to track Iref.

4.3. Mechanical Characteristic and Speed Regulation Experiments

The mechanical characteristic curve is shown in Figure 14. Three groups of tests
with load and different turn-on angles were carried out for three reference currents Iref. It
can be established that using the same power supply, the load carrying capacity with a
turn-on angle interval between 10.8◦ and 17.55◦ shows best torque performance; where the
turn-on interval reaches the maximum limitation. Therefore, the turn-on angle interval
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between 10.8◦ and 17.55◦ was selected for the following speed regulation test experiment
and efficiency test.
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Since the proposed ORSM is intended to be applied in commuter and logistics applica-
tions, the speed range from 100 r/min to 300 r/min was verified in the experiments. The
double closed-loop control method of speed outer loop and current inner loop was adopted.
Figure 15a shows the speed acceleration experiment without load from 180 r/min to
270 r/min, and Figure 15b shows the deceleration experiment without load from 270 r/min
to 180 r/min. The motor phase current was still large after its soft start. When the motor
speed reached the reference speed, a non-excitation interval occurred; this usually occurs
at start-up and speed regulation.

Figure 16a shows the speed acceleration experiment with a 15 Nm load from 100 r/min
to 150 r/min, and Figure 16b shows the deceleration experiment with the same load from
150 r/min to 100 r/min. When the motor starts up and runs stably, the motor can run
normally with a load of 15 Nm, with the speed unchanged. In the case with load, the
non-excitation interval also appeared during acceleration (and deceleration), and the speed
regulation remained stable.

4.4. Torque Ripple Suppression Experiment Based on Step Current Excitation

The proposed control method uses the torque ripple as a feedback signals and suppress
it directly via the torque ripple regulator.
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Figure 17 shows the experimental results of the OSRM torque ripple characteristics in
the traditional current excitation mode and the new step current excitation mode under
the state of w = 300 r/min and I2 = 10 A. The traditional excitation current mode produced
Vpp = 127.6 mV and T = 5.104 Nm, and the new step excitation current mode produced
Vpp = 31.4 mV and ∆T = 1.256 Nm. The experimental results showed that the new step
current excitation method can reduce the OSRM torque ripple and further optimize the
OSRM torque ripple by adjusting the parameters of the reference current and excitation
phase overlap angle [2].

Energies 2022, 15, x FOR PEER REVIEW 14 of 15 
 

 

The proposed control method uses the torque ripple as a feedback signals and sup-

press it directly via the torque ripple regulator. 

Figure 17 shows the experimental results of the OSRM torque ripple characteristics 

in the traditional current excitation mode and the new step current excitation mode under 

the state of w = 300 r/min and I2 = 10 A. The traditional excitation current mode produced 

Vpp = 127.6 mV and T = 5.104 Nm, and the new step excitation current mode produced Vpp 

= 31.4 mV and ΔT = 1.256 Nm. The experimental results showed that the new step current 

excitation method can reduce the OSRM torque ripple and further optimize the OSRM 

torque ripple by adjusting the parameters of the reference current and excitation phase 

overlap angle [2]. 

 

 

(a) (b) 

Figure 17. Torque ripple characteristics: (a) traditional excitation current mode; (b) step excitation 

current mode. 

5. Conclusions 

In this study, speed control and ripple mitigation research for a five-phase OSRM 

was carried out. Microscopic level electromagnetic quantities and force density distribu-

tion in the OSRM were investigated under conventional single-phase and multi-phase ex-

citation. A new step current excitation method based on a hybrid excitation mode was 

proposed, where the step amplitude and overlapping angle of the adjacent phases were 

finely tuned for the best torque-mitigation effect. The prototype machine and its drive 

testbed are built, and the speed control loop with torque mitigation was implemented on 

a digital signal controller. Experiments were carried out to verify the soft-start, no-load 

and load condition operations; these experiments indicated that the OSRM torque ripple 

was well suppressed under the proposed step current excitation method.  

As this research’s main focus was on speed control and torque mitigation, the effi-

ciency of the OSRM only measured at 72.18%, which is within the practical range but is 

considered low. Another practical issue is the heat dissipation. In this study, OSRM was 

tested in an open rack condition in which the tire was not installed. Therefore, efficiency 

improvement with heat dissipation research will be carried out in future study.  

Author Contributions: Conceptualization, J.W. and W.J.; methodology, J.L.; software, J.W.; valida-

tion, S.W. and W.J.; formal analysis, Q.W.; investigation, J.W. and J.L.; resources, W.J. and Q.W.; 

data curation, J.W.; writing—original draft preparation, J.W.; writing—review and editing, S.W. and 

W.J; visualization, B.W.W.; supervision, W.J. and B.W.W.; project administration, W.J.; funding ac-

quisition, W.J. All authors have read and agreed to the published version of the manuscript. 

Funding: Yangzhou city-Yangzhou University Joint Fund under Grant YZ2020169. 

Institutional Review Board Statement: Not applicable. 

Conflicts of Interest: The authors declare no conflicts of interest. 

References 

1. Lin, J.; Schofield, N.; Emadi, A. External-Rotor 6–10 Switched Reluctance Motor for an Electric Bicycle. IEEE Trans. Transp. 

Electrif. 2015, 1, 348–356. 

2. Edrington, C.S.; Minor, S.P. Design and Analysis of a 5-phase DSRM Drive. In Proceedings of the 2007 IEEE Vehicle Power and 

Propulsion Conference, Arlington, TX, USA, 9–12 September 2007; Volume 364, pp. 364–369. 

IphaseE

(2A/div)

IphaseA

(2A/div)

Vtorque 

(50mV/div)

5ms/div

IphaseE

(2A/div)

IphaseA

(2A/div)

Vtorque 

(50mV/div)

5ms/div

Figure 17. Torque ripple characteristics: (a) traditional excitation current mode; (b) step excitation
current mode.

5. Conclusions

In this study, speed control and ripple mitigation research for a five-phase OSRM was
carried out. Microscopic level electromagnetic quantities and force density distribution in
the OSRM were investigated under conventional single-phase and multi-phase excitation.
A new step current excitation method based on a hybrid excitation mode was proposed,
where the step amplitude and overlapping angle of the adjacent phases were finely tuned
for the best torque-mitigation effect. The prototype machine and its drive testbed are built,
and the speed control loop with torque mitigation was implemented on a digital signal
controller. Experiments were carried out to verify the soft-start, no-load and load condition
operations; these experiments indicated that the OSRM torque ripple was well suppressed
under the proposed step current excitation method.

As this research’s main focus was on speed control and torque mitigation, the efficiency
of the OSRM only measured at 72.18%, which is within the practical range but is considered
low. Another practical issue is the heat dissipation. In this study, OSRM was tested in an
open rack condition in which the tire was not installed. Therefore, efficiency improvement
with heat dissipation research will be carried out in future study.
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