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Abstract Ballistic capture is a phenomenon by which a spacecraft approaches
its target body, and performs a number of revolutions around it, without requir-
ing manoeuvres in between. Capture orbits are characterized by specific dynam-
ics, defining r egions t hat g uide t ransport p henomena. B ecause o f t he limitations
associated with existing approaches, the development of heuristics informed by
Lagrangian Coherent Structures appears desirable. In fact, such structures iden-
tify transport barriers in dynamical systems, separating regions with qualitatively
different dynamics.

In this work, different flow-informed approaches are presented, and their relations
with ballistic capture are discussed. A new heuristic, the time-varying strainline,
is introduced. This new tool is applied to compute ballistic capture orbits around
Mars. Different degrees of model fidelity have been investigated, mainly in order to
test the robustness of the proposed technique with respect to different features of
the underlying dynamical model. We show that time-varying strainlines are useful
in identifying ballistic capture orbits.
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1 Introduction

Mission design is a trade-off between model accuracy and design feasibility. With
the development of tools to tackle complex systems, their understanding is ex-
panded and new solutions are revealed. The space community is therefore focusing
on the exploitation of dynamical nuances of the solar system: low-energy transfers
are a new design ingredient made available by such approach.

A family of low-energy transfer trajectories is given by the ones making use of
ballistic capture: these are natural orbits characterized by a small excess velocity
upon arrival to a target body (Belbruno and Miller, 1993). Ballistic capture orbits
are interesting from a space mission design point of view. In fact, making use of
more traditional approaches, some designs are excluded in an early stage; more-
over, in order to deal with the possibility of single point failures, strict robustness
requirements have to be satisfied (Schoenmaekers, 2004; Jehn et al., 2004). Ballis-
tic capture orbits are attractive also because of their wider launch windows, since
the alignment between the Earth and the target body is not necessary (Topputo
and Belbruno, 2009). The use of low-energy transfers has been recently proposed
for a number of space missions (Koon et al., 2001a; Topputo and Belbruno, 2015;
Mazanek et al., 2013; Cox et al., 2019).

Ballistic capture trajectories make use of the chaotic nature and, in general, of the
nuances of the dynamical system causing the motion (Short et al., 2015). In order
to make their implementation feasible, the introduction of flow-informed strategies
appears desirable. Developed in works focused on hyperbolic Lagrangian Coherent
Structures (LCSs), this research project builds on the Finite-Time Lyapunov Ex-
ponent (FTLE) and the Finite-Iteration Lyapunov Exponent (FILE) scalar fields
(Haller, 2010; Farazmand and Haller, 2012; Gawlik et al., 2009). Such structures
are an attempt to generalize the concept of invariant manifolds, separating regions
of the phase space associated to qualitatively different behaviours: they are defined
in non-autonomous systems and, when applied to autonomous ones, they coincide
with invariant manifolds (Teramoto et al. (2013)).

The objective of this work, expressed in high level terms, deals with further devel-
oping the theoretical underpinning of low-energy transfer orbits, by making use of
LCSs in time-dependent dynamical systems. As a secondary goal, the secondary
theoretical comparison between traditional methods related to the ballistic capture
literature and the ones coming from the LCS field of research, makes it possible
to contribute building an encompassing theory.

A number of reasons justify the use of LCS in ballistic capture trajectory design,
together with the development of related tools and heuristics: the application of
analytical, differential instruments leads to high-accuracy results; applicability in
arbitrary subsets of the phase space is desirable, in order to gain insights into
the phenomenon. The potential reduction of computational cost can increase the
applicability of the technique for the Guidance, Navigation, and Control (GNC)
system of autonomous missions; at the same time, the proposed flow-informed
approach can be superimposed onto models of different fidelities, making it suitable
for different phases of the trajectory design process.
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This is done building from a number of existing heuristics and flow-informed ap-
proaches; in particular, the strain tensor associated to astrodynamics dynamical
systems is analyzed in order to compute ballistic capture orbits, via the compu-
tation of time-varying stroboscopic strainlines, here introduced. In this way the
phase space can be divided into dynamically distinct regions.

The paper is structured as follows. Section 2 presents the various reference frames
and the equations of motion used in this work; the variational equations, leading
to the Cauchy—Green (CG) Strain Tensor, are also discussed here. Section 3 fo-
cuses on the ballistic capture phenomenon, defining the Capture Set and the Weak
Stability Boundary (WSB). Section 4 leads from existing scalar fields to the defini-
tion of Time-varying Strainlines, the core idea of this work. Section 5 presents the
results comparing traditional algorithms with the given flow-informed approach.
The geometry of the resulting trajectories will be given and discussed; also, a
flow-informed strategy, applicable to construct ballistic capture trajectories, will
be outlined. Section 6 contains the conclusions, underlining areas in which future
developments appear desirable.

2 Background
2.1 Reference Frames and Equations of Motion
2.1.1 Reference Frames

In order to implement a real ephemerides models, making use of the SPICE
Toolkit!, the Earth Mean Equator and Equinoz of J2000 (EME2000) reference
frame is introduced (Luo et al., 2014). This is an Earth centered inertial refer-
ence frame, where the +x-axis (z.) points at the mean equinox at J2000, the
+z-axis (z¢) points at the celestial North Pole and the +y-axis (y.) completes the
right-handed reference frame (Wakker, 2015).

In literature, the ballistic capture phenomenon has mainly been studied with re-
spect to reference frames related to the orbit of the target body; in the Radial-
Tangent-Normal frame at epoch tg (RTNQtg, for brevity), centred at the target
body, the z-axis (z,) is perpendicular to the plane of the Sun orbit, the x-axis (z,)
is aligned with the Sun-planet line, pointing from the Sun to the planet and the
y-axis (yr) completes the dextral orthonormal triad. The transformation from the
RTN@tp to the EME2000 can be found in Luo and Topputo (2015).

An additional reference frame, the Roto-pulsating reference frame, introduced in
Dei Tos and Topputo (2017), has been used to represent the results given in Section
5: this allows to compare results from models of different fidelities, and better
understand the effect of specific perturbations.

2.1.2 Equations of Motion

The proposed flow-informed technique can be superimposed onto models of dif-
ferent fidelities: because of this, a restricted n-body problem, with the addition of

lhttps://naif.jpl.nasa.gov/naif/toolkit.html - last visited: 11-05-2021
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Solar Radiation Pressure (SRP) and Non-Spherical Gravity (NSG), will be used
to formulate the equations of motion.

Considering a system of n bodies, n — 1 of which called primaries, it is interesting
to study the motion of a particle of negligible mass with respect to them. Following
Luo and Topputo (2015), in order to underline the hierarchy of influence of the
bodies on the motion of the particle, the motion is governed by:

rs r r; r—r;
”*”“S(*ﬂwrsn?’)‘ Z”(* ||rfr||3) M)

In Equation (1), r identifies the position of the spacecraft with respect to the origin
of the reference frame, in which the target body is located; r is the magnitude of
that vector. p is the gravitational parameter of the target body and pu; the one
of body 14; r; is the position vector of body i and r; is its magnitude. Finally, Q is
the set of n — 3 perturbing bodies, Sun excluded.

When SRP and the NSG of the target body are taken into account (Aguiar and
Topputo, 2018), the dynamics is governed by:
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The effect of (cannonball) SRP is modelled using (Wakker, 2015):

CRLSA r—rg
dre m|lr —rs||3

fsrp = (3)
where Lg is the luminosity of the Sun, c is the speed of light, C is the reflectivity
of the spacecraft and A and m are its effective area and mass, both assumed
constants; r and rs are the position vectors of the spacecraft and of the Sun,
respectively.

Unsc is an approximation of the gravitational potential function of the target
body (Wakker, 2015), given by:

Unsa =& [Z In (g) Po(sin ¢)+

n=2

I i Zn: Jnm <§)n Ppom(sin @) cosm(A — Apm)|  (4)

n=2m=1

In Equation (4), P,() and Py m() are Legendre polynomials and associated Leg-
endre functions of the first kind, R is the reference radius, r the distance from the
body center of mass and p its standard gravitational parameter; ¢ is the geocentric
latitude, A is the geographic longitude. These spherical coordinates are relative to
a target-fixed reference frame, centred at the barycenter.

Finally, in Equation (2), Q¢—; is the rotation matrix relating the planet-fixed
reference frame, in which Uy g is defined, and the pseudo-inertial reference frame,
in which the equations of motion are written.
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2.2 Variational Equations

Independently of the active terms in Equation (2), once the reference frame is
given, the motion of the massless body can be described by the differential equation
associated to the state of the system, which allows one to reduce the order of the
differential equation at the expenses of doubling the dimensionality of the problem:

{xm = f(x(t),t) 5)

X(to) = Xo

with x(t) € 2 C R®. As usual, the first order differential equation (the wvelocity
map) can be obtained at the expenses of doubling the number of independent
variables of the system (Meiss, 2007). Because of the nature of the (perturbed)
n-body problem presented above, there is a direct dependence with respect to time
in the velocity: the system is non-autonomous.

Using such formalism, the State Transition Matriz (STM) is defined by:
P := P(t;10,%0) = Dxyx(t;t0,%0) (6)
and its propagation can be performed by means of:

$ = Dyf(x,1)®
{ﬂmmezh (7)

where Dxf(x,t) is the Jacobian of the velocity field and I,, is the identity matrix
of size m; the derivation of Equation (7) is given, among others, in Milani and
Gronchi (2004). The joint system, characterized by n + n? independent variables,
defines the Variational equations, allowing to propagate the STM of the dynamical
system.

2.2.1 Cauchy—Green Strain Tensor

The (Finite-time) CG Strain Tensor can now be introduced:

A(T,x0,t0) := @T(to + T';x0,t0)®(to + T'; %0, to) (8)

It allows to quantify the relative stretching of nearby trajectories for a given time
interval (Short, 2016). The CG tensor A, symmetric and positive definite, is there-
fore characterized by n real positive eigenvalues: the spectral decomposition of this
object enables the study of the ballistic capture process. It relates the final state
offset, with respect to the initial one, by means of the following Taylor expansion:

||5X(to + T)H2 =~ (SX(—)r . ‘I’(to + T;Xo,to)T . Q’(to + T Xo,to) - 0Xp =
= 6xg - A(T,x0,10) - 6x0  (9)
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2.3 Implementation

In order to integrate the equations of motion and implement all the methodol-
ogy outlined, making use of the SPICE ephemerides, the GRAvity Tidal Slide
(GRATIS) toolbox has been used. Numerical integration of the equations of mo-
tion is performed, making use of the ode113 MATLAB integrator (Shampine and
Reichelt, 1997). This function makes use of an Adams-Bashforth-Moulton variable
step size integration routine. Because the size of the celestial bodies are fed into
GRATIS, the propagation can be stopped before any need to map the propagated
state onto a singularity-free space, regularizing the equations of motion; loss of
significance is nevertheless addressed in this work (Battin (2000), Section 8.4).

GRATIS works with dimensionless quantities. Physical quantities are normalized,
making use of the following units: the unit of length DU is given by the mean
radius of the central body. In the case of Mars, this is equal to 3396 km. The unit
of time is given by TU = /DU3 /i, where p is the gravitational parameter of the
central body; in the case of Mars, this unit is approximately equal to 16 minutes.
Finally, the spacecraft has been modelled as a point mass with a mass-to-area
ratio of 40 kg/m?, and a reflectivity of 1.1.

3 Ballistic Capture

Combining the definitions given in Belbruno (2004) and Koon et al. (2001b), bal-
listic capture is a phenomenon by means of which a spacecraft approaches a target
celestial body and starts revolving around it only by means of interactions with
two or more celestial bodies. The study of the phenomenon allows to use low-
energy transfers to reach a celestial body, eliminating the need for an injection
manoeuvre, and, therefore, the possibility of single-point failures.

Considering, in the context of a perturbed n-body problem, the motion of the
massless particle with respect to the target body, it is possible to characterize the
space of initial conditions, investigating the behaviour of the resulting trajectory.
This has been done using a number of stability criteria: Garcia and Gémez (2007)
and Topputo and Belbruno (2009) introduced algorithmic categorizations for the
planar case, extended by Romagnoli and Circi (2009) and Mako et al. (2010) to
the 3D case; Belbruno (2004) presented analytical approximations of the same
criterion. In this work, the orbit classification is performed using the method in-
troduced in Luo et al. (2014) and expanded in Luo and Topputo (2015), in which a
number of indicators, associated to the semi-plane defined by the initial conditions,
are used to investigate the evolution of the trajectory. The set of initial conditions
can be divided into four subsets: the n-Weakly Stable Set (W, ), n-Unstable Set
(Xy), the n-Crash Set () and the n-Acrobatic Set (D). All the elements of the
initial conditions set belong to one and only one of them.

It is relevant to notice that n can also assume negative values: backward stability
is discussed in Hyeraci and Topputo (2010, 2013). This allows to define the Cap-
ture Set, containing all the initial conditions associated to orbits that, after being
captured by the target body, naturally perform n revolutions around it:

Cfl = Xfl N Wn (10)
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In order to rank the elements of the capture set, starting from Luo et al. (2014),
a Normalized Stability Index is here used. It is given by

= S

S = 11

= (1)
with
tn — to
n

S:

o ]W (12)

— ep

, Sk =27

o= |3
where t,, is the time at which the nt" revolution is completed and rg, eg are the
periapsis radius and the eccentricity of the initial condition: this normalization
allows to investigate the stability of the orbits, irrespective of their sizes.

The Weak Stability Boundary 0V can therefore be introduced: it identifies the
separatrix between those points in the phase space leading to capture orbits and
those leading to different behaviours, such as escape orbits. In order to identify
an initial point on the WSB, a bisection method defined in polar coordinates has
been here implemented, as discussed in Topputo and Belbruno (2009): the possible
Cantor-like structure of the Stable Set, discussed in Sousa Silva and Terra (2012),
has been here neglected. This work is focused on the identification of the closure
of both the Stable Set (i.e., the Weak Stability Boundary), and of the Unstable
Set.

4 Lagrangian Coherent Structures

In order to study nonlinear and non-autonomous dynamical systems, LCSs have
been recently introduced? (Haller, 2015; Short et al., 2011; Gawlik et al., 2009;
Short, 2016). The structures presented in this section are an attempt to generalize
the concept of invariant manifolds, identifying transport barrier, separating regions
of the phase space with qualitatively different dynamics.

4.1 Heuristics

In Gawlik et al. (2009), a particular use of Poincaré sections (Meiss, 2007) is pro-
posed, and the Finite-Iteration Lyapunov Exponents (FILE) are introduced; with
such an approach, a given hyperplane can be advected until the orbits intersect it
N times.

The FILE field is related with the capture orbits categorization and, therefore,
with the WSB definition: in both cases the orbit is advected for a variable time.
Because of this, one could still consider the non-projected flow and introduce a

2While such nomenclature has been first encountered in fluid dynamics works, similar
efforts had been conducted in the celestial mechanics community to investigate chaos (Froeschlé
et al., 1997). Such a parallelism can be traced back to the streamline analogy given in Szebehely
(1967).



A flow-informed strategy for ballistic capture orbit generation

8 M. Manzi, F. Topputo

time-varying Finite Time Lyapunov Exponent (FTLE)? field

de /N0 (x)
dx

T 1
UtDN(XO)(X) N TN (x0)] os

| w

where Tn(x0), being the time it takes for the propagated orbit to intersect a
section of the phase space, is a function of the initial state.

Another conceptual step away from Poincaré mapping allows to consider the inter-
section of the orbit in physical space with a variable 2D plane, defined by the initial
condition of the orbit: in this way, each stable initial condition will be associated
to a time T, necessary to perform N revolutions around the target body.

4.2 Time-varying Strainlines

LCSs are characterized by a number of conditions (Haller, 2010; Farazmand and
Haller, 2012), one of which is given, for 2D mappings, by:

gl(x()vto’T) ” Ton(tO) (14)

expressing the fact that the curve I'(t) C R?, called strainline, is tangent to the
eigenvector &1, associated to the smallest eigenvalue A1 of the CG strain tensor
AingT(xo). A strainline I'(tp) C R? is obtained solving the following Cauchy
problem:

x'(s) = &1(x(s),t0,T)
x(0) =x0 € 2 (15)
€] =1

Such strainlines lead to the definition of ridges dividing (at least in a statistical
sense) the plane in dynamically distinct regions: one is therefore interested in
computing the WSB, playing a similar role in ballistic capture, with a similar
approach, instead of obtaining it from the computation of the capture set. In
order to do this, time-varying Strainlines are introduced here.

A time-varying Strainline, A(t) C R2, is the solution of a more general Cauchy
problem:

x'(s) = &1(x(s), to, Tn (s))
x(0) =x0 € 12 (16)
ST

where Tn(s) is a function of the independent variable s through x(s), being the

time necessary to perform N revolutions around the target body, as discussed in
Section 4.1.

3For a discussion about the limitations of the FTLE field see, e.g., Kelley et al. (2013);
Haller (2010)
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4.3 Planar mapping

Because time-varying Strainlines are associated to a two-dimensional mapping, it
is necessary to embed the physical flow, operating on R®, and introduce a new map

, operating on R2. This procedure is synthesized in Equation (17). is related
to the physical flow by means of:

-1 -1
=noSo0Zo¢pol "oS oM (17)
S S OP
»”COOP xg o TT T T
op oPrP
op Yo yg Yo yr Yt ygp op
g 0 20 20 2T 2 z T
opr (7 or (7 S (" =9 . = S (" opr (7 or
Yo xo xo o xrT T X yr
or S ; S .OP
Yo Yo Yo yr yr yr
0 zo‘s 20 T z‘% z?P

An initial, fixed choice of i, w, {2 and e identifies the initial osculating Orbital
Plane (OP). From there, for each given couple of values, the perigee distance r,
and its argument, it is straightforward to obtain Cartesian coordinates of any point
in such place, which are used as an input for the mapping given in Eq. (17). It
naturally follows that, in a three-dimensional reference frame associated to the
osculating orbital parameters, the z components of the position and the velocity
are both zero.

The function M is then introduced to compute the velocity vector, in the same
reference frame, for the given value of the eccentricity. The velocity vector at
perigee is given by

Vp =Vey (18)

with

1+e 1
Vp = , ey =[—em,er], € = —[er1,er2]
Tp Tp

The initial state of the spacecraft in the OP reference frame is hence obtained.

S and its inverse S™! are reference frame transformations, relating the orbital
plane with an intermediate reference frame: one may be interested in defining the
initial osculating orbital plane with respect to some non-inertial reference frame
(e.g., RTN@tg), and this intermediate transformation is therefore necessary;

7 and its inverse Z ! relate this intermediate reference frame, in which the state
of the spacecraft can be computed, with the inertial reference frame, in which the
equations of motion are formulated.

¢ is the physical flow of the system and 7 is the projection of the final state onto
the OP plane defined above; it is given by

(Y, 2, 8,9, 2) = (¢, y) (19)

it should be underlined that, even if the final orbital plane is different from the
initial one, the Weak Stability Boundary is defined in the latter, and the Strain
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1. A bisection algorithm is applied on a 1-dimensional space, in order to find a
point on the WSB;

2. the spacecraft is propagated under ¢, until n revolutions around the target
body are performed (or until the escape condition is satisfied). It should be
noted that time 77 comes from the investigation of ¢, not .

3. The variational equations are propagated until time 77, and the Jacobian of
1, at such epoch, is used to compute A.

4. The eigendecomposition of the CG strain tensor allows to identify the tangent
to the strainline in the point.

These steps are used to compute the tangent to the strainline on every point: its
integration solves Equation (16), leading to the Time-varying Strainline.

5 Results

We here show how the proposed technique can be use to perform ballistic capture
at Mars, with an initial osculating orbit characterized by:

e=095 N2=0=i=0 rad (24)

Two model fidelities are considered?, in order to test the robustness of the intro-
duced technique. In the low-fidelity model, only the gravitational influence of Mars
and of the Sun are considered, while, in the high-fidelity model, other forces are
considered: the point-mass gravity of the Earth, Jupiter, Phobos and Deimos, the
Solar Radiation Pressure and Mars’ spherical harmonics, up to degree and order
20 (Equation (2)).

Two stable sets, associated to the low-fidelity model, are shown in Figure 2:

rposin(w-o) [DU]

rpasln(wn) [DU]
)
. ) 3
P
Normalized Stability Index

0 5 0
rpﬂcos(wo) [DU] (pocos(,.zo) [DU]

Fig. 2: Two stable sets W and Ws, characterized by the index S, associated to
the low-fidelity model.

4Design choices made here are driven by the analysis performed in Luo and Topputo (2015).
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It can be noticed how the small non-connected regions of the sets are character-
ized, on average, by a higher Normalized Stability Index: using only the WSB to
characterize a given W, leads to a good approximation. This can also be appreci-

ated in Figure 3, in which Time-varying Strainlines have been used to approximate
the Stable Set.

I Wi W,
. om 30} . om
30+ —— 1-Stable Bound - —— 2-Stable Bound

e R T 1

rposin(do) [DU]
rposin(do) [DU]
o

>
3

201 20 G s S —

30 - 1 30 1

40 3 20 -0 0 10 20 30 40 40 30 20 10 0 0 20 30 40
15608() (U] 15608(u) (U]

Fig. 3: Time-varying Strainlines associated to Wi and W, in a low-fidelity model.
Strainlines can be used to compute the Weak Stability Boundary.

Strainlines can also be used to characterize the motion backward in time, allow-
ing to identify the boundary of the set X_1: the assumption (supported by the
results shown in Figure 4) is that C,, | Dy, is negligible, compared to Xy, |J Wh.
This implies that the boundary region of the two almost complementary sets is
approximately the same.

d ||

0
T5008(wy) [DU]

Fig. 4: Time-varying Strainlines associated to X_1, in a high-fidelity model. Strain-
lines can be used to characterize the motion backward in time as well.
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5.1 Capture Sets and Time-varying Strainlines

The fact that a Capture Set is defined as the intersection of two other sets, W,
and X'_1, can easily be translated, using the strainline approach, by considering
the intersection of the spaces defined by them. This has been done, for the low-
fidelity model, as given in Figures 5 and 6, and for the high-fidelity one, as shown
in Figures 7 and 8.

10 20 20 40 -40 -30 -20 -10 0 10 20 30 40

40 %0 20 E) 0
1g005) (0U] 10608() U]

Fig. 5: Strainlines associated to C1; and C?; in a low-fidelity model. The in-
tersection of the Stable and Unstable sets is represented together with the two
Strainlines.

togsinteg) U]
B
8009 U]
1LY
\
\
\
.
P

-40 -30 »2‘0 -\‘0 0 1‘0 20 36 46
1,0008(r) [DU]
Fig. 6: Strainlines associated to C*; and C®, in a low-fidelity model. The in-

tersection of the Stable and Unstable sets is represented together with the two
Strainlines.

In the right plot of Figure 6, the = identifies the initial condition of the 6-Capture
Set associated to the minimum normalized Stability Index. It is interesting to
notice how the majority of the initial conditions leading to capture are located close
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to the intersection between the stable and unstable Strainlines; this is particularly
relevant for a high number of revolutions around the target.

1o8ieg) U]

3 10
1,0¢08(i) (DU]

0
10008l U]

Fig. 7: Strainlines associated to C1; and C%; in a high-fidelity model. The flow-
informed technique can be superimposed onto models of different fidelity.
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Fig. 8: Strainlines associated to C*; and C®; in a low-fidelity model.

5.2 Trajectories

Building from the given results, an effective routine for ballistic capture trajectory
design can be proposed.

One can start computing, in the vicinity of the target body, the Time-varying
Strainlines associated to the n-Stable Set of interest. From there, it’s possible to
restrict the computation of the Time-varying Strainline associated to 0X_1 inside
the stable region. From there, sampling the obtained Capture Set, particularly
in the vicinity of the unstable manifold, leads to the identification of conditions
associated to capture orbits.

The AV-free trajectories obtained with this method are shown, in different ref-
erence frames, in Figures 9 and 10. The initial conditions are the ones associated
to the lowest Normalized Stability Index; they are propagated both forward and
backward in time, and their stable and unstable branches can be easily identified.
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Fig. 9: Orbits, associated to the minimum Normalized Stability Index of C%; for
two model fidelities, in an inertial reference frame.
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Fig. 10: Orbits, associated to the minimum Normalized Stability Index of C%; for
two model fidelities, in a Roto-pulsating reference frame.

6 Conclusions

The work aims at developing a ballistic capture trajectory design strategy, starting
from a characterization of the phenomenon informed by the theory of Lagrangian
Coherent Structures. It has been shown how the study of tools and heuristics
associated to LCSs can help characterizing the mechanics of ballistic capture;
with the introduction of Time-varying Strainlines, approximations of the WSBs
of given problems has been computed. This has been done mainly in the domain
in which the Capture Set is defined, but the flexibility of the technique allows to
introduce alternative subsets of the phase space, whose investigation could lead to
a clearer understanding of the ballistic capture phenomenon and of its features.

The presented results show how the effectiveness of the technique is independent
of the fidelity of the underlying dynamical model, onto which the flow-informed
strategy is superimposed: its applicability covers complex, non-periodic (and, in
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general, time-dependent) dynamical systems in astrodynamics. Particularly for
highly complex models, e.g. taking into account n-body perturbations, SRP and
NSG, the technique has the potential of greatly reducing the cost of the Capture
Set computation, and hence to increase the applicability of ballistic capture in
trajectory design.

This work aims at contributing in opening up the field of low-energy transfers in
space mission design, allowing for new concepts to redefine the domain of feasible
missions for human space exploration.

A number of open questions have been identified:

the proposed technique appears to potentially reduce the cost associated to the
computation of a Capture Set of interest. A quantification of the optimal trade-off
between the accuracy of the WSB estimation and its efficiency, as a function of
different design parameters, is missing. Moreover, the applicability of the proposed
technique to different 2D subsets of the phase space should be exploited, in order
to understand some features of the capture phenomenon, discussed in the litera-
ture; the same goes for generalizing the propose techniques to higher-dimensional
mappings. In addition to that, alternative approaches for the computation of the
Jacobian of the physical flow should be investigated, together with their accuracy
and efficiency. Finally, one could aim at verifying whether Time-varying Strain-
lines are LCSs or not: studying whether these objects verify the other conditions
may be interesting from a theoretical point of view.
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