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ABSTRACT
A fundamental goal of Information Retrieval (IR) is to satisfy search/-
ers’ information need (IN). Advances in neuroimaging technologies
have allowed for interdisciplinary research to investigate the brain
activity associated with the realisation of IN. While these studies
have been informative, they were not able to capture the cognitive
processes underlying the realisation of IN and the interplay between
them with a high temporal resolution. This paper aims to inves-
tigate this research question by inferring the variability of brain
activity based on the contrast of a state of IN with the two other
(no-IN) scenarios. To do so, we employed Electroencephalography
(EEG) and constructed an Event-Related Potentials (ERP) analysis of
the brain signals captured while participants experiencing a realisa-
tion of IN. In particular, the brain signals of 24 healthy participants
were captured while performing a Question-Answering (Q/A) Task.
Our results show a link between the early stages of processing,
corresponding to awareness and the late activity, meaning mem-
ory control mechanisms. Our findings also show that participants
exhibited early N1-P2 complex indexing awareness processes and
indicate, thus, that the realisation of IN is manifested in the brain
before it reaches the user’s consciousness. This research contributes
novel insights into a better understanding of IN and informs the
design of IR systems to better satisfy it.
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1 INTRODUCTION
The goal of Information Retrieval (IR) is to satisfy searchers’ infor-
mation needs (IN) [1, 2]. Many researchers in the past have tried
to better understand this complex phenomenon [3–7] to satisfy
it. Notable examples of these studies include Taylor’s Question-
Negotiation Process [3], Anomalous State of Knowledge Model
by Belkin et al. [4], Wilson’s Information Seeking Behaviour [5],
Kuhlthau’s Information Search Process [6], Ingwersen’s psycho-
logical and cognitive aspects of IR [8] and Cognitive IR Theory
[7], Cole’s framework of information processing and knowledge
frames [9] and many other conceptual analyses [10–15]. Despite
their invaluable contributions, they all have investigated the IN
phenomenon indirectly, via traditional methods of user behaviour,
i.e. some sort of mediator, such as questionnaires/interviews [16],
reflective diaries [6, 17], user-system interactions and search logs
[18]. Past studies have shown that IN phenomenon is often difficult
for the searchers to understand and describe [19], leaving current
user-base studies limited in capturing and describing how exactly
such a phenomenon appears at its very early stage.
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To tackle this problem, new research has emerged employing
neuroimaging techniques to directly monitor brain activity of sub-
jects experiencing a realisation of IN [20–22]. This research has led
to a discovery of cognitive processes and brain regions associated
with the realisation of IN [22, 23]. However, these studies have
used fMRI technique which has a high spatial, but low temporal
resolution. Thus the question of “how a realisation of IN occur from
a temporal aspect?” has still remained unanswered. This study aims
to investigate the possibility of capturing the realisation of IN in
real time from the brain signals.

We aim to go one step further and investigate the possibility of
capturing the brain activity of searchers experiencing a memory er-
ror (or gap) [24]. This is the situation where searchers are under the
assumption that they know (or have recalled) the information for a
task or a question, but the recalled information is, in fact, incorrect.
In such a scenario, an individual would not experience a realisation
of IN and hence would not engage in an information retrieval and
seeking process, leaving the memory error unresolved. Depending
on the context, this could have negative consequences for the user
(e.g., in an education context) and, in some cases, catastrophic ones
(e.g., in a medical context).

It can be argued that in a situation like this, where an individual
is not aware of an anomaly in their state of knowledge, IR sys-
tems could be helpful. One way could be to make users aware of
their memory error. This could lead to a realisation of IN, an ini-
tiation of a search process and possibly prevention or correction
of a mistake. Another way would be to alleviate the information
overload situation by not flooding users with information when
they have a correct memory retrieval/recall and they do not need
information. This is particularly important in research directions
such as proactive IR [25] and/or personal assistant systems [26–28].
However, this would be possible, if users’ memory errors could be
captured. This work aims to investigates the possibility of detecting
situations where searchers experiencing a memory error in real
time from their brain activity. The question then would be how
different the brain signals of memory error would be from the ones
when a realisation of IN occurs? And, how different they would be
from the ones when a correct information retrieval/recall occurs?
This lead us to the following research questions (RQs):

(1) RQ1: “What are the temporal dynamics of the neural mani-
festation of ‘IN realisation’ scenario?”;

(2) RQ2: “Is there a clear, detectable, neural manifestation of
‘memory error’ and ‘correct recall’ scenarios? and if so, what
are the temporal dynamics of these manifestations?”; and

(3) RQ3: “Do neural manifestations of these three scenarios differ?,
i.e. when searchers realise an IN (Know that Don’t know and
want to know scenario), have a memory error (Don’t know
that Don’t know scenario), and have a correct recall (Know
that Know scenario)?”.

Our study utilises an experimental design involving an inter-
active Question-Answering (Q/A) retrieval task. The information
processing at participants was induced by questions of general
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knowledge while their brain activity was recorded using Electroen-
cephalography (EEG) in real-time. Depending on the answer the
participants provided with each question, we encoded the neural
processing into three pre-defined Scenarios: 1) Correct, meaning
participant selected a correct answer (CorrectRecall), 2) Incorrect,
meaning participant falsely endorsed the incorrect answer choice
as the correct (MemoryError) and at last, 3) Not Know, representing
recognised and acknowledged ASK with an interest to learn the
answer (NeedToSearch, i.e. representing the expression of IN). We
focused on the inspection of the modulation of ERP components.
These represent stimulus-evoked voltage deflections as these are
seen as an indicative of unfolding of cognitive processes. We de-
veloped a data-driven Event Related Potentials (ERP) analytical
framework contrasting the time segments of significant spatial neu-
ral activity associated with each of the three states. Our central
aims are to: (i) evidence on the distinct neural correlates to project
a state of INs (in particular in an early state) with the focus on its
temporal dynamics and (ii) evaluate if the brain activity is signifi-
cantly modulated depending on the distinct states of knowing (in
the context of our three scenarios). Specifically, answering (i) can be
the basis to detect IN in a Q/A task in real-time. This study accounts
for neurophysiological objective inputs to IR systems which might
to lead to improved (even proactive) IN detection.

2 RELEVANTWORK
Complex Nature of IN. IN is a core concept of the IR process
of delivering relevant documents and satisfying user’s IN [29]. Its
subjective and user-dependent nature makes it an complex input
to IR [11]. Multiple studies have attributed IN to an anomaly in
knowledge [4, 30], uncertainty [6], feelings of unease [9], feeling of
dissatisfaction [19] or doubt [3]. Taylor described the complexity
of IN on a hierarchical model of IN in respect to user’s awareness
with their IN. Whilst Taylor pointed out that low levels of IN are
visceral and within-brain attributes, Belkin et al. [4] specified that
the ASK variants are dependent on the levels of user’s knowledge.
Both of these anticipate the inherent complexity in how the user
might perceive their INs. This paradox influences the quality of
main elements in the IR process, most notably the formulated query
as the system-representation of IN. The situation becomes even
more pronounced when IN is ill-defined [14]. The user receives only
vague, uncertain and fuzzy memory retrievals [9]. It makes it all the
more challenging for the user to map their actual (inexpressible)
IN to a (expressive) query [3].

The IN were empirically investigated via self-reported mecha-
nisms or utilisation of search logs [6]. Recently appealing is the
area of contextualisation of the INs, to derive information such as
search intent [31]. For instance, utilising additional search meta-
data, e.g. real-time contextual activity of the mobile queries [32–34]
shows positive results in this area. These scenarios however eval-
uated IN only indirectly which makes it difficult to create a link
between the actual INs [3] and their system formulation. Inter-
disciplinaryNeuraSearch research is an empirical response to the
overcome this issue by evaluation of the user brain responses as an
alternative source of user behavioural patterns [35].

Furthermore, a rapid development of intelligent IR engines, such
as conversational agents [36, 37] proceeds to explore the proactive

design-thinking of IR [38]. The potentials of proactive zero-query
systems [25] might benefit from the NeuraSearch approach and
address the “IN-query gap" [20]. In a sense, the anticipation of INs
and proactivity of IR is an intervention with the user’s awareness.
Utilising the link between awareness and knowledge anomaly, could
proactive IR system alter the user’s awareness and even rectify
user’s unawareness? The investigation of memory error that has
not been recognised by the user is, thus, a novel attempt to bring a
new perspective the concept of ASK and expand the discussion in
the area of proactive IR systems.
Neuroscience & IR Research. Despite traditional behavioural
studies concerning INs offer beneficial insight into the qualitative
characteristics of IN [39–41], their capabilities are limited in the
area of data acquisition of the internal (within-brain) formation
of INs as well. To operationalise these efforts, a branch of inter-
disciplinary research within IS&R has been established under the
term NeuraSearch [42]. NeuraSearch is an evidence-based research
employing a carefully designed user-studies with a real-time acqui-
sition of neural manifestations (i.e., activity) of user experiences in
IS&R [43, 44]. The employed neuroimaging techniques advance to
evidence on the location of the source of the activity and to create
a fine-grained temporal profile of the activity strengthening the
link with the cognitive theoretical approaches in IS&R [7, 8, 45].

A rise in adoption of neuroimaging techniques across the key
areas of IS&R resulted in numerous NeuraSearch applications with
the most notable being relevance judgment [46, 47], IN realisation
[20], search transitions [23] or query construction [48]. Commonly
used neuroimaging techniques include electroencephalography
(EEG) [46, 48–52], functional magnetic resonance imaging (fMRI)
[20, 22, 49], magnetoencephalography (MEG) [53], functional Near
Infrared Spectroscopy (fNIRS) [54, 55]. The EEG studies manifested
the effectivity of EEG to capture the brain activities of complex
cognitive processes utilising its fine-grained temporal resolution.
EEG technique allows to capture even the smallest variability be-
tween the graded levels of the same phenomenon, e.g. three ERP
components, P300, N400 and P600 were modulated depending on
the grades of relevance judgmens [47]. The current development
and availability of portable EEG devices strengthens its applicability
as the signal input into Brain-Computer Interfaces (BCI) systems
[56].

Conceptually relevant and informative to our research is a series
of fMRI studies investigating IN realisation developed byMoshfeghi
et al. [20, 21]. fMRI technique has the advantage of highly precise
spatial resolution to locate the brain source of significant activity
within mm. The first study [20], thus, identified topological brain
maps of the significant activity found critical hubs orchestrating
activity between IN and noIN states. Second study [21], positively
confirmed the predictive capabilities of fMRI data. The series cul-
minated in the introduction of Neuropsychological model of IN
realisation with three components: Memory Retrieval, Information
Flow, A high level Perception component [22]. Specifically the first
two are supported by discoveries of functional networks involv-
ing factual searches in memory and self-awareness context, as the
sources of cognitive mechanisms involved in the user’s adaptability
on a new stimuli and support the user’s readiness, e.g. whether
there is a need to search or not [9]. In these works, IN was reduced
to a binary concept, represented a state of knowledge in which
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users felt a higher probability of not knowing the answer than
knowing the correct answer. No deeper investigation concerning
and potentially diversifying the user’s state of the knowledge, was
done. However, as the task involved user’s access to knowledge, the
authors anticipated that arise of IN was connected to a feeling of
anomaly, and thus, connected IN to ASK [4]. There is not yet known
to us a study focusing on investigation of temporal signatures of
IN within IR context using EEG. We hypothesise that the mental
formation of the realisation of not-knowing based on measured
brain signals provide a reliable information about the variability of
neurocognitive processes and might lead to a potential detection of
IN on the visceral basis.

3 PRELIMINARIES
Electroencephalography (EEG). Brain generates small electrical
activity, on the order of millionth of a volt. The EEG represent a
procedure how to capture this activity in real-time using EEG’s
main advantage of high temporal resolution [57]. Time frequency
(or sampling rate) is the measure of data sampling (e.g., 500 Hz/s).
A sensor, i.e., electrode, is attached to a specific location of the
skull surface to capture the cortical electrical activity. A common
approach is to use an “EEG cap", made of an elastic light-weight
fabric, as the recording interface on top of whichmultiple electrodes
attached to in order to get a signal originating different areas on
the brain. The electrode configuration on each cap follows the
standardised “10:20 System of EEG Placement" [58] as depicted in
Figure 2 which allows comparable results of spatial activity between
subjects within a study as well as between the studies. The acquired
data must go through a data pre-processing pipeline (see Section 4.1
to increase the Signal-to-Noise Ratio with the noise imposed by “the
artefacts" originating from inside the body, such as heart activity,
eye blinks, eye movements, facial and other muscle movements
amplifying the signal.
EventRelated Potentials (ERP) is a common approach of analysing
EEG data based on averaging EEG response waveforms, time-locked
to stimuli onset (start) and offset (end), across people and trials. ERP
Component then represent a deflection from the baseline of EEG
activity denoting neural activation or deactivation linked to some
form of neural processing. The standard convention for labelling
ERP components is to use: ‘Letter’ which refers to the polarity of
the component: Positive (P) or negative (N) and ‘Number’, which
refers to the time point on the series where this deflection reaches
its local maximum, e.g. component N1 meaning negative deflection
peaking at 100 ms post-stimulus. Data Epoch is the time window
within which the relevant brain responses, i.e. ERP Components, are
expected to emerge. In our experiment, a typical epoch expanded
from 200 ms pre-stimulus onset to 800 ms post-stimulus onset to
cover the stimuli presentation time and baseline activity. Time
Window is a specific selections of the time series, i.e. epoch, that
captures particular ERP components. This allows investigation of
the temporal dynamics of the relevant brain responses. Region of
Interest (ROI) represents a set of neighbouring electrodes that
jointly contribute to a particular ERP component linked to the in-
vestigated function. The topological distribution of ROI (Figure 2)
allows for investigation of the spatial dynamics of relevant brain
responses. ERP Analysis focuses on extraction and analyses of

the amplitude of an ERP component to contrast between the given
experimental conditions in a study. In general, the amplitude of an
ERP component reflects the voltage elicited by the neural activity
giving rise to the ERP component. The higher the voltage (higher
negativity or positivity) the higher will be the ERP amplitude indi-
cating a greater amount of neural resources (activity) recruited to
support the specific neural operation [59].

4 METHODOLOGY
Design. A “within-subjects” design was used in this study, in
which the participants performed a Q/A task (see Section 4.1.1 to
explain the task). The main aim of the experiment was to evaluate
the modulations in the brain activity posed by the three pre-defined
states of knowledge (Scenarios). These were linked to the partici-
pants responses which were controlled by responding to questions
viewed on the screen. These represented the independent vari-
able (Scenarios) in the study: “Correct” (CorrectRecall), “Incorrect"
(MemoryError) and “I do not know" meaning acknowledged ASK.
The level “I do not know" was further subsetted according to the
participant follow up decision indicating either i) care to know the
answer (NeedToSearch) or ii) no care to know the answer (NoNeed-
ToSearch). By limiting the response space to three levels we had a
control over the categorisation of participants and the information
processing associated with these levels. For each level, we extracted
the relevant ERP activity (refer to EEG Glossary in Section 3). The
dependent variable was the mean amplitude of relevant ERP com-
ponents drawn from the EEG signals synchronised with the Q/A
task.
Participants. Twenty-four healthy university students volun-
teered. Initial insight into data showed that data were unbalanced
across our Scenarios (see Table 1). As the methods of the analytical
framework we devised (see Section 4.2) rely on individual averages,
we need a sufficient samples in each Scenarios. We, thus, filtered
the data where only participants satisfying a threshold of minimum
number of responses in each level will be moved to final sample
and undergo the statistical analysis. The criterium was satisfied by
fourteen participants (see Section 4.2.2), out of which there were
13 females (93%) and 1 male (7%) within an age range between 18
and 39 years and a mean age of 23 years (sd 6.5). The participants
were volunteers recruited by the anonymised university and they
received no monetary payments, but were eligible for academic
credits. Participants completed the task (without the breaks) on
average in 44 min (sd=4.62, med=43.40).
Q/A Dataset. We constructed a dataset of general knowledge
questions taken from the following sources (1) TREC-8 and TREC-
20011 (widely applied in IR and NeuraSearch, such as [20]) and
(2) B-KNorms Database2 (used in cognition and learning studies
[60]). Two independent assessors separately evaluated the ques-
tions difficulty (Cohen’s Kappa: 0.61). We then selected a subset
of 120 questions 3 where both annotators agreed upon their diffi-
culties. Data were equally distributed between easy and difficult
(60:60). Its purpose was to create balanced trials for the participants
to experience scenarios of knowledge anomaly corresponding to
1https://trec.nist.gov/data/qamain.html
2http://www.mangelslab.org/bknorms
3The data will be available upon request.
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our three Scenarios. We expected easy questions would trigger
more of KNOW (either CorrectRecall or MemoryError) and diffi-
cult questions more of “I do not know", creating thus the premise
of IN realisation. Here are two examples of a) a difficult question
from the dataset: “What is the length of the coastline of the state of
Alaska?" and b) an easy question" “What primary colours do you
mix to make orange?". Questions covered a diverse range of top-
ics: History, Science and Technology, Geography, Culture and Art,
General. The questions were of the open domain and closed-ended
answer. The question length (measured by the number of words
the question consisted of) resulted from 3 words to 13 words. The
question attributes (length, difficulty, category) were not used as an
independent variable in our main analysis as we did not investigate
their effects on cortical activity. Their impact was however tested
using final data distributions, with no significant effects. Due to
space limitations we do not further report on the outcomes.

4.1 Procedures
Ethical permission to carry out this study was obtained from the
anonymised Ethics Committee. The experiment was performed in
a research laboratory setting. All participants fulfilled the inclusion
criteria to take part in the study, i.e. healthy people between 18 –
55 years, fluent in English, without any prior or current psychiatric
or neurological Scenariosthat could influence EEG signal.

Participants were first distributed two questionnaires requesting
their demographics information and inquiring about their habits
with information searching and search engines. They were then
informed about the task (described in Section 4.1.1). To ensure that
all the participants had a good understanding of the task, they
underwent a practice session. The practice session consisted of five
questions not used in the main task. This section was not limited
in time, and participants were allowed to repeat it, if required, until
they felt comfortable to proceed to the main session. In the main
session the question order, as well as the answer options on the
screen, were randomised across participants. The randomisation
allowed to eliminate any order bias and response tendencies. There
was no time limit to provide responses, which were entered by the
participants via a button press using three keys previously allocated
to each option. Two breaks were provided (after completion of 1/3
and 2/3 of questions) to avoid fatigue. Participants were asked
to remain still and minimise any body movements, particularly
blinking, as these represent noise-introducing artefacts to the brain
signal.

Recording Scenarios were kept constant across participants. Af-
ter the main session, there was a debriefing session and participant
were required to fill out a final post-task questionnaire related to
their subjective perception with the task. A prior to data collec-
tion, a pilot study with two volunteers was conducted to ensure
that the experimental procedure ran smoothly. Feedback from the
participants in the pilot study was used to improve the procedure.
Feedback from the participants in the pilot study was used towards
the procedure improvements and data collected in the pilot study
are not used in the present analysis.

4.1.1 Procedure of the Main Experiment Task. Figure 1 illustrates
the Task sequence with an example of a 5-word question stimulus.
Each participant was subjected to 120 trials. Every trial followed

Q

A)  <Incorrect> (March 23rd)    
B)  <Correct> (March 17th)

   C)  I don't know 

2 

stimuli onset trigger  obtain participant response

Show Question Q (one word at a time)

W1 W2 Wn

Show Fixation (2000 ms)

+

Is the answer                  
I don't know ?  

 Correct Answer is 
<Correct>
March 17th

Show Answer Choices
1 3

YES 

NO

Need to Search?

4.1 

NO

4.2 

YESQuestions left?NO

A

A

YES

...
(800 ms) (800 ms) (800 ms)

Show Correct Answer

Example: When -> is -> Saint -> Patrick's -> Day?

Figure 1: Diagram of the task flow.

the same order of steps: Step 1 Showing the Fixation Cross, Step
2 Question Presentation, Step 3 Presentation of Answer Choices and
Step 4.1 Search Decision. The brain activity was captured during
the entire course of the trial, but the core section of data repre-
sent the data captured in Step 2 of Figure 1). Here we captured
the brain activity of participants during the sequential sentence
reading in order to evaluate the brain correlates associated with
the processes of information processing. After a random question
ran, a participant recorded their response and the associated three
Scenarios were added to each word of the question. Each word of
the question then became a part of the same Scenarios. We did not
differentiate between separate words, e.g. due to their qualitative
criteria, or extracted brain activity with particular words in the
question. Our work is similarly as in [47] built on the approach of
knowledge accumulation. As the word sequentially appears on the
screen, the question progresses corresponding to the amount of
received stimuli (input) information.
Trial. The trial started with viewing a fixation cross in the middle
of the screen for a duration of 2000 ms that indicated the location of
the next stimuli on the screen and was a way to minimise eye move-
ments on the screen. Next, the participants viewed a sequential
presentation of a question randomly selected from the dataset. Each
word was displayed for 800 ms. Within this step, the participant
processed the information as it was coming (word-by-word). After
the last word (Wn in Figure 1) of a generated question ran, the
participants moved to Step 3. Here, they were presented with now
fully-displayed question and three on-screen answer choices asso-
ciated with the question. They were requested to select the correct
answer or choose the option “I do not know". Next step depended on
the response outcome in Step 3. In the case participants answered
CorrectRecall or MemoryError, they were presented with the cor-
rect answer (Step 4.2) which they terminated by a button press after
which they were moved on the beginning, Step 1. Alternatively,
if the participants answered “I do not know", they were asked to
make a Search decision (Step 4.1), whether they want to search
(NeedToSearch) for the correct answer or not (NoNeedToSearch).
The ,search’ was simplified here, as no actual search was performed
as part of the study task, with participants being aware of it. Search
interaction would increase the EEG artefacts onto data, such as
introduction of motor-related artefacts. Search represented here
the decision of participants whether they want to learn the correct
answer (move onto Step 4.2) and, thus, satisfy their “I do not know"
Scenarios(NeedToSearch) or not (NoNeedToSearch) and move into
the next trial. The process was repeated for all 120 questions.
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Figure 2: Placement of electrodes on EEG cap and their re-
gional assignment (ROI).

Experimental decisions. Sequential presentation of a stimulus
has been applied in studies examining neurological correlates of
reading [61], as well as in IR-related studies of relevance [47] or
query construction [48]. Its aim is to have control over free-viewing
and to minimise presence of any confounding artefacts (i.e., sac-
cades). As a result, the ERPs were time-locked to the word onset
presentation, i.e. we captured the temporal processing of each stim-
uli ERPs during the preseWords on the screen were presented using
a Fixed Rapid Serial Visual Presentation (fixed-RSVP) of 800 ms
for each word. As previous studies of sentence processing [62, 63]
pointed out, a ratio above 700 ms enables engagement of higher
cognitive abilities. These are important for us as we want to capture
the human information processing and to extract EEG signal asso-
ciated with particular words, i.e. events. The final ratio of 800 ms
was determined by the outcomes pilot study. It was found sufficient
for fluent reading [63] and to avoid the overlapping effect of two
consecutive words on the ERPs [64]. To determine IN expression
we used the information related to participants decision we ob-
tained during the study. We, thus, specified the “I do not know"
level with an added decisions of participant, i.e. the want to search
(i.e., NeedToSearch) and, thus, created the level NeedToSearch. We
translated this level as an expressed form of participants’ INs.
Apparatus. Interactive Q/A system which ran the task (Section
4.1.1) was developed in a behavioural research software e-Prime2
and was synchronised with an EEG system. A 40 electrodes Neu-
roScan Ltd. system with a 10/20 configuration cap was used for data
acquisition. EEG was recorded with a sampling frequency of 500Hz.
Impedances were kept below 10 kΩ and signals were filtered online
within the band of 0.1 - 80Hz. EEG recordings were subsequently
pre-processed offline using toolbox EEGLAB version 14.1.2 [65]
executed with Matlab R2018a. Further stage of statistical analyses
was done in RStudio with R 3.6.1.
EEG Data synchronisation and Reduction of artefacts. EEG
signals were time-locked to the word presentation. In order to
associate EEG recordings with behavioural data, we applied syn-
chronous triggers, i.e. unique identifiers for each trial. Triggers
were sent to a separate file at the onset of each word (as depicted by

a green cross icon in Figure 1) and at the time of the button press
indicating the response (depicted by an orange square in Figure 1).
As was reported, the triggers corresponding to Scenarios encoded
the sequence of EEG signal according to one of those levels. By
design we eliminated any possibility of signal contamination by
neural correlates corresponding to motor responses (i.e. hand move-
ment to make a button click) as response-preparation component
as it generates a separate signal (often called noise) affecting the
underlying brain signal [59]. User read the textual stimuli on the
screen following the order of word in a question. Only after the
entire question was presented, the participant was asked to make
an explicit judgment.

4.2 ERP Analytical Framework
Evaluation of conditional neurocognitive response is our main ob-
jective. Initial insight into ERPwaveforms showed a clear manifesta-
tion of ERP components (see Section 3), which resulted in a decision
to apply a combination of exploratory and component-driven ap-
proach, focusing on evaluation of the ERP deflection within specific
time windows where such ERP deflection occurs. Spatio-temporal
investigation of neural activity requires unbiased selection of i) rele-
vant spatial regions where the activity is significant and ii) splitting
of the overall timeline into smaller time windows. We framed a
procedure that allows us to achieve unbiased results. Its details are
provided in Section 4.2.3 and 4.2.4.

4.2.1 Data Pre-processing Pipeline. First, the individual participant
data were pre-processed using the pipeline constructed according
to guidelines for the standardisation of processing steps for large-
scale EEG data [66]. Before passing the data through a high-pass
filter at 0.5Hz and then through a low-pass filter at 30Hz, we re-
moved the power line noise at 50Hz. Next, we down-sampled data
to 250Hz. We then proceeded to reconstruct a low-quality EEG
signal of selected electrode/-s whose recordings were found to be
very noisy or their recording was interrupted. After that, we used
average re-reference.In the next step, we performed Independent
Component Analysis (ICA), a data cleaning technique used to sepa-
rate the noise-introducing artefacts (see Section 3) from the genuine
brain signal, i.e. the sole brain effect to stimuli. Completion of ICA
resulted in an artefact-free signal which was then epoched (see
3), from 200ms pre-stimulus presentation to 800 ms post-stimulus.
All epochs were baseline-corrected using the -200 to 0 ms window
using the baseline activity from prior to the onset of the first word
of each question (represented by Screen 1 within S1 in Figure 1). It
is used to remove DC-offset or in other words to compensate for
signal drifts in electrophysiological recordings [67]. After that, for
every participant we averaged all epochs which belonged to one of
the three Scenarios (CorrectRecall, MemoryError, NeedToSearch).
These average participant data entered the further stages of the
statistical analysis.

4.2.2 Sample Size Pre-processing. As a second step, we explored
the distribution of the responses (see Initial column in Table 1 to
uncover potential issues with the existing data that might prevent
us from the application from the further stages of data analysis.
As our methods rely on within-subject methods and ERP aver-
ages, we need sufficient samples in each Scenario per participant.
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Table 1: Distribution of responses per participant before and
after filtering.

Scenarios

% of All Trials (Responses)
per participant

Initial
(24 participants)

After filtering
(14 participants)

CorrectRecall 56 50.50
MemoryError 25 21
NeedToSearch 15 23.50

NoNeedToSearch∗ 4 5
∗ Excluded from analysis due to low sample size

NoNeedToSearch was the least frequent response across among the
participants. It was excluded from the further analysis due to very
low sample size across andwithin participants (only 4% of responses
per participant). Next, on average each participant’s NeedToSearch
responses accounted only up to 15 % of overall responses.

We checked the individual records for each participant, sorted
them in ascending order by the number of records per each Scenar-
ios. The participants with the lowest proportion responses were
selected and subsequently visualised using ERP analysis. The stim-
ulus triggered activity, i.e. ERP, emerged when averaging 12 trials
(representing 10% of all trials participants were subjected to), which
we then set as our threshold. Altogether 14 participants satisfied
this condition for each Scenarios. Table 1 shows the original distri-
bution of full dataset responses (24 participants) across Scenarios
and updated values after the filtering was applied.

The comparison of distributions between NeedToSearch and
NoNeedToSearch responses points out to a strong preference of
participants wanting to resolve their gap in knowledge, manifest-
ing as a high amount of NeedToSearch responses in contrast to
NoNeedToSearch responses. We retrospectively learnt from the exit
questionnaires that the questions mostly evoked curiosity and inter-
est in learning the correct answer. We select few of such responses
that support this conclusion:

“I responded positively in every one because I found it as an oppor-
tunity to learn."

“I like finding out new information. Having that option was really
good it kept you interested even when you didn’t knew the answer."

“Genuine interest. The information may be useful in future."

4.2.3 Identifying Regions of Interest (ROI). Literature [59] sug-
gested to deal with both the selection of time windows and ROIs
by separating statistical tests for each time point at each electrode,
combined with correction for multiple comparisons. Following
this approach, we searched for significant differences across Sce-
narios with a combination of the 2-sample paired Monte Carlo
permutation test and non-parametric bootstrapping running 10,000
permutations4. Outcome of each pairwise comparison was a set of
significant (p<0.001) electrodes and their assigned time point where
4A solution for multiple comparison problems and does not depend on multiple com-
parisons correction or Gaussian assumptions about the probability distribution of the
data.

the activity significantly differed. We assigned these electrodes into
clusters (ROI) based on their spatio-temporal properties, i.e. local
proximity (according to Figure 2) and significance within the same
time window.

4.2.4 Time Windows. To ensure the decision of setting the bound-
aries of time frames capturing ERP components is not arbitrary,
we used unbiased data-driven procedure we now describe. We av-
eraged all the epochs corresponding to the three Scenarios across
all ROIs and participants. This reflects the overall brain responses
regardless of task Scenarios and topological distributions with base-
line set y=0. From these grand waveforms, we selected the time
points where the waveforms, i.e. ERP components, abandoned and
returned to baseline. We then calculated the mean signal within
the intervals for each relevant ROI.

4.2.5 Statistical Methods. Our main comparative measure is the
mean signal, calculated as themean of the ERP activity, precisely the
amplitude that describes the ERP activity, which occurred within
particular time window (see 4.2.4) and significant ROI (see 4.2.3).
We created a mixed linear model for each time window with the
parameters: “Scenarios” as the independent variable, “Participant”
as the random variable, “Mean signal within ROI” as the dependent
variable. In order to test if and how much each participant’s neu-
rocognitive response (amount of potential elicited) varied across the
Scenarios, we applied ANOVA repeated measures test with 3-levels
factorial design for each time window and for each significant ROI.
Data met the assumptions required by ANOVA.

5 RESULTS
Task Perception. Participants perceived the task mostly as Inter-
esting (58%). In terms of the difficulty, the task was perceived as
relatively Easy (54%), followed by perceptions of some degree of
difficulty (Not so Easy 21%, Slightly Difficult 17%). One participant
(4%) perceived it as Difficult. Those who perceived some degree of
difficulty also found the task to some degree Challenging (21%). In
general, the task was not perceived as Stressful (4%) nor Familiar
(4%). We pick a few of additional participants’ comments which
expand on their perceptions with the Q/A dataset. In general, par-
ticipants agreed that Q/A dataset was an appropriate mix of easier
and more difficult questions of general knowledge:

“Topics varied widely which was very interesting as there was quite
a mix of things I knew and things I did not."

“Some answers I thought I knew and I was wrong and vice versa."
Main Findings. The results show at first, a separation of the ac-
tivity into ERP components: N1, P2, N400 and the late positivity of
P6 across all Scenarios. The main findings of significant pairwise
ERP modulations are presented in the the Table 2. First column
TimeWindow shows the temporal intervals where ERP components
occurred (ERP). The column ROI specifies the location where the
mean of the corresponding ERP shows statistical significance. The
column F value quantifies the value of the statistical test with (2,26)
degrees of freedom. The column M𝑑𝑖 𝑓 𝑓 compares the mean values
of two significantly different Scenarios identified by the pairwise
post-hoc tests. At last, p-value shows the level of statistical signif-
icance. The Figures 3 and 4 complement this table by illustrating
the corresponding ERP waveforms at the significant ROIs. ERP
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Table 2: Significant differences in ERP amplitudes and the pairwise contrasts (p-value adjusted using Bonferroni corrections
<0.05 *, <0.01 **, <0.001 ***)

Time
Window

ERP ROI∗ F value M𝑑𝑖 𝑓 𝑓 p-value

90 - 150 ms N1 RF/RFC F[2,26]=3.50 𝑥 (MemoryError)= -0.02 𝜇V, NeedToSearch)= -0.16𝜇V *

150 - 270 ms P2 LTP F[2,26]=3.97 𝑥 (MemoryError)= -1.93 𝜇V, 𝑥 (NeedToSearch)= -1.70 𝜇V *

270 - 430 ms Onset
N400

RFT F[2,26]=5.93 𝑥 (CorrectRecall)= -0.39 𝜇V, 𝑥 (MemoryError)= -0.73 𝜇V **

C/CP F[2,26]=4.83 𝑥 (CorrectRecall)= -0.10 𝜇V, 𝑥 (MemoryError)= 0.04 𝜇V *

430 - 570 ms Offset
N400

RFT F[2,26]=4.69 𝑥 (MemoryError)= -0.23 𝜇V, 𝑥 (NeedToSearch)= -0.08 𝜇V *

PO/O F[2,26]=5.19 𝑥 (MemoryError)= 0.29 𝜇V, 𝑥 (NeedToSearch)= 0.08 𝜇V **

570 - 800 ms P6 - - - -
∗ (For spatial reference of ROIs see Figure 2): L - Left, R - Right, F - Frontal, C - Central, T - Temporal, P - Parietal, O - Occipital.)

waveforms of each scenario are encoded by a specific colour and
a marker. The scales are uniform for all corresponding plots. Fol-
lowing the chronological latency of the ERP components, we now
describe the main findings.
N1-P2 component. ERP modulation was found to emerge already
before 100 ms poststimulus exhibiting N1 component. We found
right frontal/front-central distributed activity (RF/RFC) discriminat-
ing between the mean levels of Condition. Post-hoc test specified
that the difference is driven by a significantly greater negativity of
N1 exhibited for NeedToSearch in contrast to MemoryError. Fur-
ther, the amplitude of P2, with the latency between 150 - 270 ms,
over left temporo-parietal (LTP) ROI was found to be significantly
affected by the different processing for Scenarios. Here, a signifi-
cantly greater negativity of P2 emerged for MemoryError level in
contrast to the mean amplitude of NeedToSearch.
N400 component. The long amplitude of N400, with a latency
between 270 - 570 ms, describes: 1) the onset of the window de-
scribing the accumulation of the resources to support a cognitive
operations until their peak 2) followed by a return of the amplitude
to the baseline of values after the cognitive decision was made. We,
therefore, split the time window into two frames: (1) 270 - 430 ms
comprising the onset of the amplitude and (2) the window 430 - 570
ms with the activity offset and, thus, to explore if any differences
are involved in these two time frames. The findings support this
decision. In the (1) window 270 - 430 ms we found two ROIs where
the activity was significantly modulated by the Scenarios: a) right
front-temporal (RFT) ROI and b) central/centro-parietal (C/CP) area.
Post-hoc tests specified that in both ROIs the signal significantly
varied between the pair CorrectRecall and MemoryError. Whereas,
in (a) the negative amplitude of N400 onset was significantly larger
for MemoryError, in (b) a larger negativity was measured at Cor-
rectRecall level. In the (2) window we found statistically significant
contrast over different ROIs. First, the RFT ROI, similarly to findings
from earlier, demonstrates the significant differences across the Sce-
narios. Post-hoc test, however, alters the previous pairwise findings.
Here, the significant difference is driven by a pair of MemoryError
and NeedToSearch levels with the mean amplitude for MemoryEr-
ror having a significantly greater negativity. The same direction was

confirmed for the second ROI, parieto-occipital/occipital (PO/O).
Pairwise post-hoc tests revealed a significantly greater amplitude of
MemoryError over NeedToSearch. The distribution of ROIs at the
offset of N400, thus, suggests anterior-posterior pattern with the
amplitude for MemoryError being significantly higher than that of
NeedToSearch.
P6 component. At last, we lacked to find any significance in the
window spanning the P6 component that would evidence on the
significant effects driven by the Scenarios.
Summary. In summary, the data evidence on the identifiable
spatio-temporal patterns for NeedToSearch, as the expression of
IN, addressing RQ1. Specifically it found to elicit 1) significantly
amplified negativity of N1 component in RF/RFC region relative to
MemoryError and 2) relative to MemoryError, significantly lower
amplitude of P2 over LTP and of the offset of N400 over both RFT
and PO/O ROI. Furthermore, 3) the onset of N400 is not modulated
by NeedToSearch and 4) the latest activity of P6 is not altered
by NeedToSearch. Furthermore, addressing RQ2 and RQ3, the
evidence indicates a quantitative separation of the MemoryError
level asmanifested by the increased 1) amplitude of P2 in LTP ROI, 2)
amplitude of the onset of N400 over RFT ROI against CorrectRecall
and 3) amplitude of the offset of N400 over both RFT and PO/O ROI
relative to amplitude of NeedToSearch.

6 DISCUSSION
Before we proceed to address the specific RQs, we present a model
driven by the exhibited ERP components we found and their asso-
ciation with the cognitive processes. Our data suggest support for
two processes: 1) Awareness, produced in early processing demon-
strated by early components of N1, P2 and 2) Memory, pronounced
in evoked component N400 and P6. This process can be charac-
terised by early employment of subconscious processes transformed
to latter conscious processes. Awareness is updated by output from
the initialised memory checks. Here we talk about orchestrated
activity supporting this adaptive behaviour, where the synchronic-
ity between regions, whose resources support different Scenarios,
are needed to inform other parts of the process in order to make a
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(a) N1 (90-150 ms) over RF/RFC ROI

(b) P2 (150-270 ms) over LTP ROI

(c) N400 onset (270 - 430 ms) over RFT ROI

Figure 3: Grand ERP waveforms of three Scenarios with a
zoom on time windows 90-150ms, 150-270ms and 270-430ms
over significant ROIs (see Table 2) and the topological maps
of the location of the corresponding ROI. Averaged over 14
participants.

decision in each level. Our results suggest a transition network be-
tween attention and awareness process as an act upon stimuli input
and knowledge retrieval. This proposition is supported by different
latencies of relevant components supporting the notion of over-
lapped cognitive activity. We use this model as a reference and to
link the findings of separate RQs with the cognitive underpinnings
of the Scenarios.
Temporal signatures of IN realisation. To address RQ1 we
aimed to bring evidence that IN phenomenon is happening prior
to the user’s explicit decision to search and can be detected in
real-time based. Topologically, the earliest activity associated with
NeedToSearch depicting the N1 component was concentrated in
F/FC area with the right lateralisation. The evidence of RF/RFC ROI

(a) N400 onset (270-430 ms) over C/CP ROI

(b) N400 offset (430-570 ms) over RFT ROI

(c) N400 offset (430-570 ms) over PO/O ROI

Figure 4: Grand ERP waveforms of three Scenarios with a
zoom on time windows 270-430ms and 430-570ms over sig-
nificant ROIs (see Table 2) and the topological maps of the
location of the corresponding ROI. Averaged over 14 partici-
pants.

might be seen as an earliest sign associatedwith NeedToSearch level
(i.e., IN). Next, the shift to left lateralisation of TP ROI was found to
be a significant driver of P2 difference between NeedToSearch and
MemoryError level, with the lowest averages for NeedToSearch. In
summary, these findings of early rapid neural correlates suggest
early engaged awareness processes responsible for realisation of
IN. Following the findings of Paynter et al. [68], N1-P2 complex
signalises that the early activity emerging before the realisation
reaches user’s consciousness. The second phase of the timeline com-
plements the information process from the engagement of memory.
Here, the processing differed at the offset of N400 component. The
reduced amplitudes of NeedToSearch caused significant differences
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with the level MemoryError with the discriminative activity dis-
tributed in two ROI with anterior-posterior locality. In conclusion, it
seems that the signature features of NeedToSearch are concentrated
in the early phase of Awareness process which indicate that IN is
indexed by very early ERP components (N1-P2 component). The
result of reduced activity for NeedToSearch in anterior-posterior
areas at the offset of N400 might suggest an overlapping activity
between N400 and P6 which makes it difficult to separate the effect.
Variability in the cognitive processing. We found a consistency
in the neural manifestations, namely N1-P2, N400 and P6, underly-
ing each of the three Scenarios (RQ2). This finding supports the
data-driven model presented at the beginning of this Section and
describing the temporal dynamics of the cognitive operations. The
modulations of ERP suggest that during information processing, a
variety of cognitive processes are relied upon to different degrees
(RQ3). The early distinction between NeedToSearch and Memory-
Error levels might be indexing process of awareness about one’s
own knowledge, demonstrated by the occurrence of N1 component.
Moreover, the highest neural activity elicited for NeedToSearch
level early in the time indicates not only early availability of knowl-
edge cues but also, that knowledge cues might predicts the absence
of knowledge (and potentially lead to early IN realisation). The low-
ered amplitude of N1 for MemoryError indicates that when people
think they know the answer, less neural resources are recruited
[57] than when they think they don’t (NeedToSearch). The early
emergence of N1 is believed to be triggered regardless of the task
demands [69] and, as such, is used to measure early perceptual
processing [70]. The modulations of N1 are also contributed to
attention [69]. High early activity, demonstrated by P2 component
with differences pronounced in TP region suggests further sup-
port for activated processes of attention awareness and deploying
necessary resources to link attention and memory. P2 component
was found to be associated with early low-level sensory processing,
triggering early input processing, such as registration and input
classification [71]. Significantly higher P2 amplitudes for Memo-
ryError in contrast to NeedToSearch might suggest differences in
the cognitive effort associated with memory recall [72, 73], and
precisely higher memory strength [74]

The N1-P2 effect could represent some kind of early recognition
of the stimulus with an increased attention [75] to an item which
has a certain degree of familiarity, possibly employing the retrieval
from contextual memory [76] and recall of past experiences [74],
which might interpret the amplified amplitude for MemoryError
level. Contextual (source) memory stores the background context
of the person’s past experiences as the core of episodic memory
[77].

The immediate sequence of the offset of P2 and the onset of
N400 seems to be an indication of a link between early and late pro-
cesses [74, 78]. P2 emergence confirms the availability of memory
and, thus, supports the decision by memory search and verifica-
tion, which is amplified as N400. Modulation of N400 component is
considered to correlate with familiarity, however, there is not a con-
sensus what this component indexes. As Diana et al. [74] suggest,
the later ERP effects might index co-occurring memory phenomena
or an initiation of memory search and, thus, not necessarily index
just one process. The emergence of N400 in connection to memory
marks the attempts of deeper memory search [74].

The late activity depicting the offset of N400 with the signif-
icant anterior-posterior distribution, signalising memory-driven
processes. A sustained activity of P6 might be triggered by final ver-
ification checks maintaining the previously triggered processes of
awareness and memory search and the flow of information between
significant parts of the brain resulting in an conscious response to
stimuli [79].
MemoryError level and Proactive IR support. According to
design of the study, the participants were asked to choose the cor-
rect answer to the question or to acknowledge the state of not
knowing. What is the explanation for a choice of MemoryError,
then? As our data showed, MemoryError was part of several pair-
wise contrasts. Specifically, the amplified frontal signal N400 for
MemoryError level, significantly different in contrast to Correc-
tRecall, might signalise a potential issue with the controlled (later)
processes of memory search. This could imply that the incorrect
knowledge was already encoded in their memory, causing such
difference to exhibit, and the phenomenons such as memory error
[24] of false memory appeared [80].

Could IR intervene and rectify the awareness about this mislead-
ing and unknown-to-user knowledge anomaly? More research is
need to answer this question, but the present indicates that the
neural correlates are sensitive to this phenomenon. As we noted
at the beginning, the anticipation of INs is one of the desired func-
tionalities of proactive systems. The functionality extends over the
potential support for MemoryError level in order to prevent users
from failing and reduce the future INs linked with MemoryError.
More is however needed to investigate to understand the associated
user behaviours. At last, more insight might provide the investi-
gation of the answer choices themselves acting as the alternatives
of the user judgments. Specifically, what is the trade-off between
the choices, e.g. MemoryError and NeedToSearch, and how it can
impact the user’s behaviours in situations which require to assess
their knowledge.

7 CONCLUSIONS
Our study contributes with a novel interdisciplinary NeuraSearch-
based outtake to evaluate the spectrum of states of knowledge. Our
study meets the criteria for objective evaluation of EEG response
based on data-driven analysis. We inferred the variability of brain
activity based on the contrast of IN state with the two other (no-IN)
scenarios. We formally assessed the overall pattern of electrical ac-
tivity split into time windows to project a state of INs. Our findings
differentiated between ERP components elicited for the present Sce-
narios and provided us with the evidence of orchestrated activity
between the cognitive functions. Further insight can advance the
interpretation of the realisation of IN in the brain, e.g. to directly
decode IN from the brain data and validate the robustness of these
patterns outcomes in a study with larger sample of participants
and in different contextual IN scenarios. Furthermore, the question
of how the present knowledge could be exploited in the search
applications, is desirable. The study serves to account for a more
accurate model of an a-priori state of the user determining INs. The
discovered neural mechanisms are the basis for modelling of user
interactions and behaviours and, in turn, open the discussion about
the system (proactive) response.

9



, , 2021 Anon.

REFERENCES
[1] W.S. Cooper. A definition of relevance for information retrieval. Information

Storage and Retrieval, 7(1):19–37, 1971.
[2] Peter Ingwersen. Information Retrieval Interaction. Taylor Graham Publishing,

GBR, 1992.
[3] Robert S. Taylor. Question-Negotiation and Information Seeking in Libraries.

College & Research Libraries, 29(3):178–194, 1968.
[4] Nicholas Belkin, R.N. Oddy, and H.M. Brooks. ASK for information retrieval:

Part I. Background and theory. Journal of Documentation, 38:61–71, 12 1982.
[5] T.D. Wilson. On user studies and information needs. Journal of Documentation,

37(1):3–15, 1981.
[6] Carol C. Kuhlthau. Inside the Search Process: Information Seeking from the User’s

Perspective. Journal of the American Society for Information Science, 42(5):361–371,
1991.

[7] Peter Ingwersen. Cognitive perspectives of information retrieval interaction:
Elements of a cognitive ir theory. Journal of Documentation, 52:3–50, 01 1996.

[8] P. Ingwersen. Psychological aspects of information retrieval. Social Science
Information Studies, 4(2):83–95, 1984. Special Issue Seminar on the Psychological
Aspects of Information Searching.

[9] Charles Cole. A theory of information need for information retrieval that connects
information to knowledge. Information Today Inc., 2012.

[10] Reijo Savolainen. Conceptualizing information need in context. Technical
Report 4, 2012.

[11] Reijo Savolainen. Information need as trigger and driver of information seeking:
a conceptual analysis. Aslib Journal of Information Management, 69(1):2–21, 2017.

[12] Richard L. Derr. A conceptual analysis of information need. Information Processing
& Management, 19(5):273–278, 1983.

[13] Brenda Dervin and Michael Nilan. Information Needs and Uses. Journal of the
Medical Library Association, 9, 11 2002.

[14] Charles Cole. Taylor’s Q1 “Visceral” level of information need: What is it?".
Information Processing & Management, 57(2), 2020.

[15] Waseem Afzal. A proposed methodology for the conceptualization, operational-
ization, and empirical validation of the concept of information need. Information
Research, 22(3):1–16, September 2017. Includes bibliographical references.

[16] Karen Markey. Levels of question formulation in negotiation of information need
during the online presearch interview: A proposed model. Information Processing
Management, 17(5):215–225, 1981.

[17] Carol C. Kuhlthau. Developing a model of the library search process: Cognitive
and affective aspects. RQ, 28(2):232–242, 1988.

[18] Michael Bendersky and W. Bruce Croft. Analysis of long queries in a large scale
search log. In Proceedings of the 2009 Workshop on Web Search Click Data, WSCD
’09, page 8–14, New York, NY, USA, 2009. Association for Computing Machinery.

[19] Robert S. Taylor. The process of asking questions. American Documentation,
13(4):391–396, 1962.

[20] Yashar Moshfeghi, Peter Triantafillou, and Frank E. Pollick. Understanding
Information Need. In Proceedings of the 39th International ACM SIGIR conference
on Research and Development in Information Retrieval - SIGIR ’16, 2016.

[21] Yashar Moshfeghi, Peter Triantafillou, and Frank Pollick. Towards predicting a
realisation of an information need based on brain signals. In The World Wide Web
Conference, WWW ’19, page 1300–1309, New York, NY, USA, 2019. Association
for Computing Machinery.

[22] Yashar Moshfeghi and Frank Pollick. Neuropsychological model of the realization
of information need. Journal of the Association for Information Science and
Technology, 05 2019.

[23] Yashar Moshfeghi and Frank E. Pollick. Search process as transitions between
neural states. In Proceedings of the 2018 World Wide Web Conference, WWW ’18,
page 1683–1692, Republic and Canton of Geneva, CHE, 2018. International World
Wide Web Conferences Steering Committee.

[24] Victor van der Veen, Nitish dutt Sharma, Lorenzo Cavallaro, and Herbert Bos.
Memory errors: The past, the present, and the future. In Davide Balzarotti,
Salvatore J. Stolfo, and Marco Cova, editors, Research in Attacks, Intrusions, and
Defenses, pages 86–106, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[25] Sumit Bhatia, Debapriyo Majumdar, and Nitish Aggarwal. Proactive information
retrieval: Anticipating users’ information need. In Nicola Ferro, Fabio Crestani,
Marie-FrancineMoens, JosianeMothe, Fabrizio Silvestri, GiorgioMaria Di Nunzio,
Claudia Hauff, and Gianmaria Silvello, editors, Advances in Information Retrieval,
pages 874–877, Cham, 2016. Springer International Publishing.

[26] Johanne R. Trippas. Spoken conversational search: Audio-only interactive infor-
mation retrieval. SIGIR Forum, 53(2):106–107, mar 2021.

[27] Jianfeng Gao, Chenyan Xiong, and Paul Bennett. Recent Advances in Conversa-
tional Information Retrieval, page 2421–2424. Association for Computing Ma-
chinery, New York, NY, USA, 2020.

[28] Manoj Kumar Chinnakotla and Puneet Agrawal. Lessons from building a large-
scale commercial ir-based chatbot for an emerging market. In The 41st Inter-
national ACM SIGIR Conference on Research amp; Development in Information
Retrieval, SIGIR ’18, page 1361–1362, New York, NY, USA, 2018. Association for

Computing Machinery.
[29] Hamid Keshavarz. Human information behaviour and design, development

and evaluation of information retrieval systems. Program: electronic library and
information systems, 42, 09 2008.

[30] N. Belkin, R. Oddy, and H. Brooks. ASK for Information Retrieval: Part II. Results
of a Design Study. The Journal of Documentation, 38:145–164, 1982.

[31] Markus Koskela, Petri Luukkonen, Tuukka Ruotsalo, Mats SjÖberg, and Patrik
Floréen. Proactive information retrieval by capturing search intent from primary
task context. ACM Trans. Interact. Intell. Syst., 8(3), jul 2018.

[32] Jan R. Benetka, Krisztian Balog, and Kjetil Nørvåg. Anticipating information
needs based on check-in activity. In Proceedings of the 10th ACM International
Conference on Web Search and Data Mining, WSDM ’17, page 41–50, New York,
NY, USA, 2017. Association for Computing Machinery.

[33] Jan Benetka, John Krumm, and Paul Bennett. Understanding context for tasks and
activities. In The Fourth ACM SIGIR Conference on Human Information Interaction
and Retrieval (CHIIR 2019). ACM, March 2019.

[34] Annika M. Hinze, Carole Chang, and David M. Nichols. Contextual queries ex-
press mobile information needs. In Proceedings of the 12th International Conference
on Human Computer Interaction with Mobile Devices and Services, MobileHCI ’10,
page 327–336, New York, NY, USA, 2010. Association for Computing Machinery.

[35] Yashar Moshfeghi and Joemon M. Jose. An effective implicit relevance feedback
technique using affective, physiological and behavioural features. In Proceedings
of the 36th international ACM SIGIR conference on Research and development in
information retrieval - SIGIR ’13, 2013.

[36] Mateusz Dubiel, Martin Halvey, Leif Azzopardi, and Sylvain Daronnat. Interactive
evaluation of conversational agents: Reflections on the impact of search task
design. In Proceedings of the 2020 ACM SIGIR on International Conference on
Theory of Information Retrieval, ICTIR ’20, page 85–88, New York, NY, USA, 2020.
Association for Computing Machinery.

[37] Mateusz Dubiel, Martin Halvey, Leif Azzopardi, and Sylvain Daronnat. Investi-
gating how conversational search agents affect user’s behaviour, performance
and search experience. 07 2018.

[38] Salvatore Andolina, Valeria Orso, Hendrik Schneider, Khalil Klouche, Tuukka
Ruotsalo, Luciano Gamberini, and Giulio Jacucci. Investigating proactive search
support in conversations. In Proceedings of the 2018 Designing Interactive Systems
Conference, DIS ’18, page 1295–1307, New York, NY, USA, 2018. Association for
Computing Machinery.

[39] Ian Ruthven. The language of information need: Differentiating conscious and
formalized information needs. Information Processing and Management, 56(1):77–
90, 2019.

[40] Jaime Arguello, Adam Ferguson, Emery Fine, Bhaskar Mitra, Hamed Zamani,
and Fernando Diaz. Tip of the tongue known-item retrieval: A case study in
movie identification. In Proceedings of the 2021 Conference on Human Informa-
tion Interaction and Retrieval, CHIIR ’21, page 5–14, New York, NY, USA, 2021.
Association for Computing Machinery.

[41] Sosuke Shiga, Hideo Joho, Roi Blanco, Johanne R. Trippas, and Mark Sanderson.
Modelling Information Needs in Collaborative Search Conversations. pages
715–724, 2017.

[42] Yashar Moshfeghi. Neurasearch: Neuroscience and information retrieval. In
Omar Alonso, Stefano Marchesin, Marc Najork, and Gianmaria Silvello, editors,
Proceedings of the Second International Conference on Design of Experimental
Search & Information REtrieval Systems, Padova, Italy, September 15-18, 2021,
volume 2950 of CEUR Workshop Proceedings, pages 193–194. CEUR-WS.org, 2021.

[43] Gernot Müller-Putz, René Riedl, and Selina Wriessnegger. Electroencephalogra-
phy (eeg) as a research tool in the information systems discipline: Foundations,
measurement, and applications. Communications of the Association for Informa-
tion Systems, 37:911–948, 01 2015.

[44] Jacek Gwizdka, Yashar Moshfeghi, and Max L. Wilson. Introduction to the special
issue on neuro-information science. Journal of the Association for Information
Science and Technology, 70(9):911–916, 2019.

[45] Tefko Saracevic. The stratified model of information retrieval interaction: Ex-
tension and application. Proceedings of the ASIS Annual Meeting, 34:313–327, 01
1997.

[46] Marco Allegretti, Yashar Moshfeghi, Maria Hadjigeorgieva, Frank E. Pollick,
Joemon M. Jose, and Gabriella Pasi. When relevance judgement is happening? an
eeg-based study. In Proceedings of the 38th International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’15, page 719–722,
New York, NY, USA, 2015. Association for Computing Machinery.

[47] Zuzana Pinkosova, William J. McGeown, and Yashar Moshfeghi. The cortical
activity of graded relevance. In Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’20, page
299–308, New York, NY, USA, 2020. Association for Computing Machinery.

[48] Lauri Kangassalo, Michiel Spapé, Giulio Jacucci, and Tuukka Ruotsalo. Why do
users issue good queries?: Neural correlates of term specificity. In Proceedings
of the 42nd International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR’19, pages 375–384, United States, 2019. ACM,
Association for Computing Machinery.

10



Information Need Awareness: an EEG study , , 2021

[49] Yashar Moshfeghi, Luisa R. Pinto, Frank E. Pollick, and Joemon M. Jose. Un-
derstanding relevance: An fMRI study. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 2013.

[50] Giulio Jacucci, Oswald Barral, Pedram Daee, MarkusWenzel, Baris Serim, Tuukka
Ruotsalo, Patrik Pluchino, Jonathan Freeman, Luciano Gamberini, Samuel Kaski,
and Benjamin Blankertz. Integrating neurophysiologic relevance feedback in in-
tent modeling for information retrieval. Journal of the Association for Information
Science and Technology, 70(9):917–930, 2019.

[51] Angel Jimenez-Molina, Cristian Retamal, and Hernan Lira. Using psycho-
physiological sensors to assess mental workload in web browsing. Sensors,
18, 01 2018.

[52] Jacek Gwizdka, Rahilsadat Hosseini, Michael Cole, and Shouyi Wang. Temporal
dynamics of eye-tracking and eeg during reading and relevance decisions. Journal
of the Association for Information Science and Technology, 68, 08 2017.

[53] Jukka-Pekka Kauppi, Melih Kandemir, Veli-Matti Saarinen, Lotta Hirvenkari,
Lauri Parkkonen, Arto Klami, Riitta Hari, and Samuel Kaski. Towards brain-
activity-controlled information retrieval: Decoding image relevance from meg
signals. NeuroImage, 112:288 – 298, 2015.

[54] Serena Midha, Horia A. Maior, Max L. Wilson, and Sarah Sharples. Measuring
mental workload variations in office work tasks using fnirs. International Journal
of Human-Computer Studies, 147:102580, 2021.

[55] Horia A. Maior, Richard Ramchurn, Sarah Martindale, Ming Cai, Max L. Wilson,
and Steve Benford. Fnirs and neurocinematics. In Extended Abstracts of the 2019
CHI Conference on Human Factors in Computing Systems, CHI EA ’19, page 1–6,
New York, NY, USA, 2019. Association for Computing Machinery.

[56] Carlos de la Torre-Ortiz, Michiel M. Spapé, Lauri Kangassalo, and Tuukka Ruot-
salo. Brain relevance feedback for interactive image generation. In Proceedings
of the 33rd Annual ACM Symposium on User Interface Software and Technology,
UIST ’20, page 1060–1070, New York, NY, USA, 2020. Association for Computing
Machinery.

[57] Steven Luck. An Introduction to The Event-Related Potential Technique. 01 2005.
[58] The ten twenty electrode system: International federation of societies for elec-

troencephalography and clinical neurophysiology. American Journal of EEG
Technology, 1(1):13–19, 1961.

[59] Emily Kappenman and Steven Luck. Best practices for event-related potential
research in clinical populations. Biological Psychiatry: Cognitive Neuroscience and
Neuroimaging, 1, 11 2015.

[60] Elizabeth F. Chua, Rifat Ahmed, and Sandry M. Garcia. Effects of HD-tDCS
on memory and metamemory for general knowledge questions that vary by
difficulty. Brain Stimulation, 10(2):231–241, 2017.

[61] Olaf Dimigen, Werner Sommer, Annette Hohlfeld, Arthur Jacobs, and Reinhold
Kliegl. Coregistration of eye movements and eeg in natural reading: Analyses
and review. Journal of experimental psychology. General, 140:552–72, 07 2011.

[62] Peter Hagoort. Interplay between syntax and semantics during sentence com-
prehension: ERP effects of combining syntactic and semantic violations. Journal
of Cognitive Neuroscience, 15(6):883–899, 2003.

[63] Tali Ditman, Phillip J. Holcomb, and Gina R. Kuperberg. An investigation of con-
current ERP and self-paced reading methodologies. Psychophysiology, 44(6):927–
935, 2007.

[64] Manuel J.A. Eugster, Tuukka Ruotsalo, Michiel M. Spapé, Oswald Barral, Niklas
Ravaja, Giulio Jacucci, and Samuel Kaski. Natural brain-information interfaces:
Recommending information by relevance inferred from human brain signals.
Scientific Reports, 2016.

[65] A. Delorme and Scott Makeig. Eeglab: an open source toolbox for analysis of
single-trial eeg dynamics including independent component analysis. Journal of
Neuroscience Methods, 134:9–21, 2004.

[66] Nima Bigdely-Shamlo, Tim Mullen, Christian Kothe, Kyung-Min Su, and Kay A.
Robbins. The prep pipeline: standardized preprocessing for large-scale eeg
analysis. Frontiers in Neuroinformatics, 9:16, 2015.

[67] Phillip Alday. How much baseline correction do we need in erp research?
extended glm model can replace baseline correction while lifting its limits. Psy-
chophysiology, 56, 07 2017.

[68] Christopher A. Paynter, LynneM. Reder, and Paul D. Kieffaber. Knowing we know
before we know: Erp correlates of initial feeling-of-knowing. Neuropsychologia,
47(3):796 – 803, 2009.

[69] Steven Hillyard, Robert Hink, Vincent Schwent, and Terence Picton. Electrical
signs of selective attention in the human brain. Science (New York, N.Y.), 182:177–
80, 11 1973.

[70] Elizabeth Bauer, Kayla Wilson, and Annmarie MacNamara. Cognitive and Affec-
tive Psychophysiology. 01 2020.

[71] Joel L. Voss and Ken A. Paller. pages 81–98. Number September 2016. Elsevier,
3rd edition, 2016.

[72] Nicole Franke, Ralph Radach, Arthur Jacobs, and Markus Hofmann. No one way
ticket from orthography to semantics in recognition memory: N400 and p200
effects of associations. Brain Research, 1639, 02 2016.

[73] Patricia Bauer and Felicia Jackson. Semantic elaboration: Erps reveal rapid
transition from novel to known. Journal of experimental psychology. Learning,
memory, and cognition, 41, 08 2014.

[74] Rachel A. Diana, Kaia L. Vilberg, and LynneM. Reder. Identifying the erp correlate
of a recognition memory search attempt. Cognitive Brain Research, 24(3):674 –
684, 2005.

[75] Viktor Mueller, Yvonne Brehmer, Timo von Oertzen, Shu-Chen Li, and Ulman
Lindenberger. Electrophysiological correlates of selective attention: A lifespan
comparison. BMC neuroscience, 9:18, 02 2008.

[76] Chun yan Guo, Li Duan, Wen Li, and Ken A. Paller. Distinguishing source
memory and item memory: Brain potentials at encoding and retrieval. Brain
Research, 1118:142–154, 2006.

[77] Larry R. Squire and Stuart M. Zola. Structure and function of declarative and
nondeclarative memory systems. Proceedings of the National Academy of Sciences,
93(24):13515–13522, 1996.

[78] Joseph Dien, Charles Michelson, and Michael Franklin. Separating the visual
sentence n400 effect from the p400 sequential expectancy effect: Cognitive and
neuroanatomical implications. Brain research, 1355:126–40, 10 2010.

[79] Haopei Yang, Geoffrey Laforge, Bobby (Boge) Stojanoski, Emily Nichols, Ken
McRae, and Stefan Köhler. Late positive complex in event-related potentials
tracks memory signals when they are decision relevant. Scientific Reports, 9, 12
2019.

[80] C. Brainerd and V. Reyna. The Science of False Memory. Oxford University Press,
2005.

11


	Abstract
	1 Introduction
	2 Relevant Work
	3 Preliminaries
	4 Methodology
	4.1 Procedures
	4.2 ERP Analytical Framework

	5 Results
	6 Discussion
	7 Conclusions
	References



