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Abstract

Due to the enhanced price of electricity, the gradual depletion of fossil fuels, and the global warming concerns, power

loss minimization through deployment of Distributed Generators (DGs) has attracted significant attention in recent

decades. This paper proposes a Genetic Algorithm (GA) based strategy for minimization of active and reactive power

losses through optimal location and size of DGs. It also quantifies and tallies the total network power losses for the

cases with random as well as optimal allocation of DGs. To validate the accuracy of the obtained results from GA,

another nature-inspired optimization algorithm, Cuckoo Search (CS), is also deployed. The simulation results on IEEE

30 and 118 bus systems indicate that the proposed strategy not only can effectively reduce the total network active

and reactive power losses but also lead to the improvement of network voltage profile.

Keywords: Distributed Generator (DG), Genetic Algorithm (GA), Cuckoo Search (CS) algorithm, power loss

minimization.

1. Introduction

Aspiration for the economic operation of the electric networks has invigorated numerous researches on the efficiency

of power systems. As the market price of goods is substantially influenced by the energy cost, industries prefer to

use cheaper sources of electricity. Due to this reason, mitigation of power loss is critical to all stakeholders for better

financial gains. Regarding ecological hazards such as climate change and the increasing concerns about pollution5

caused by fossil fuels, the Distributed Generators (DGs) based on renewable sources have attracted more engrossment

in recent decades [1, 2]. Pertaining to the necessity of electrification in the rural areas, governments are also eager

to harness distributed energy resources. DGs also offer significant advantages in terms of power loss mitigation, and

voltage drop reduction [3, 4]. Due to such numerous advantages proffered by DGs via the use of local resources, their

popularity is rising. In the pursuit of reliable energy, distributed generation is usually favored near large load centers10

and isolated places to supply electricity at an affordable price while making optimum use of the locally abundant

resources and reducing the transmission losses [4]. Generally, this implies on-site production of electricity, thus avoiding

the necessity of long-distance transmission of power. DGs promulgate diversification of energy while reducing the
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emission of greenhouse gases [5, 6]. Therefore, refinement of voltage profile, enhancement in power quality, reduction of

operating costs, better security of the critical loads, development of sustainable energy systems, relief of transmission15

congestion, etc. are all achievable via deployment of DGs [1, 7, 2].

Regarding the efficiency of power system, researches have revealed that more than 10 percent of the generated power

is wasted in the existing radial distribution systems [8]. As each unit of energy has a production cost, such huge losses

of power mean an immense economic loss to the power companies. The traditional approach for remediating power loss

is to add reactive power compensation devices, particularly the shunt capacitors. However, frequent variation of loads20

limits the effectiveness of such methods. In order to overcome such limitations, a large number of modern approaches

for the minimization of power losses have been recently devised. In [9], a power loss mitigation approach based on

reducing the number of transformer tap changings and capacitor regulators is proposed. The proposed method is

suitable for minimizing the necessity of frequent changing of taps and regulators; however, it does not encompass any

mechanism to optimally allocate the DGs. Ref. [7] proposes indices like voltage profile improvement index, DG benefit25

index, line loss reduction index, and environmental impact reduction index to gauge the technical merits of DGs. In

addition, it analyzes various merits and challenges related to the deployment of distributed resources. Nonetheless, the

size of DGs and their allocation for loss mitigation are not discussed. For the similar objective of mitigating power loss,

the use of step size DGs is discussed in [10]. In the study, a radial distribution system is considered and the power flow

solution based on Bus Injection to Branch Current (BIBC) matrix formulation is adopted. However, the performed30

analysis is based on the mathematical approach which is not very effective as compared to the optimization algorithms

due to the continuously varying parameters of large distribution networks. The study conducted in [11] discusses

control of reactive power in distribution networks to reduce the active power loss and enhance the load voltage profile.

To achieve this, the role of distributed reactive power regulators is elaborated in terms of various aspects. Nonetheless,

this method focuses more on the control coordination among reactive power regulators. Moreover, no mechanism for35

optimal allocation and sizing of distributed generations is considered in this study. In [12], mitigation of real power

losses is discussed employing the interior point method. Even though the proposed method has a higher execution

speed, it uses an approximation approach to locate the optimal solutions, thereby reducing the accuracy of the results.

Ref. [13] employs the decomposition method in order to minimize the real power losses via reactive power optimization

in a large network. In the research, adaptation of transformer taps, generator voltages, capacitors, and inductors is40

implemented to fulfill the objective. However, in the presented strategy, the allocation of DGs is not properly entailed.

Ref. [14] renders a comparative review of evolutionary strategy, evolutionary programming, and GA for reactive power

planning so that the losses and operating costs get minimized. In the study, first, the main optimization problem is

disintegrated into active and reactive power sub-problems, and subsequently, the sub-problems are analyzed employing

linear programming algorithm. Nonetheless, the allotment of DGs for loss minimization is not discussed. In [15], a45

Fuzzy multi-objective formulation is proposed with the objective of power loss mitigation. The proposed method

can satisfactorily minimize the losses but its fully automatic decision-making structure precludes grid managers from

allocating weights to the active and reactive power losses. Ref. [16] employs Particle Swarm Optimization (PSO) for

reactive power planning and encompasses computer-aided optimization for power loss minimization. However, PSO

algorithm is vulnerable to being trapped in local optima while searching for the global optimum value. In [17], a50

combined approach is proposed to find optimal setting values of transformer taps and capacitor banks to control the
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reactive power and lower the power system losses. To fulfill the intended purpose, Successive Linear Programming

(SLP) technique is adopted to control the capacitor switching, whereas transformer tap changing is governed via a

simplified non-analytical approach. Nonetheless, the adopted technique focuses more on the control coordination.

Apart from that, allocation of DGs is not considered in this study. In [18], a network configuration method based on55

GA is proposed in order to alleviate the power loss of distribution systems. However, in the presented approach, only

reconfiguration of the network is concentrated, and optimal location and size of DGs are not considered.

DGs avail numerous advantages for improving the power system performance. However, if they are not well-allotted,

their incorporation in the power system becomes challenging; for instance, in case of improper planning and control,

DGs may deteriorate voltage flicker problems, induce more harmonics into the power system as well as contribute to60

fuse-breaker miscoordination [19]. In this paper, a power loss minimization strategy based on GA is proposed, in which

both active and reactive power losses are mitigated through optimal location and size of DGs.

The remainder of this paper is organized as follows: Section 2 describes the mechanism of GA and discusses the

main parts of this algorithm including selection, crossover, mutation, as well as the stop criterion; Section 3 formulates

the optimization problem for active and reactive power loss mitigation through optimal allocation of DGs; in Section 4,65

the efficacy of the proposed simulation results is appraised; and finally, Section 5 delineates the conclusion.

2. Mechanism of Genetic Algorithm

Genetic Algorithm (GA) was initially proposed in 1992 by J.H. Holland [20]. However, nowadays there are multiple

modified versions of GA. This algorithm is considered as one of the most powerful optimization algorithms which is

based on the principles of genetics and natural selection [21]. This algorithm has a much higher speed in searching for70

the optimal solution in comparison with traditional methods [22]. Compared to other metaheuristic algorithms, the

GA is much more robust [23], requires a few mathematical models [24], and has a lower chance of trapping in the local

optima while searching for the global optimum.

A typical GA consists of a random population of individuals which are the possible solutions to that problem.

Subsequently, these individuals undergo selection, crossover, and mutation processes in a large number of iterations so75

that the optimal solution is found [25, 26]. In this algorithm, for each individual, a fitness value is assigned, and finally,

all individuals are sorted based on their fitness values. In the process of optimization, a chromosome is assigned for

each individual in the random population. Chromosomes consist of one or more gene(s), which are specific data about

the solution in codified form. The genes can be of real or integer type, as per the requirement of the optimization

objective. In the first iteration (generation), each individual is generated randomly, whereas in the next iterations,80

individuals are selected among the ones with better fitness values. The selection process is such that the individuals

with better fitness values are given a higher chance to procreate, whereas the candidates with worse fitness values have

a lower chance. In this paper, the Boltzmann method is applied for selecting the best individuals among the population.

Following the selection process by the Boltzmann method, different types of crossover and mutation are applied to

the individuals to search for more possible solutions by creating new individuals. Therefore, in each iteration, three85

different populations are created after applying selection, crossover, and mutation processes; the first population is

pop which represents the original population in the first generation and it is updated by the selection process in the

next iterations; the second population is popc which includes the children produced by the parents on which crossover
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is applied; and the third population is popm which includes the new individuals formed after the mutation process.

After creation of populations pop, popc, and popm in each iteration (generation), the best Npop individuals among all90

populations which have better fitness values are selected as pop for the next generation. Such procedure continues until

the stop criterion is met. Finally, the individual which has the best possible fitness value is considered as the solution

of the optimization problem.

2.1. Selection Process using Boltzmann and Roulette Wheel Selection Methods

As mentioned in the previous section, the selection process should be performed such that only individuals with95

better fitness values have the chance to be parents and create a new generation. To fulfill the purpose, in this paper,

the Boltzmann method is deployed which provides a higher chance of selection for the individuals with better fitness

values. According to the Boltzmann method, the selection probability of the i-th individual, Pi, is calculated as:

Pi =
e−β

Zi
Zworst∑Npop

n=1 Pn

(1)

where Pi has a value between 0 and 1, and sum of the probabilities of all individuals is equal to 1; Pn represents

the selection probability of the n-th individual; β denotes the pressure constant; Zi is the fitness value of the i-th100

individual; and Zmax is the worst fitness value in each iteration.

After the selection probability for each individual is assigned by the Boltzmann method, the individuals are selected

by deployment of the Roulette Wheel Selection (RWS) method. The RWS is a stochastic method that randomly selects

the individuals according to their assigned probability. To understand the operating principle of this method, an actual

roulette wheel can be considered. The circular wheel can be divided into n pies (like a pie chart), where n represents105

the number of individuals in the population. Since the selection process considers the selection probability of these

individuals, the ones with better fitness values occupy larger spaces on the wheel, and therefore, they have higher

chances to be selected as parents by the roulette wheel selector. However, in order to preserve the diversity, a chance is

also considered for selecting the individuals with worse fitness values. In other words, the majority of the selected

individuals are among those who have better fitness values, and only a small number of them are with worse fitness110

values. Considering random number r in the range between 0 and 1 as the selected value by the selector of roulette

wheel, the i-th individual is chosen as a parent if the following condition is met:

∑i
i=1 Pi∑Npop

n=1 Pn

< r ≤
∑i+1

i=1 Pi∑Npop

n=1 Pn

(2)

where Pi and Pn are selection probabilities of the i-th and n-th individuals, respectively.

2.2. Crossover

Crossover is the partial exchange of information between two individuals, similar to the real chromosomes in biology.

Depending on the requirement of objective function, crossovers can be of real type or integer type. Real type crossover
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Single-point 
crossoverx11 x12 x13 x14 x15 x16

x21 x22 x23 x24 x25 x26

x11 x12 x13 x14 x15 x16

x21 x22 x23 x24 x25 x26

x11 x12 x13 x14 x15 x16

x11 x12 x23 x24 x25 x26

x21 x22 x13 x14 x15 x16

x11 x22 x23 x24 x15 x16

x21 x12 x13 x14 x25 x26

x21 x22 x23 x24 x25 x26x21 x22 x23 x24 x25 x26

x11 x12 x23 x14 x15 x16x11 x12 x23 x14 x15 x16

x21 x22 x13 x24 x25 x26x21 x22 x13 x24 x25 x26

Double-point 
crossover

Uniform
crossover

Fig. 1. Process of different types of integer crossovers.

can be represented as:

y1i = αix1i + (1− αi)x2i (3)

y2i = αix2i + (1− αi)x1i

where x1i and x2i represent the i-th gene of first and second parent, respectively; similarly, y1i and y2i represent the115

i-th gene of first and second child, respectively; and α is a random real number between 0 and 1.

Fig. 1 illustrates the process of different types of integer crossovers including single-point, double-point, and uniform

crossovers. As can be seen from the figure, in the single-point crossover, a crossover point on the parent chromosomes is

selected, and then all data beyond that point in the chromosome is swapped between the two parent organisms; in the

double-point crossover, two random points are chosen on the parent chromosomes and the genetic material is exchanged120

between these points; and for the uniform crossover, each gene is selected randomly from one of the corresponding

genes of the parent chromosomes. Since each of the above-mentioned crossover types has its own merits, in order to

take advantage of all of them, the crossover type can be randomly selected in every crossover process through the RWS

method.

2.3. Mutation125

Mutation is a random change in the gene(s) of a chromosome within a prescribed limit. Mutations increase diversity

in a population and provide completely new solutions which may not be produced via crossover process. Therefore, it

enhances the exploration feature of the GA and it has been proved to be essential during convergence. However, a

low mutation probability, Pm, is usually applied to the algorithm. Otherwise, the excessive exploration of algorithm

prevents the convergence of the algorithm; on the contrary, in case Pm is selected too low, then the exploration feature130

is significantly limited and the algorithm may get trapped in the local optima.

Fig. 2 demonstrates the process of different types of mutation including random resetting, swap mutation, scramble

mutation, and inversion mutation. As can be seen in the figure, in the strategy of random resetting, a random permissible
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x1 x2 x3 x4 x5 x6 x1 x2 xm x4 x5 x6

x1 x2 x3 x4 x5 x6 x1 x2 x5 x4 x3 x6

x1 x2 x3 x4 x5 x6 x1 x5 x4 x3 x2 x6

x1 x2 x3 x4 x5 x6 x1 x5 x4 x2 x3 x6

Random 
resetting

Swap 
mutation

Scramble 
mutation

Inversion 
mutation

Fig. 2. Process of different types of mutations.

value is assigned to the chosen gene; in case of swap mutation, two genes of the chromosome are selected randomly, and

their values are interchanged; in scramble mutation, a subset of genes is chosen from the entire chromosome and their135

values are shuffled randomly; and in the inversion mutation type, a selected subset of the genes is inverted. Similar to

the crossover process, different mutation types can be randomly selected in each mutation process through the RWS

method.

2.4. Stop Criterion

The GA requires a large number of iterations to find the optimal solution. Therefore, an appropriate stop strategy140

must be devised such that it neither terminates the algorithm prior to reaching the global optimum point nor continues

it after the solution is already found. There are three prevalent strategies for designing the stop criterion of GA which

are as follows:

� Setting a maximum number of iterations such that the algorithm automatically stops once it completes the last

iteration. The advantage of this strategy is that the GA terminates after a specific number of iterations in various145

computers with different execution times. Nonetheless, for various optimization problems, different numbers of

iterations should be set in order to ensure that the optimal solution is found.

� Setting a maximum run time such that the algorithm automatically stops once the execution time reaches it.

However, the main disadvantage of this strategy is that if the execution speed is not rapid enough, then the

algorithm stops before reaching the optimal point, thereby producing inaccurate results.150

� The third strategy is to stop the algorithm when no better result is found for the next n iterations, or next ∆t

time period. This strategy has the highest reliability among all the stop criterion strategies, as it can ensure

finding the global optimal point.

3. Power Loss Minimization Using Genetic Algorithm

In recent decades, DGs have been extensively utilized around the world as an effective way to reduce the environmental155

impacts in energy production. Even though DGs provide numerous benefits, their inappropriate utilization may lead to
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excessive power losses in the distribution networks. In order to address this issue, this paper proposes a power loss

minimization strategy based on GA in which the size and location of DGs are optimally allocated.

The current flowing from bus k to bus n and from bus n to bus k in branch kn of the network can be respectively

calculated by:160

I⃗kn =

(
y

a2
+ j

b

2

)
V⃗k +

(
−y

a

)
V⃗n (4)

I⃗nk =

(
−y

a

)
V⃗k +

(
y + j

b

2

)
V⃗n

where y denotes the total series admittance of line or transformer kn; b represents the shunt susceptance of line kn; a

is the turns ratio of transformer kn; and, V⃗k and V⃗n are respectively the voltage phasors of buses k and n, which are

calculated by the power flow algorithm. The complex power loss in branch kn can be determined as:

S⃗loss,kn = S⃗k,kn + S⃗n,nk = V⃗k I⃗
∗
kn + V⃗nI⃗

∗
nk (5)

where S⃗k,kn and S⃗n,nk are respectively the transferred complex power from bus k to bus n, and from bus n to bus k.

Therefore, the total active and reactive power losses in a network comprising N buses are respectively computed as:165

Ploss,tot = Re(S⃗loss,tot) = Re(
N∑

k=1

N∑
n=1
n̸=k

V⃗k I⃗
∗
kn + V⃗nI⃗

∗
nk) (6)

Qloss,tot = Im(S⃗loss,tot) = Im(

N∑
k=1

N∑
n=1
n̸=k

V⃗k I⃗
∗
kn + V⃗nI⃗

∗
nk)

In this paper, since the mitigation of both network active and reactive power losses is considered, the optimization

problem includes two objectives. However, it can be converted to a single-objective problem through Weighted Sum

Method (WSM) so that it can be solved using GA as:

Z =
Ploss,tot

|Ploss,tot,org|
WP +

Qloss,tot

|Qloss,tot,org|
WQ︸︷︷︸

(1−WP )

(7)

where Z is the fitness function; Ploss,tot,org and Qloss,tot,org are respectively the original total active and reactive power

losses of the network before adding new DGs; and WP and WQ respectively denote weights of the active and reactive170

power losses which sum of them equals 1.

In order to implement the optimization problem using GA, first, the type, number, and range of genes (decision

variables) must be determined. For the mitigation of power losses by adding m DGs, 2m genes are required for each

chromosome. The first m genes represent the decision variables for the placement of each DG. Since new DGs are only
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connected to PQ buses, these genes can only take positive integers and their maximum value is the number of PQ175

buses in the power system, i.e. NPQ. The second m genes denote the decision variables for the capacity of each DG.

According to the definition of DGs, these genes can take real numbers between 0 and 100 MW. As a result, the power

loss minimization problem can be formulated by GA as follows:



Minimize Z(x)

where

x = [xint,1, xint,2, xint,3, . . . , xint,m, xreal,1, xreal,2, xreal,3, . . . , xreal,m]

subject to :

1 ≤ xint,i ≤ NPQ; i = 1, 2, 3, . . . ,m

0 ≤ xreal,i ≤ 100; i = 1, 2, 3, . . . ,m

(8)

where x is the vector of decision variables, and Z(x) is the fitness function. Fig. 3 depicts the flowchart of the proposed

strategy. As can be seen from the figure, in this strategy, the fitness function is calculated for different weights of180

active power, WP . To fulfill this, WP is set to 1 in the first iteration, and it decreases by 0.05 in each iteration until

it reaches zero. After setting WP , the GA parameters and stop criterion are set, and then population pop including

Npop random individuals is created. In the next stage, selection, crossover, and mutation processes are applied so that

populations popc and popm are formed as well. Afterward, the information of each individual’s chromosome is sent to

the Newton-Raphson power flow program. The power flow program interprets the information of the chromosomes,185

and then reconfigure the network structure accordingly. Finally, the fitness values for all individuals are computed by

the power flow program and sent back to the main algorithm. In the main algorithm, the fitness values are sorted

in ascending order, and then the best Npop individuals are taken to the next iteration (generation). This procedure

continues until the GA stop criterion is met. Finally, after execution of the last iteration, the best scheme including

the location and capacity of DGs and their corresponding active and reactive power losses are determined.190

4. Simulation Results

In order to verify the effectiveness of the proposed strategy, several simulations have been performed on both IEEE

30 and 118 bus systems under different conditions, i.e. random allocation of DGs, optimal allocation of DGs using GA,

and optimal allocation of DGs using CS algorithm, as follows:

4.1. Simulation Results Obtained from Random Allocation of DGs195

As mentioned earlier, DGs are basically added to the distribution networks to generate additional power and improve

the reliability of the grid. However, in case the DGs are not properly allocated, the total power losses emanating from

the network may even increase. This can be explained using Figs. 4 and 5 in which two DGs (of size 0 to 150 MW) are

randomly allocated to two PQ buses of test networks IEEE 30 and 118 bus systems, respectively. According to the

figures, it can be seen that improper allocation of DGs significantly affects the total network active and reactive power200

losses, and it may even lead to the further increment of their values.
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Set GA parameters and stop criterion, 
and create population pop 
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individual to the Newton-Raphson 
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Sort all of the evaluated 
chromosomes based on their fitness 
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Is stop criterion met?
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their corresponding power losses 

STOP

Use the best Npop chromosomes for 
population pop in the next iteration

Set WP =1

Decrease WP by 0.05

Yes
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Reconfigure the test network based 
on the received chromosomes

 Calculate voltage phasors of all 
buses and currents flowing through 

all branches
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each chromosome and send the 

results to the main algorithm

Fig. 3. Flowchart of the proposed strategy.
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Fig. 4. Impact of random allocation of two DGs (of size 0 to 150 MW) to two PQ buses of IEEE 30 bus system on: (a) total network
active power losses, and (b) total network reactive power losses.
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Fig. 5. Impact of random allocation of two DGs (of size 0 to 150 MW) to two PQ buses of IEEE 118 bus system on: (a) total network
active power losses, and (b) total network reactive power losses.

4.2. Simulation Results Obtained from Optimal Allocation of DGs Using GA

For optimal allocation of DGs using GA, a random population with 100 individuals is considered, and the crossover

and mutation percentages are set to 80% and 30%, respectively. For each individual on which mutation is applied, a

mutation rate of 5% is considered, implying that only 5% of the genes are changed during the mutation process. Also,205

the pressure constant of β=0.8 is considered, which is used for the Boltzmann method in the selection process.

Figs. 6 and 7 indicate the mitigation of total network active and reactive power losses through optimal allocation of

two DGs using GA under different values of WP in IEEE 30 and 118 bus systems, respectively. The corresponding data

for each solution in Figs. 6 and 7 are respectively listed in Tables 1 and 2. From both tables, it can be seen that the

proper allotment of DGs can considerably reduce the active and reactive power losses. To be more precise, for IEEE210

30 bus test system with Ploss,tot,org = 8.0714 MW and Qloss,tot,org = 5.8099 MVAR, among 21 optimization results

obtained under different values of WP , the minimum and maximum total network active power losses are 3.5068 MW

and 3.9178 MW, and the total network reactive power losses range from -16.4091 MVAR to -11.8936 MVAR. In terms

of the location of DGs, the obtained optimal solutions can be classified into four clusters, i.e. (bus 7, bus 9), (bus 7,

bus 21), (bus 7, bus 22) and (bus 7, bus 24). Similarly, for IEEE 118 bus system with Ploss,tot,org = 133.5305 MW and215

Qloss,tot,org = −570.2474 MVAR, the minimum and maximum total network active power losses are 111.7246 MW and

114.9223 MW, and the total network reactive power losses range from -691.1399 MVAR to -687.7827 MVAR. Also,

the optimal locations for installation of DGs are clusters (bus 41, bus 53) and (bus 41, bus 37). The results shown in

Tables 1 and 2 also indicate that the average values of bus voltage magnitude in IEEE 30 and 118 bus networks are

significantly improved from their original values, i.e. 1.0012 p.u. and 0.9879 p.u., respectively.220

4.3. Simulation Results Obtained from Optimal Allocation of DGs Using CS Algorithm

In this paper, in order to validate the accuracy of obtained results from GA, another nature-inspired optimization

algorithm, Cuckoo Search (CS), is deployed which has attracted much attention in recent years due to its excellent

performance in dealing with large, complex and dynamic real-world optimization problems. CS algorithm is a

metaheuristic optimization algorithm which is inspired by the obligate brood parasitism of some cuckoo species by225
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Fig. 6. Mitigation of total network active and reactive power losses through optimal allocation of two DGs using GA under different values
of WP in IEEE 30 bus system.
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Fig. 7. Mitigation of total network active and reactive power losses through optimal allocation of two DGs using GA under different values
of WP in IEEE 118 bus system.
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Table 1. Corresponding data for each solution in Fig. 6.

WP Ploss [MW] Qloss [Mvar] Z [p.u.]
DG1 DG2 Vavg [p.u.]

Location Capacity [MW] Location Capacity [MW]

1.00 3.5068 -11.8936 0.43447 Bus 7 59.6215 Bus 9 44.7747 1.0075
0.95 3.6214 -16.0346 0.28825 Bus 7 66.6777 Bus 21 34.8167 1.0110
0.90 3.6810 -16.0202 0.13472 Bus 7 63.5745 Bus 22 37.2663 1.0106
0.85 3.7171 -16.1821 -0.02633 Bus 7 65.2611 Bus 21 40.4557 1.0104
0.80 3.6658 -16.2961 -0.19762 Bus 7 66.6093 Bus 21 40.2296 1.0107
0.75 3.6793 -16.3315 -0.36085 Bus 7 65.6193 Bus 21 41.5950 1.0107
0.70 3.6910 -16.3538 -0.52432 Bus 7 65.5323 Bus 21 42.4662 1.0106
0.65 3.7013 -16.3694 -0.68803 Bus 7 65.4697 Bus 21 43.1838 1.0106
0.60 3.7105 -16.3805 -0.85191 Bus 7 65.4241 Bus 21 43.7845 1.0105
0.55 3.7188 -16.3885 -1.0159 Bus 7 65.2059 Bus 21 44.3512 1.0105
0.50 3.7681 -16.2612 -1.166 Bus 7 66.2066 Bus 22 43.4826 1.0102
0.45 3.7327 -16.3987 -1.3443 Bus 7 65.3457 Bus 21 45.1161 1.0105
0.40 3.7789 -16.2692 -1.4928 Bus 7 66.2297 Bus 22 44.0636 1.0101
0.35 3.8371 -16.2515 -1.6518 Bus 7 70.8063 Bus 24 36.8662 1.0127
0.30 3.8480 -16.2553 -1.8154 Bus 7 70.7374 Bus 24 37.2264 1.0126
0.25 3.9178 -16.2526 -1.9767 Bus 7 67.5923 Bus 24 39.7111 1.0123
0.20 3.6770 -16.2984 -2.1531 Bus 7 69.3697 Bus 21 40.0245 1.0108
0.15 3.7613 -16.4086 -2.3307 Bus 7 65.2958 Bus 21 46.6546 1.0104
0.10 3.8121 -16.3958 -2.4925 Bus 7 63.3349 Bus 21 49.5678 1.0102
0.05 3.7681 -16.4091 -2.6597 Bus 7 65.2910 Bus 21 46.9916 1.0104
0.00 3.7704 -16.4091 -2.8243 Bus 7 65.0571 Bus 21 47.1773 1.0103

Table 2. Corresponding data for each solution in Fig. 7.

DG1 DG2WP Ploss [MW] Qloss [Mvar] Z [p.u.]
Location Capacity [MW] Location Capacity [MW]

Vavg [p.u.]

1.00 111.7250 -687.7860 0.8367 Bus 41 149.9490 Bus 53 130.6560 0.9892
0.95 111.7256 -687.7827 0.7346 Bus 41 149.9109 Bus 53 130.4405 0.9892
0.90 111.7251 -687.7906 0.6324 Bus 41 149.9466 Bus 53 130.2235 0.9892
0.85 111.7249 -687.7925 0.5303 Bus 41 149.9555 Bus 53 130.0626 0.9892
0.80 111.7251 -687.7951 0.4281 Bus 41 149.9539 Bus 53 129.9326 0.9892
0.75 111.7248 -687.8008 0.3260 Bus 41 149.9733 Bus 53 129.7356 0.9892
0.70 111.7246 -687.8046 0.2239 Bus 41 149.9890 Bus 53 129.6578 0.9892
0.65 111.7255 -687.8008 0.1217 Bus 41 149.9552 Bus 53 129.3181 0.9892
0.60 111.7259 -687.8000 0.0196 Bus 41 149.9447 Bus 53 129.1602 0.9892
0.55 111.7248 -687.7978 -0.0826 Bus 41 149.9677 Bus 53 128.9360 0.9892
0.50 111.7268 -687.7978 -0.1847 Bus 41 149.9226 Bus 53 128.8324 0.9892
0.45 111.7268 -687.8002 -0.2868 Bus 41 149.9305 Bus 53 128.6868 0.9892
0.40 111.7274 -687.7994 -0.3890 Bus 41 149.9199 Bus 53 128.4404 0.9892
0.35 111.7275 -687.8029 -0.4911 Bus 41 149.9327 Bus 53 128.2250 0.9892
0.30 111.7274 -687.8057 -0.5933 Bus 41 149.9450 Bus 53 128.1531 0.9892
0.25 111.7272 -687.8100 -0.6954 Bus 41 149.9650 Bus 53 128.0574 0.9892
0.20 111.7276 -687.8114 -0.7975 Bus 41 149.9683 Bus 53 127.8376 0.9892
0.15 114.9221 -691.1371 -0.9011 Bus 41 149.9057 Bus 37 149.9853 0.9888
0.10 114.9222 -691.1379 -1.0047 Bus 41 149.9477 Bus 37 149.9630 0.9888
0.05 114.9223 -691.1341 -1.1083 Bus 41 149.9123 Bus 37 149.9387 0.9888
0.00 114.9221 -691.1399 -1.2120 Bus 41 149.9625 Bus 37 149.9789 0.9888
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laying their eggs in the nests of host birds of other species. Some host birds can engage direct conflict with the intruding

cuckoos. To be more precise, in case the host bird discovers the eggs are not their own, it will either throw these alien

eggs away or simply abandon its nest and build a new nest elsewhere. CS algorithm is based on the following idealized

rules, i.e. (a) Each cuckoo lays only one egg at a time and places it in a randomly selected nest (b) Best nest with high

quality of eggs will carry over to the next generation, and (c) The number of available host nests is fixed; host bird230

discovers cuckoo eggs with probability of Pa ∈ [0, 1]. In this case, the host bird either throws the egg away or leaves its

nest and builds a new one.

In this algorithm, for each iteration, t, a cuckoo egg, i, is randomly selected using Lévy flights and new solutions,

xt+1
i , are generated. The Lévy flights are a kind of random walk in which the steps are defined in terms of the step

lengths, which have a certain probability distribution, with isotropic and random step directions. The general equation235

for the Lévy flight is expressed as:

xt+1
i = xt

i + α⊕ Levy(λ) (9)

where α represents the step size, and symbol ⊕ denotes the entry-wise multiplication. The transition probability of the

Lévy flights in this equation is modulated by the Lévy distribution as:

Levy(λ) = t−λ, (1 < λ ≤ 3) (10)

From the computational point of view, the generation of random numbers using Lévy flights is comprised of two

main steps, i.e. the choice of a random direction and the generation of step which obeys the chosen Lévy distribution.240

In this paper, Mantegna’s algorithm for symmetric distributions is deployed. This approach calculates the factor:

ϕ̂ =

Γ
(
1 + β̂

)
sin πβ̂

2

β̂Γ
(

1+β̂
2

)
2

β̂−1
2


1
β̂

(11)

where Γ denotes the Gamma function. Also, the value of 1.5 is considered for factor β̂. This factor is used in Mantegna’s

algorithm for calculation of step length ζ as:

ζ =
u

|v|
1
β̂

(12)

where u and v are normal distributions of zero mean and variances σ2
u and σ2

v , respectively. Here, σu obeys the Lévy

distribution given by (11), and σv = 1. Subsequently, the step size, η, is determined as:245

η = 0.01ζ (xi − xbest) (13)

In this paper, in order to simulate the proposed strategy using CS algorithm, parameters η and Pa are set to 100

and 0.25, respectively. Figs. 8 and 9 indicate the mitigation of total network active and reactive power losses through
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Fig. 8. Mitigation of total network active and reactive power losses through optimal allocation of two DGs using CS algorithm under
different values of WP in IEEE 30 bus system.

optimal allocation of two DGs using CS algorithm under different values of WP in IEEE 30 and 118 bus systems,

respectively. The corresponding data for each solution in Figs. 8 and 9 are respectively listed in Tables 3 and 4. From

Table 3, it can be seen that the minimum and maximum total network active power losses after optimal allotment of250

DGs in IEEE 30 bus system using CS algorithm are 3.4932 MW and 3.7652 MW; also, the total reactive power losses

range from -16.4073 MVAR to -11.5381 MVAR. This table also depicts that the optimal places for allocation of DGs

are clusters (bus 7, bus 9) and (bus 7, bus 21). Likewise, for IEEE 118 bus system, Table 4 shows that the minimum

and maximum total network active power losses are 111.7240 MW and 114.9219 MW; and the total network reactive

power losses range from -691.1435 MVAR to -687.7690 MVAR. Also, the optimal locations for installation of DGs are255

clusters (bus 41, bus 53) and (bus 41, bus 37). Moreover, the obtained results in both Tables 3 and 4 illustrate that

the average values of bus voltage magnitude in both test networks are remarkably enhanced.

5. Conclusion

Escalation in power demand and ecological hazards has motivated research studies to seek disparate power loss

mitigation techniques. Deployment of DGs is among these approaches which can significantly lead to the reduction in260

total network active and reactive power losses. However, improper allotment of DGs may lead to excessive power losses

in the distribution networks. In this paper, a power loss reduction strategy based on the optimal allocation of DGs is

devised, in which the location and size of DGs are determined by deploying the genetic algorithm. In addition, to

verify the accuracy of the obtained results using GA, another optimization algorithm, i.e. CS algorithm, is applied.

Lastly, to validate the adequacy of the developed strategy, several simulations were undertaken on IEEE 30 and 118265

bus systems. The obtained results indicate that the proposed approach can be effective in mitigation of total network

power losses, as well as enhancement of the network bus voltage magnitudes.
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Fig. 9. Mitigation of total network active and reactive power losses through optimal allocation of two DGs using CS algorithm under
different values of WP in IEEE 118 bus system.

Table 3. Corresponding data for each solution in Fig. 8.

WP Ploss [MW] Qloss [Mvar] Z [p.u.]
DG1 DG2 Vavg [p.u.]

Location Capacity [MW] Location Capacity [MW]

1.00 3.4932 -11.5381 0.4328 Bus 7 55.1837 Bus 9 52.5816 1.0075
0.95 3.6213 -16.0325 0.2882 Bus 7 66.8490 Bus 21 34.7408 1.0111
0.90 3.6376 -16.1784 0.1271 Bus 7 66.2703 Bus 21 37.4863 1.0109
0.85 3.6407 -16.1928 -0.0347 Bus 7 65.0170 Bus 21 38.1346 1.0108
0.80 3.6720 -16.3126 -0.1976 Bus 7 66.6071 Bus 21 40.7341 1.0107
0.75 3.6820 -16.3352 -0.3608 Bus 7 65.6159 Bus 21 41.5000 1.0107
0.70 3.6908 -16.3536 -0.5244 Bus 7 65.5392 Bus 21 42.4537 1.0106
0.65 3.7008 -16.3687 -0.6881 Bus 7 65.4694 Bus 21 43.1516 1.0106
0.60 3.7099 -16.3798 -0.8519 Bus 7 65.4219 Bus 21 43.7483 1.0105
0.55 3.7129 -16.3713 -1.0157 Bus 7 65.2030 Bus 21 44.3588 1.0105
0.50 3.7188 -16.3882 -1.1800 Bus 7 64.8663 Bus 21 44.4428 1.0105
0.45 3.7314 -16.3979 -1.3443 Bus 7 65.3445 Bus 21 45.0451 1.0105
0.40 3.7254 -16.3912 -1.5081 Bus 7 64.0127 Bus 21 45.0436 1.0105
0.35 3.7340 -16.3992 -1.6728 Bus 7 64.9138 Bus 21 45.3144 1.0104
0.30 3.7386 -16.4016 -1.8372 Bus 7 64.8985 Bus 21 45.5731 1.0104
0.25 3.7460 -16.4047 -2.0017 Bus 7 64.9318 Bus 21 45.9617 1.0104
0.20 3.7443 -16.4031 -2.1659 Bus 7 64.3624 Bus 21 46.0245 1.0104
0.15 3.7502 -16.4049 -2.3304 Bus 7 64.2946 Bus 21 46.3546 1.0103
0.10 3.7549 -16.4063 -2.4949 Bus 7 64.3349 Bus 21 46.5899 1.0102
0.05 3.7618 -16.4072 -2.6595 Bus 7 64.2345 Bus 21 46.9736 1.0102
0.00 3.7652 -16.4073 -2.8240 Bus 7 64.0979 Bus 21 47.1764 1.0102
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Table 4. Corresponding data for each solution in Fig. 9.

DG1 DG2WP Ploss [MW] Qloss [Mvar] Z [p.u.]
Location Capacity [MW] Location Capacity [MW]

Vavg [p.u.]

1.00 111.7240 -687.7960 0.8367 Bus 41 150.0000 Bus 53 130.6571 0.9892
0.95 111.7240 -687.7986 0.7346 Bus 41 150.0000 Bus 53 130.4399 0.9892
0.90 111.7240 -687.8012 0.6324 Bus 41 150.0000 Bus 53 130.2154 0.9892
0.85 111.7241 -687.8033 0.5303 Bus 41 150.0000 Bus 53 130.0212 0.9892
0.80 111.7242 -687.8053 0.4281 Bus 41 150.0000 Bus 53 129.8120 0.9892
0.75 111.7244 -687.8074 0.3260 Bus 41 150.0000 Bus 53 129.5846 0.9892
0.70 111.7246 -687.8093 0.2238 Bus 41 150.0000 Bus 53 129.3687 0.9892
0.65 111.7248 -687.8110 0.1217 Bus 41 150.0000 Bus 53 129.1521 0.9892
0.60 111.7250 -687.8125 0.0196 Bus 41 150.0000 Bus 53 128.9365 0.9892
0.55 111.7253 -687.8138 -0.0826 Bus 41 150.0000 Bus 53 128.7241 0.9892
0.50 111.7257 -687.8150 -0.1847 Bus 41 150.0000 Bus 53 128.5046 0.9892
0.45 111.7260 -687.8160 -0.2869 Bus 41 150.0000 Bus 53 128.2887 0.9892
0.40 111.7264 -687.8169 -0.3890 Bus 41 150.0000 Bus 53 128.0725 0.9892
0.35 111.7269 -687.8176 -0.4912 Bus 41 150.0000 Bus 53 127.8566 0.9892
0.30 111.7274 -687.8182 -0.5933 Bus 41 150.0000 Bus 53 127.6469 0.9892
0.25 111.7278 -687.8185 -0.6955 Bus 41 150.0000 Bus 53 127.4246 0.9892
0.20 111.7284 -687.8188 -0.7976 Bus 41 150.0000 Bus 53 127.2105 0.9892
0.15 114.9219 -691.1435 -0.9011 Bus 41 150.0000 Bus 37 150.0000 0.9888
0.10 114.9219 -691.1435 -1.0047 Bus 41 150.0000 Bus 37 150.0000 0.9888
0.05 114.9219 -691.1435 -1.1084 Bus 41 150.0000 Bus 37 150.0000 0.9888
0.00 114.9219 -691.1435 -1.2120 Bus 41 150.0000 Bus 37 150.0000 0.9888

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities (2019RC051).

References270

[1] A. M. Fathabad, J. Cheng, K. Pan, F. Qiu, Data-driven planning for renewable distributed generation integration,

IEEE Transactions on Power Systems 35 (6) (2020) 4357–4368.

[2] Y. Gupta, S. Doolla, K. Chatterjee, B. C. Pal, Optimal DG allocation and Volt–Var dispatch for a droop-based

microgrid, IEEE Transactions on Smart Grid 12 (1) (2021) 169–181.

[3] V. B. Pamshetti, S. Singh, A. K. Thakur, S. P. Singh, Multistage coordination Volt/VAR control with CVR in275

active distribution network in presence of inverter-based DG units and soft open points, IEEE Transactions on

Industry Applications 57 (3) (2021) 2035–2047.

[4] A. H. Yazdavar, M. F. Shaaban, E. F. El-Saadany, M. M. A. Salama, H. H. Zeineldin, Optimal planning of

distributed generators and shunt capacitors in isolated microgrids with nonlinear loads, IEEE Transactions on

Sustainable Energy 11 (4) (2020) 2732–2744.280

[5] A. Kalakova, H. K. Nunna, P. K. Jamwal, S. Doolla, A novel genetic algorithm based dynamic economic dispatch

with short-term load forecasting, IEEE Transactions on Industry Applications 57 (3) (2021) 2972–2982.

[6] V. V. S. N. Murthy, A. Kumar, Comparison of optimal DG allocation methods in radial distribution systems based

on sensitivity approaches, International Journal of Electrical Power & Energy Systems 53 (1) (2013) 450–467.

[7] P. Chiradeja, R. Ramakumar, An approach to quantify the technical benefits of distributed generation, IEEE285

Transactions on energy conversion 19 (4) (2004) 764–773.

16

A power loss minimization strategy based on optimal placement and sizing of distributed energy resources



[8] D. K. Rukmani, Y. Thangaraj, U. Subramaniam, S. Ramachandran, R. Elavarasan, N. Das, A new approach

to optimal location and sizing of DSTATCOM in radial distribution networks using bio-inspired Cuckoo search

algorithm, Energies 13 (4615) (2020) 1–20.

[9] L. Y. Wang, B. H. Zhang, J. F. Ren, D. Zhou, F. Yao, W. Zhang, H. Xie, G. Yu, A solution to lower tap changing290

or capacitors regulator times in reactive power control in distribution systems, in: 2005 IEEE/PES Transmission

& Distribution Conference & Exposition: Asia and Pacific, Dalian, China, 2005, pp. 1–5.

[10] A. Alam, M. Zaid, A. Gupta, P. Bindal, A. Siddiqui, Power loss reduction in a radial distribution network using

distributed generation, in: 2018 International Conference on Computing, Power and Communication Technologies

(GUCON), Greater Noida, India, 2018, pp. 1142–1145.295

[11] L. Zhong, L. Guan, J. Zhang, Y. Gong, C. Y. Chung, Distributed reactive power regulation considering load

voltage and power loss, IEEE Access 8 (1) (2020) 24334–24343.

[12] E. Rezania, S. M. Shahidehpour, Real power loss minimization using interior point method, International Journal

of Electrical Power & Energy Systems 23 (1) (2001) 45–56.

[13] N. Deeb, S. M. Shahidehpour, Linear reactive power optimization in a large power network using the decomposition300

approach, IEEE Transactions on power systems 5 (2) (1990) 428–438.

[14] K. Y. Lee, F. F. Yang, Optimal reactive power planning using evolutionary algorithms: A comparative study for

evolutionary programming, evolutionary strategy, genetic algorithm, and linear programming, IEEE Transactions

on power systems 13 (1) (1998) 101–108.

[15] X. Guiguang, W. Xing, Y. Erkeng, A fuzzy multi-objective approach to optimal voltage/reactive power control, in:305

POWERCON’98. 1998 International Conference on Power System Technology. Proceedings (Cat. No. 98EX151),

Beijing, China, 1998, pp. 1443–1447.

[16] H. Liu, G. Huang, C. Wang, H. Liu, Z. Wang, Z. Xu, L. Shi, Reactive power optimization of power grid with

photovoltaic generation based on improved particle swarm optimization, in: 2019 IEEE Innovative Smart Grid

Technologies-Asia (ISGT Asia), Chengdu, China, 2019, pp. 1536–1540.310

[17] Y. Deng, X. Ren, C. Zhao, D. Zhao, A heuristic and algorithmic combined approach for reactive power optimization

with time-varying load demand in distribution systems, IEEE Transactions on Power Systems 17 (4) (2002)

1068–1072.

[18] Y. Y. Hong, S. Y. Ho, Genetic algorithm based network reconfiguration for loss minimization in distribution

systems, in: 2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No. 03CH37491), Toronto,315

Canada, 2003, pp. 486–490.

[19] P. P. Barker, R. W. De Mello, Determining the impact of distributed generation on power systems. I. radial

distribution systems, in: 2000 Power Engineering Society Summer Meeting (Cat. No. 00CH37134), Seattle, WA,

USA, 2000, pp. 1645–1656.

17

A power loss minimization strategy based on optimal placement and sizing of distributed energy resources



[20] J. H. Holland, Genetic algorithms, Scientific American 267 (1) (1992) 66–73.320

[21] M. Sun, Y. Wang, S. Xu, H. Yang, K. Zhang, Indoor geomagnetic positioning using the enhanced genetic

algorithm-based extreme learning machine, IEEE Transactions on Instrumentation and Measurement 70 (1) (2021)

1–11.

[22] S. Jinlei, L. Wei, T. Chuanyu, W. Tianru, J. Tao, T. Yong, A novel active equalization method for series-connected

battery packs based on clustering analysis with genetic algorithm, IEEE Transactions on Power Electronics 36 (7)325

(2021) 7853–7865.

[23] Y. A. Tavares, M. Lee, A foreground calibration for M-channel time-interleaved analog-to-digital converters based

on genetic algorithm, IEEE Transactions on Circuits and Systems I: Regular Papers 68 (4) (2021) 1444–1457.

[24] S. Ananda, N. Lakshminarasamma, V. Radhakrishna, M. S. Srinivasan, P. Satyanarayana, M. Sankaran, Genetic

algorithm driven generic estimation model of lithium-ion battery for energy balance calculation in spacecraft,330

IEEE Transactions on Industry Applications 57 (3) (2021) 2726–2736.

[25] R. Ponciroli, N. E. Stauff, J. Ramsey, F. Ganda, R. B. Vilim, An improved genetic algorithm approach to the unit

commitment/economic dispatch problem, IEEE Transactions on Power Systems 35 (5) (2020) 4005–4013.

[26] J. Song, Z. Wang, Y. Niu, H. Dong, Genetic-algorithm-assisted sliding-mode control for networked state-saturated

systems over hidden Markov fading channels, IEEE Transactions on Cybernetics 51 (7) (2021) 3664–3675.335

18

A power loss minimization strategy based on optimal placement and sizing of distributed energy resources


	A Power Loss Minimization Strategy Based on Optimal Placement and Sizing ofDistributed Energy Resources
	Abstract
	1. Introduction
	2. Mechanism of Genetic Algorithm
	3. Power Loss Minimization Using Genetic Algorithm
	4. Simulation Results
	5. Conclusion
	References



