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ABSTRACT

For many commonly used viscoelastic constitutive equations, it is well known that the limiting behavior is that of the Oldroyd-B model. Here,
we compare the response of the simplified linear form of the Phan-Thien–Tanner model (“sPTT”) [Phan-Thien and Tanner, “A new constitu-
tive equation derived from network theory,” J. Non-Newtonian Fluid Mech. 2, 353–365 (1977)] and the finitely extensible nonlinear elastic
(“FENE”) dumbbell model that follows the Peterlin approximation (“FENE-P”) [Bird et al., “Polymer solution rheology based on a finitely
extensible bead—Spring chain model,” J. Non-Newtonian Fluid Mech. 7, 213–235 (1980)]. We show that for steady homogeneous flows such as
steady simple shear flow or pure extension, the response of both models is identical under precise conditions (e ¼ 1=L2). The similarity of the
“spring” functions between the two models is shown to help understand this equivalence despite a different molecular origin of the two models.
We then use a numerical approach to investigate the response of the two models when the flow is “complex” in a number of different defini-
tions: first, when the applied deformation field is homogeneous in space but transient in time (so-called “start-up” shear and planar extensional
flow), then, as an intermediate step, the start-up of the planar channel flow; and finally, “complex” flows (through a range of geometries), which,
although being Eulerian steady, are unsteady in a Lagrangian sense. Although there can be significant differences in transient conditions, espe-
cially if the extensibility parameter is small L2 > 100; e < 0:01, under the limit that the flows remain Eulerian steady, we once again observe
very close agreement between the FENE-P dumbbell and sPTT models in complex geometries.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0083717

I. INTRODUCTION

Of the many important contributions to rheology and non-
Newtonian fluid mechanics by Professor R. B. Bird that have passed
the test of time, we choose in this commemorative special issue paper
to highlight the constitutive model for dilute solutions of polymers
based on kinetic theory, now known (following Bird’s suggestion) by
the widespread acronym of the “FENE-P” model.1–4 In particular, we
focus on the connections to the seemingly unsimilar model due to

Phan-Thien and Tanner,5 which was originally developed for poly-
meric melts and concentrated solutions using network theory.6,7 Bird’s
interest in molecular theory (or kinetic theory as he preferred to call it)
seems to have been motivated by a desire to “provide a clue as to
which forms of constitutive equations may prove to be the most
useful.”8 [In a fascinating oral history,9 Bird recounts that on first
hearing a talk on the kinetic theory of rigid dumbbells “at that time I
thought, ‘What a lot of nonsense. Why would anybody be interested
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in rigid dumbbells?’ (A point of view that I have changed very much
since).”] Starting in the early 1970s with a “survey” paper10 written
with a student (Hal Warner) and a post doc (D. Colin Evans—a for-
mer Ph.D. student of J. G. Oldroyd), and initially focusing on rigid
macromolecules (idealized as rigid dumbbells), Bird and collabora-
tors11–13 made significant strides in developing constitutive models
derived from kinetic theory culminating in the classic two-volume
monograph “Dynamics of Polymeric Liquids”2,3 (referred to as “DPL”
hereafter) with the second volume dedicated specifically to this topic.
Bird’s continued his contributions to the subject between the first and
second editions of DPL, especially with regard to kinetic theory of
finitely extensible (“FENE”) dumbbells, such that the second edition
must have required significant revision! Using kinetic theory to under-
stand rheological behavior, and in particular, the “FENE-P” dumbbell
model, which we focus on here, held a long fascination for Professor
Bird.14–16 The benefit of the kinetic theory approach, particularly from
a pedagogical perspective, was something which obviously appealed.17

In this special issue paper, we compare the response of this classi-
cal FENE-P dumbbell model1–4 derived for dilute polymeric solutions
with the simplified form of the linear Phan-Thien–Tanner fluid
model5 derived from network theory (for polymeric melts and concen-
trated solutions). Although the potential similarity between these
models was highlighted even in the original paper of Bird et al.1

[“Their equation is similar to our Eqs. (57) and (60) and exhibits the
same kinds of nonlinearities in the stresses.”] and has been discussed
in passing in a number of papers in the intervening 40 years,18–22 here
we probe the two models across a significantly broader range of condi-
tions and flows than has been done hitherto. In so doing, we highlight,
despite their completely different microstructural origin, the very similar
behavior of the two models. Before describing the results of our investi-
gations, we first provide an historical overview of the development of
the two models. We then discuss the response of the two models in
flows of increasing complexity from simple homogeneous in space and
time, to homogeneous in space but unsteady in time, to unsteady in
both space and time. Finally, we compare the response of the two
models in a range of complex geometries, which although restricted to
Eulerian steady flow, are unsteady in a Lagrangian sense.

II. A HISTORICAL PERSPECTIVE OF THE FENE-P
AND PTT MODELS

The FENE-P dumbbell model was derived considering the
dynamics of a basic dumbbell molecule formed by two spheres con-
nected by a spring with end-to-end vector Q (a stochastic quantity)
subject to the influence of Brownian thermal motion, viscous drag,
and an elastic relaxation by a non-linear Warner spring,23 resulting in
an equation for the evolution of the first moment hQQi and another
to obtain stress.1 Although those equations contained all that was nec-
essary to calculate the flow and many elements of the molecular con-
figuration (stretch, orientation), it was common at the time (in the
1980s) to transform the set into a stress formulation equation. In the
case of the FENE-P dumbbell model, the first published reference was,
in fact, by Bird,4 but the model was described more fully by Bird et al.1

who gave

Zsþ kðsrÞ � k sþ nkTIð ÞD lnZ
Dt

¼ nkTk _c (1a)

with spring function

Z ¼ 1þ 3
b

1þ skk=3nkTð Þ; (1b)

where the maximum molecular stretch Q0 (Q2
0 � hQ �Qimax) was

normalized as b ¼ HQ2
0=kT (H is the Hookean spring constant, k is

the Boltzmann constant, T is the absolute temperature, and n is the
number of molecules per unit volume). Here, s represents the poly-
meric contribution to stress, I is the identity tensor, _c is the rate of the
deformation tensor ( _c ¼ruþruT), k is the Rouse relaxation time,

and ðsrÞ represents the so-called upper-convected derivative of the
stress tensor due to Oldroyd,24 which is defined as

s
r ¼ Ds

Dt
� s � $uþ $uT � sð Þ

and D=Dt is the usual material (or substantial) derivative [Dx=Dt
¼@x=@tþðu:rÞx]. At equilibrium, the polymer stress vanishes, the
trace skk is, therefore, zero skk¼ sxxþsyyþszz¼0, so Zeq¼ðbþ3Þ=b,
which we will denote simply by a�Zeq. Interestingly, in this paper,
Bird et al.1 stated that “It is appropriate to call Eq. (10) [i.e., Eqs. (1a)
and (1b) here] Tanner’s equation, since Tanner exactly obtained this
same result, albeit by a different route.”25

In another major contribution of Professor Bird, namely, the two
volume set of Dynamics of Polymeric Liquids2,3 (together with
Armstrong, Hassager, and, for volume two, Curtiss), which constitutes
a comprehensive treatise of non-Newtonian fluid mechanics and
kinetic theory modeling of macromolecular fluids, Bird proposed an
improvement to the original FENE-P dumbbell model such that the
zero-shear-rate viscosity of the model coincided with that derived
from the FENE theory23 without the Peterlin26 approximation, giving
gp ¼ nkTkb=ðbþ 5Þ [in the 1980 paper, it was gp ¼ nkTkb=ðbþ 3Þ;
note that gp is the polymeric viscosity gp ¼ gð _c ! 0Þ � gs, where gs
is the solvent viscosity]. Such an improvement was achieved via the
addition of an isotropic term to the standard Peterlin approximation,

namely, h QQ
1�Q2=Q2

0
i ffi hQQi

1�hQ2i=Q2
0
þ eQ2

0I, and from calculation at equilib-

rium of the trace of this expression taken as an equality, the constant e
was found to be e ¼ 2=ðbðbþ 2ÞÞ; see p. 89 of DPL2.2 The original
FENE-P dumbbell model of Bird et al.1 in the stress formulation, after
inserting the expressions for agp to replace nkTk, can be transformed
to the improved version simply by setting b! bþ 2. (Note that this
rule does not apply to the definitions of gp.)

Nowadays, it is much more common to see the constitutive equa-
tions written in terms of the conformation formulation,27–30 which ulti-
mately are the basic equations when the principles of mechanics are
applied in the context of kinetic theory, followed by phase averaging in
a phase space and introducing approximations to arrive at a closed
form manageable set of differential equations. We prefer to work with a
conformation tensor that reduces to the identity tensor at equilibrium
(a situation of no flow or of zero deformation rates), namely,
A ¼ hQQi= 1

3 hQ � Qieq, and in this case, the previous equation for the
FENE-P dumbbell model becomes a pair of equations for the evolution
ofA and for a definition of stress s from the conformation,

A
r
¼ � 1

k
ZA� aIð Þ;

s ¼
gp
k

ZA� aIð Þ;

8>><
>>: (2a,b)
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where the Warner spring function is now given by the following sim-
pler expression:

Z ¼ 1
1� TrA=L2

with a ¼ Zeq ¼
L2

L2 � TrAeq
¼ L2

L2 � 3

 !
(3)

and L2 ¼ bþ 3 in the original model1 or L2 ¼ bþ 5 in the improved
version of Bird et al.2,3 L2 has the physical meaning representing the
square of the ratio between the fully extended dumbbell and its size at
equilibrium [L2 ¼ Q2

0=R
2
eq where R

2
eq ¼ 1

3 hQ �Qieq; the factor of 1=3
occurs because, at equilibrium, the conformation is spherical]. If Eq.
(2b) is multiplied by k=Z and the upper convected operator is applied,
we obtain the conservative form of the FENE-P dumbbell model19 in
the stress formulation,

sþ
�

ks
Z

r �
¼

agp
Z

_c� D
Dt

agp
Z

� �
I; (4a)

Z ¼ a 1þ k
agpL2

skk

 !
: (4b)

These expressions are exactly equivalent to the original equations
[Eqs. (1) or as modified in DPL,2 p. 89] but have the advantage of
being numerically consistent with the conformation formulation set
[Eqs. (2)]. A detailed discussion on this issue has been presented by
Oliveira.19

Although Eq. (4a) is already much simplified in relation to the
original stress formulation of the FENE-P dumbbell model [Eq. (1a)],
it is possible to have an even more compact formulation if it is realized
that the term involving aI in Eq. (2b) is constant, so it does not con-
tribute to the stress divergence term in the momentum balance. In this
case, we re-define stress as s � ðgp=kÞZA, and after applying the con-
vected derivative to ðks=ZÞ ¼ gpA, it results in

sþ
�

ks

Z

r �
¼

agp
k

I; (5a)

Z ¼ 1þ k
gpL2

skk; (5b)

which is a considerable simplification compared to the original pro-
posal by Bird et al.:1 compare Eqs. (5) against Eqs. (1). We have
checked that the solution to this very compact equation is the same as
the original, and the efficiency in terms of the number of iterations to
convergence is also the same, but obviously the implementation
becomes much simpler. We note that the equilibrium value of the
stress s used in Eq. (5) is not zero, but seq ¼ ðagp=kÞI.

Regarding the conformation formulation of Eq. (2), which corre-
sponds exactly to the original proposal of Bird et al.,2,3 several variants
have been employed in the literature especially that related to turbu-
lence modeling of dilute polymer solutions and the phenomenon of
turbulent drag reduction.31,32 The same equations with the a-term

substituted by unity with the consequence that neither A
r
or s go to

zero at equilibrium, as they should. It may be argued that any such
inconsistency is small when L2 is large (and a! 1), but in many
applications, lower values of L2 are employed (e.g., Purnode and
Crochet33 used L2 ¼ 4; also, simulation of concentrated polymer

solutions or melts L2 is set to small values, see Bird and DeAguiar16),
keeping the original formulation is hardly more involved than setting
a ¼ 1. A possible explanation for this inconsistent simplification is
that many authors write the model with a differently normalized con-
formation tensor, which we call here B ¼ HhQQi=kT (since it is the
same normalization used for the maximum extensibility parameter b).
Note that B is not unity at equilibrium [Beq ¼ ðb=ðbþ 5ÞÞI]. The
equations become

B
r
¼ � 1

k
ZB� Ið Þ; s ¼

agp
k

ZB� Ið Þ ða ¼ ðbþ 3Þ=bÞ (6a)

for the original version without Peterlin’s correction and

B
r
¼ � 1

k
ZB� b

bþ 2

� �
I

� �
;

s ¼
agp
k

bþ 2
b

� �
ZB� I

� �
a ¼ bþ 5

bþ 2

� � (6b)

for the improved version of Bird et al.;2 both have Z ¼ 1
1�TrB=b.

Clearly, the evolution equation of Eq. (6a) does not have amulti-
plying I, but when the stress is calculated, a is there, and a similar
inconsistency arises again. Equations (6b) look more complicated than
those for A [Eq. (2)] and are the same as in Bird et al.,2 p. 90, except
that they denoted B by a, the structure tensor.

Other authors (e.g., Vaithianathan and Collins31) have normal-
ized the spring function as Z=Zeq ¼ ðL2 � 3Þ=ðL2 � TrAÞ, but in this
case, k (and a Weissenberg number based on characteristic velocity U
and length scales Lc, i.e.,Wi ¼ kU=Lc) would need to be adjusted and
does not keep the standard molecular definition for the relaxation
time, k ¼ 1=ð4HÞ (where 1 is the Stokes drag coefficient on a sphere
and H is here the Hookean spring coefficient). However although dif-
ferent from the original FENE-P, such re-scaled FENE-P dumbbell
models with k0 ¼ k=Zeq and Z0 ¼ Z=Zeq offer two advantages: (1) the
relaxation time becomes k0 ¼ w1;0=2gp and can be determined from
the experimentally measured value of the primary normal stress coeffi-
cient w1;0, and (2) the analogy with the sPTT (see Sec. IIIA) requires
just a single condition e ¼ 1=L2.

Another meaningful variant of the FENE-P dumbbell model is to
substitute the Warner spring force by a “more accurate” expression in
the sense of following closer the inverse Langevin function implied by
kinetic theory of randomly jointed chains proposed by Cohen,34 namely,
Z ¼ L2 � 1

3TrA
� �

=ðL2 � TrAÞ. In a recent review, Larson and Desai35

are favorable to such an improvement in a FENE-P version for dilute
solutions, but if k is to retain the original definition, a � Zeq

¼ ðL2 � 1Þ=ðL2 � 3Þ should be included in the term multiplied by the
identity tensor. Otherwise, the set of equations to be solved is exactly the
same as Eqs. (4). Alternatively, it can be employed in the re-scaled
FENE-P fashion as explained in the previous paragraph.

Rooted in the network theory for rubber elasticity,6,7 the PTT
model was, in fact, proposed first by Phan-Thien and Tanner earlier
than the FENE-P model5 [with a function f ðsÞ linear on the trace of the
stress, s � TrðsÞ ¼ skk] and afterwards by Phan-Thien36 [f ðsÞ expo-
nentially increasing with s]. Other variants have followed.37 Following
the explanation given by Tanner38 where PTT-like models are con-
trasted with tube-based models for branched polymers (such as the
Pom-Pom of McLeish and Larson39 and the XPP of Verbeeten et al.40),
the evolution of the conformation tensor in network theories follows:
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A
r
¼ � 1

k
F Að ÞA� H Að ÞIð Þ; (7)

where FðAÞ and HðAÞ are two non-dimensional functions of
A � TrðAÞ representing the rates of destruction and creation of net-
work junctions. By assuming that the stress tensor is then given by the
simple Kramers’41 relation (here, we consider only a single mode
representation),

s ¼
gp
k

A� Ið Þ; (8)

then, k s
r ¼ gpðA

r
� I
r
Þ ¼ gpðA

r
þ _cÞ, and using Eqs. (7) and (8),

Tanner38 obtained

sþ k
F
ðsrÞ þ

gp
k

1� H=Fð ÞI ¼
gp
F

_c: (9)

If there is no creation or destruction of junctions as in the case of a
dilute polymer solution, then F ¼ H ¼ 1 and we recover the
Oldroyd-B equation (adding a solvent contribution to s). If the rate of
destruction is equal to the rate of creation, then f ðsÞ � F ¼ H ¼ 1
þeðk=gpÞTrðsÞ and we get the affine (“simplified”) PTT model with
the linear function,

sþ k
f
ðsrÞ ¼

gp
f

_c: (10)

Written in this manner, it becomes clear that there is some similar-
ity between this PTT model and the FENE-P dumbbell model of
Eq. (4): the effective relaxation time k=f is now outside the con-
vected derivative (denoting the Z function as f), and the advection
of the effective viscosity term agp=f [the last term in Eq. (4)] is now
absent. Finally, if there is no creation of network junctions, H ¼ 1,
and FðsÞ takes the expression valid for the XPP of Verbeeten
et al.,40 then the version of the XPP without the Giesekus42 term
(a ¼ 0) is recovered.

The PTT model followed the developments by Tanner25 using
the same “delta-function” closure ideas (i.e., the paper where the
equations for the FENE-P dumbbell model originally appeared and
why Bird proposed calling the FENE-P “Tanner’s equation”). Thus,
in some sense given by this fundamental link, the PTT and FENE-P
dumbbell model may not be expected to be accurate when this clo-
sure assumption is invalid. For example, for dumbbell models,
although assuming the distribution of dumbbell configurations is
highly localized and would appear to be a good assumption for
steady-state extension, Keunings37 showed via the direct comparison
of stochastic simulations of the FENE model with FENE-P dumbbell
model predictions that in transient extension, they exhibit signifi-
cantly different dynamics of molecular extension and stress. The
configuration distribution function for the FENE-P dumbbell model
is always Gaussian and, thus, never localized, whatever the flow
kinematics.

As a final comment, inspection of Eq. (7) in comparison with
Eq. (2), we see that the FENE-P may be seen as a network model with
no creation of network junctions (H ¼ 1). Therefore, we should
expect that, in general, the FENE-P dumbbell model and, by the same
reason, many tube and reptation-based models, may exhibit much
stronger recoil effects as compared with the PTT model. This is, in
fact, reported by Tanner38 and will also be observed in the transient
flows that we consider here.

III. CONSTITUTIVE EQUATIONS

Given all the various definitions of the FENE-P dumbbell model
in the literature as discussed in Sec. II, in this short section, we explic-
itly state the form of the models that we are comparing in the remain-
der of this paper. In particular, we use the simplified linear form of the
PTT model (often called the “sPTT” model—a terminology that we
will use hereafter—or the affine linear PTT), which can be expressed
from Eq. (10) as43

fPTTsþ kðsrÞ ¼ gp _c; (11)

where fPTT ¼ 1þ ke
gp

skk is the linear function of the PTT model in
which e is the extensibility parameter. It is the “simplified” Phan-
Thien and Tanner model in the sense that only the upper convected
derivative is retained (assuming affine deformation), whereas the origi-
nal model uses the full Gordon Schowalter (GS) derivative44 with the
parameter n, which allows for the slip between the molecular network
and the continuum medium. In the sPTT model, n is set to be identi-
cally zero and the GS derivative simply becomes the upper convected
derivative. Note that it is known that the GS derivative can lead to
incorrection predictions in some flows,45,46 and therefore, the slip
parameter is often restricted to certain values to avoid such unphysical
results as in the model of Johnson and Segalman,47 for example.

In contrast, the FENE-P dumbbell model can be expressed as
[from Eq. (4) using now f instead of Z for consistency with the sPTT
model]

fFPsþ kðsrÞ ¼ DfFP
Dt

k
fFP

sþ
agp
fFP

I

� �
þ agp _c; (12)

where the symbols have the same meaning for the sPTT model as
above, but now, the FENE-P function is fFP ¼ 1þ ð3aþ kskk=gpÞ=L2
and a ¼ L2=ðL2 � 3Þ and L2 is now called the extensibility parameter.
D=Dt still represents the substantial or material derivative
[DfFP=Dt ¼ @fFP=@t þ ðu:rÞfFP]. Note the the underlined term in
Eq. (12) can also be expressed equivalently as�ðksþ agpIÞfFP

Dð1=fFPÞ
Dt .

A. Steady-state homogeneous flows

For any homogeneous steady flow at a constant deformation
rate, such as steady-state simple shear flow or planar/uniaxial exten-
sion, DfFP=Dt ¼ 0, and thus, the underlined term on the right-hand
side of Eq. (12) will vanish with the FENE-P dumbbell model obtain-
ing a similar expression to Eq. (11) of the sPTT model. For values of
L2 � 3, a tends to one and the function fFP, therefore, simplifies to

fFP ¼ 1þ k
gpL2

skk; (13)

where now the FENE-P dumbbell and sPTT models can be seen to be
identical under the transformation e ¼ 1=L2. Thus, in the limit that
L2 � 3, the FENE-P and sPTT material properties (using e ¼ 1=L2)
should be identical. In fact, as was originally shown by Cruz et al.,18

there is complete equivalence between the sPTT and FENE-P
dumbbell models for this class of flows under the transformation
e ¼ 1=L2; fPTT ¼ fFP

a ; kPTT ¼
kFP
a as is immediately apparent when

comparing Eq. (4) with Eq. (10) (including the functions). Of course,
as L2 must remain larger than 3 in the FENE-P dumbbell model, yet
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no such restriction is required for the e parameter in the sPTT model,
this equivalence only holds for e < 1/3.

B. Spring functions in the PTT and FENE-P dumbbell
models

It is useful at this point to look at the response of the various
functions, in general conditions (i.e., not simply restricted to homoge-
neous flows), to try to understand the puzzling fact of how a molecular
model whose main assumption is the limitation of its extended length,
gives similar results to another model without such a fundamental
limitation. Figure 1(a) shows the variation of the “spring” force coeffi-
cients f ðxÞ for the FENE-P dumbbell model, including the Cohen ver-
sion and the theoretical inverse-Langevin function, all being limited by
x ¼ ðQ=Q0Þ2 ¼ TrA=L2 < 1, and the two PTT versions with linear
and exponential functions for which x ¼ eðTrA� 3Þ may be larger
than unity. An explanation for such an unexpected behavior is pro-
vided by the stress–conformation relations for the two models: while
the limited conformation values in the FENE-P model [Eq. (2b) are
multiplied by the force coefficient f ðxÞ, which attains large values on
approaching the divergence point (x! 1), in the PTT model [Eq. (8)],
the stress is equal to the conformation multiplied by a constant factor
for consistency of units. So, when the spring coefficients f ðxÞ are
transformed to become functions of the stress f ðs0Þ, where s0 is
the trace of the non-dimensional stress normalized by L2 or 1=e, the
results are almost identical as shown in Fig. 1(b). This is the key
explanation for the coincidence of results between the FENE-P dumb-
bell model and the sPTT model in flows of increasing complexity, to
be discussed in the next sections.

IV. GOVERNING EQUATIONS AND NUMERICAL
METHODS

In this section, we briefly review the equations to be solved and
the associated numerical methods used to study our “complex” flows.
This encompasses both “start-up” shear, planar extensional, and chan-
nel flow and also steady mixed kinematic flows—i.e., encompassing
regions of both shear and extension-dominated flows—in five different
geometries, including (a) the developing flow in a square duct, (b) the
flow in a 4:1 planar contraction, (c) the flow through a cylinder in a
channel with 50% blockage, (d) a two-dimensional “cross-slot”

geometry, and (e) a fully three-dimensional “Extensional Viscometer-
Rheometer-On-a-Chip” (EVROC).48 Schematic representations of
these geometries are provided in Fig. 2.

The equations solved are conservation of mass, assuming incom-
pressibility, and momentum,

r � u ¼ 0; (14)

Re
@u
@t
þ u:ru

� �
¼ �rpþ br2uþr � sp; (15)

where Re is the Reynolds number, which, in general, is set to be identi-
cally zero (the exception is the developing square duct flow, where it is
set to be equal to 1). For most cases, the components of the stress ten-
sor are calculated using the so-called log-conformation approach for
the sPTT [Eq. (11)] and FENE-P [Eq. (12)] constitutive equations.49–51

Rheological constitutive equations in the kernel-conformation
approach are generally written in terms of the conformation tensor
introduced in Sec. II, A, which is a variance–covariance, symmetric
positive definite tensor (SPD)51 and in the non-dimensional form
[from Eq. (8)], we have

sp ¼
1� b
Wi

A� Ið Þ (16)

for the sPTT model and

sp ¼
1� b
Wi

fAA� aIð Þ; (17)

for the FENE-P model [from Eq. (2b)], where the functions from the
FENE-P (fFP) and sPTT (fPTT) models in terms of the conformation
tensor are

fA ¼
1þ eTrðA� 3Þ sPTT;

L2= L2 � TrðAÞ
� �

FENE� P:

(
(18)

To solve Eqs. (14)–(18), three different codes have been used (depend-
ing on the problem studied). For the developing flow in a square duct
and the EVROC geometry, we use the in house finite-volume code as
described by Zografos et al.52 and full details are provided there. For
the start-up channel flow problem, the flow is generated by a sudden
application of a pressure gradient, and the equations to be solved are
given in the supplementary material of Alves et al.53 or Oliveira54 [we
highlight that for the FENE-P dumbbell model, one needs to solve the

FIG. 1. Spring functions vs: (a) square of relative stretch; (b) normalized trace of stress.
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polymer stress equations for the lateral normal stresses (syy ¼ szz)
despite the two-dimensional nature of the flow field]. For the remain-
ing geometries, and the homogeneous “start-up” simulations, we use
the open source RheoTool package,49 where a Gauss scheme is used to
discretize the gradient, divergence, and Laplacian terms. In these cases,
a zero gradient boundary condition for the stress and velocity compo-
nents is applied at the outlets to simulate fully developed conditions.
At the walls, values of the stress components are calculated using an
extrapolation method as suggested by Pimenta and Alves,49 and no-
slip is assumed for the velocities.

For the 4:1 contraction, the flow through the cylinder and the
cross slot the geometries used in this work are identical to the ones
used in the tutorial section of the RheoTool package,49 and for the
purpose of brevity, information regarding the mesh and boundary
condition is not unnecessarily repeated here. Mesh details for the
square duct (30 � 30 cells in the cross plane) are given in Table I.
The boundary conditions and EVROC geometry mesh (M1) are the
same as in Zografos et al.52

V. RESULTS AND DISCUSSION
A. Equivalence between models in both steady simple
shearing and extension

As discussed earlier the FENE-P dumbbell and sPTT models can
be seen to be identical under the transformation e ¼ 1=L2 for simple

shear and extensional flows. Thus, in the limit that L2 � 3, the FENE-
P and sPTT material properties (using e ¼ 1=L2) should be identical.
[For larger(smaller) values of eðL2Þ, complete equivalence18 between
the sPTT and FENE-P models occurs when e ¼ 1=L2; fPTT ¼ fFP=a;
kPTT ¼ kFP=a.] We show this in Fig. 3 for a range of conditions,
including solvent viscosity contributions (although as this is a linear
addition, this precise value of solvent contribution is insignificant in
demonstrating this equivalence). Exact analytical expressions for the

FIG. 2. Schematics of “complex” geome-
tries investigated: (a) square duct, (b) 4:1
planar contraction, (c) the flow past a cyl-
inder confined in a planar channel with the
50% blockage ratio, (d) a two-dimensional
cross-slot geometry, and (e) the EVROC
geometry. Note that the color scheme
used follows Poole55 to distinguish
between shear-dominated, extensional-
dominated, and mixed kinematics
geometries.

TABLE I. Mesh details for square duct simulations.

Dxmin/H Dymin/H Dzmin/H No. of computational cells

0.25 0.023 0.023 202 500

FIG. 3. Comparison of rheological properties in steady simple shear flow between
sPTT and FENE-P dumbbell models for various model parameters: normalized
shear viscosity (g) and (inset) the normalized first normal stress difference
(N1 ¼ sxx � syy ).

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 033110 (2022); doi: 10.1063/5.0083717 34, 033110-6

VC Author(s) 2022

https://scitation.org/journal/phf


sPTT material functions are provided in Shogin22 and are not unnec-
essarily repeated here.

Once a model’s shear viscosity response is known, this informa-
tion is then sufficient56 to obtain analytical (or semi-analytical) solu-
tions to any steady fully developed simple-shearing flow such as
Couette flow or laminar flow through axisymmetric pipes, two-
dimensional channels, or concentric annuli. Thus, solutions obtained
for the sPTT model in such flows, but not yet independently for the
FENE-P model, do not need to be separately derived. Examples for the
sPTT model include annular flow solutions due to cylinder rotation in
a concentric annulus57 or channel flows with slip,58,59 electro-osmotic
Poiseuille flows,60–62 or thin-film flows.63 For the FENE-P model,
there are boundary-layer and free-shear layer approximations,64–66

which should be equally valid for the sPTT model.
In Fig. 4, we also shown that this equivalence holds in the planar

extensional flow under the same conditions.

B. Comparison of sPTT and FENE-P dumbbell models
in “start-up” of homogeneous shear and extension

For the start-up flows considered in this section, the strain rates
(i.e., _c and _e, respectively, for shear and extensional flows) can be writ-
ten as

_cðtÞ
_eðtÞ

� �
¼ _c0

_e0

� �
HðtÞ; (19)

where HðtÞ stands for the Heaviside step-function with HðtÞ ¼ 1 for
t > 0 and HðtÞ ¼ 0 at t ¼ 0. Such flows have been studied previously
using both numerical19,67,68 and analytical approaches21,22 although
direct comparisons between the sPTT and FENE-P dumbbell models
have not been previously made to the best of our knowledge.

The results presented in Figs. 5 and 6 show the planar extensional
and shear viscosity response of the sPTT and FENE-P dumbbell mod-
els under start-up flow conditions that are numerically obtained using
the rheoTestFoam solver introduced in the Rheotool package.49 (We
confirmed that for the selected parameter values, the results are in
good agreement with the analytical solution of Ref. 22 for the sPTT
and numerical results of Ref. 69 for the FENE-P dumbbell model).

The results show that as the Weissenberg number is increased, the
long-time (i.e., steady-state) extensional and shear viscosities exhibit
larger and smaller values than the zero-shear rate viscosity, respec-
tively, which is related to the tension-thickening and shear-thinning
behavior of these models as already shown in Figs. 3 and 4. As already
discussed for the steady-state results, the long-time (steady-state) val-
ues of both shear and extensional viscosity are identical in both the
sPTT and FENE-P dumbbell models under the transformation
e ¼ 1=L2(in the limit of L2 � 3). As can be seen in Figs. 5 and 6, the
equivalence of the two models which was observed under steady-state
conditions does not generally hold in transient flow conditions. In par-
ticular, as you move outside of the dilute regime condition [i.e., ð1� bÞ
must remain small] and especially for largerWi values, there are marked
differences in the transient response of the two models. In the limit of
L2 � 3, due to the presence of the extra material derivative in the
FENE-P dumbbell model [the underlined terms in Eq. (12)], the devia-
tion of the two models from the Oldroyd-B model is not identical under
transient flow conditions. For the planar extensional flow, it can be seen
that around Wi � 1 differences in the transient response between the
two models can be seen regardless of the value of b. In contrast for the
shear flow, which is known to be a weaker form of deformation than
extension,70 the transient response is seen to be approximately the same
between the two models untilWi� 2.

Our results suggests that for extension during the start-up pro-
cess, increasing the Weissenberg number, the time required to reach
steady-state conditions is reduced (notice that time is normalized by
the extension or shear rate) in both models, while the FENE-P dumb-
bell model exhibits very sharp transitions at the highest Wi studied.
For Wi > 2, the extensional viscosity exhibits an almost step-like
change at a critical time _e0 t 	 3. This behavior looks more pro-
nounced as the viscosity ratio becomes smaller because of the logarith-
mic scaling used in the plot but is essentially the same for the two
solvent viscosity ratio cases shown. This rather unphysical behavior of
the FENE-P dumbbell model in transient extension has been observed
previously and modifications suggested (e.g., FENE-PB model69 or
FENE-M,19 which is equal to the sPTT model when the two non-
linear spring force functions coincide).

Further analysis of this behavior is possible on the basis of the
governing constitutive equations for planar extension for the FENE-P
dumbbell model, and the one of importance here is that giving the
evolution of the axial normal component of the conformation tensor
Axx (since Ayy 
 Axx). Full details of this analysis are given in the
Appendix. From Fig. 5, it is clear that for sufficiently high Wi � k_e,
where _e ¼ @u=@x is the elongational rate (in practice “high” is when
Wi > 2), stretching becomes exponential, that is the equation simpli-
fies to

k@Axx=@t ffi 2k_e � fð ÞAxx; (20)

and by assuming that the f ðAkkÞ ffi f ðAxxÞ function remains approxi-
mately constant at its minimum value, feq ¼ a gives

Axx ¼ Axx;0 exp 2k_e � að Þt=k; (21)

and then AxxðtÞ evolves very quickly up to the limiting
value imposed by the spring stiffness function [this being
Axx;max ¼ ðL2ð2Wi� 1Þ � aÞ= 2Wi� 1

3

� �
with the 1/3 becoming 0 if

the Cohen spring is not considered; gE;max ¼ 2Axx;max]. Note that the
timescale for normal stress and consequently elongational viscosity

FIG. 4. Comparison of the normalized planar extensional viscosity (ge) between
the sPTT and FENE-P dumbbell models for various model parameters.
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FIG. 5. Transient planar extensional viscosity for L2¼ 500 (� ¼ 0.002) with (a) b ¼ 0.95 and (b) b ¼ 0. Insets show same data but plotted using linear scales.

FIG. 6. Transient shear viscosity for L2¼ 500 (� ¼ 0.002) with (a) b ¼ 0.95 and (b) b ¼ 0.
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growth is 	1=ð2k_e � 1Þ ¼ 0:33 for Wi ¼ 2 and 	0:05 for Wi ¼ 10
(in units of k). For lower Weissenberg numbers Wi � 2, the com-
plete equation for Axx needs to be considered, which is approxi-
mated to first order as

k
@Axx

@t
¼ 2Wi� 1

1� Axx=L2

� �
Axx þ a

ffi 2Wi� 1� Axx=L
2

� �
Axx þ a: (22)

The solution is now an hyperbolic tangent function (m ¼ 2Wi� 1;
m0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 4a=L2

p
	 m; t1 is the time for Axx=L2 to be half m and

is defined in the Appendix),

Axx ¼ L2Axx;0
1
2

mþm0tanh
1
2
m0ðt � t1Þ=k

� �� �
; (23)

which is very closely followed by the numerical simulations up to the
point where Axx attains its maximum value (at t ¼ ts). The analysis
also allowed us to estimate this time for maximum molecular stretch;
for largeWi, it is e ¼ _ets ¼ log L. Such a behavior is clearly seen in the
curves of the related quantity of extensional viscosity vs _et forWi � 2
in Fig. 5 [in the late time steady-state, the planar extensional viscosity
is simply 2Axx 	 2L2ð1� 1=2WiÞ]. As Wi gets larger, the maximum
ge is reached when the Hencky strain attains e ¼ _ets ¼ 3:1 for
L2 ¼ 500 of Fig. 5.

In contrast to extensional flows, the start-up shearing-flow
reaches steady-state conditions faster at lower Weissenberg numbers.
In marked contrast to the extensional data, which remained mono-
tonic, in Fig. 6, there are noticeable “overshoots” of the transient vis-
cosity at higher Weissenberg numbers (these also show up in the
transient normal stress data, which is not shown for conciseness).
Such phenomena have been studied within the framework of
Oldroyd’s 8-constant framework58 although neither the sPTT model
or the FENE-P model falls within this hierarchy of models as they con-
tain terms involving skk. These overshoots (and undershoots) at high
values of the Weissenberg numbers occur in both models but these
oscillations are shown to be significantly more pronounced in the
FENE-P dumbbell model. As previously noted,19 the very large over-
shoots in shear of the FENE-P model—where the overshoots exceed
the linear viscoelastic envelope3—are not observed in experiments for
polymeric fluids.71

C. Comparison of sPTT and FENE-P dumbbell models
in “start-up” of the channel flow

This problem represents an extension of the stress growth upon
inception of the simple shear flow of Sec. VB to the non-
homogeneous velocity-gradient case where the flow is generated by a
sudden application of a pressure gradient. It requires solving the equa-
tion of motion and has the advantage, compared to the complex flows
of Sec. VD, of isolating time-dependent elastic effects. A constant
pressure gradient P � �dp=dx is applied at t ¼ 0 to the fluid initially
at rest. In non-dimensional terms, we choose P ¼ 3 so that a
constant-viscosity model will have an average cross-section velocity of
unity (U ¼ 1) when a fully developed situation is attained at large
times. This means that in the results to be shown, lengths are scaled
with the channel half-width H, velocities with the characteristic
velocity Uc ¼ PH2=3g0, and time with a diffusion timescale
tD ¼ ðqH2=g0Þ. Non-dimensional parameters defining the solution

are the elasticity number, E ¼ k=tD ¼ kg0=qH
2, which we set at the

moderate value of E ¼ 5, the Weissenberg number Wi ¼ kUm=H
(Um is the average velocity at steady state), which is indirectly set by
the choice of P, and the solvent viscosity ratio, b ¼ gs=g0.

Figure 7 shows the evolution of the centerline velocity
u0 ¼ uðy ¼ 0; tÞ for the FENE-P dumbbell and the sPTT models
using two typical values of the extensibility parameter L2 ¼ 100 (thus,
e ¼ 0:01 for sPTT) and L2 ¼ 5000 (e ¼ 0:0002). Due to shear thin-
ning, for the same applied pressure gradient, the flow rate (and average
velocity, Um ¼ Q=2H) will be larger for the two viscoelastic models,
especially as L2 gets smaller (and e larger). Hence, we see that by
t ¼ 40, the flow has attained a fully developed condition with u0
¼ 1:5 for the Oldroyd-B fluid, while the two viscoelastic models have
exactly the same fully developed solution with u0 ¼ 1:559 for
L2 ¼ 5000, still showing a small shear thinning effect (normalized
with the average velocity u0=Um ¼ 1:489), and u0 ¼ 3:125 for
L2 ¼ 100 (u0=Um ¼ 1:384). During the transient regime, the results
for the FENE-P and sPTT models differ considerably, especially for
low L2 and high e, and the differences last for about 3–4 relaxation

FIG. 7. Velocity at the channel mid-plane vs time for a given pressure gradient
P¼ 3. b¼ 1/9.

FIG. 8. Velocity at the channel mid-plane vs time for a given mean velocity at
steady state (various pressure gradients P). b¼ 1/9.
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times (up to t¼ 15 to 20). We may also do calculations with differing
pressure gradients so that the final average velocity at steady state will
be the same (Um ¼ 1 in dimensionless form). From the analytical
solution, we find that P ¼ 1:836 02 for L2 ¼ 100 and P ¼ 2:875 75
for L2 ¼ 5000 (keeping E ¼ 5). Note that P should rise up to P ¼ 3 as
the effect of shear thinning becomes negligible. Figure 8 shows the
results of these calculations, which correspond to E ¼Wi ¼ 5, and
various imposed pressure gradients.

The evolution of the centerline velocity is rather similar to that
seen previously (Fig. 7), even more so if Fig. 7 is represented as
u0=Um. For L2 ¼ 5000, the FENE-P and sPTT results almost coincide
with each other during the whole transient evolution. For L2 ¼ 100,
there is coincidence only after about t >	 15 (after three relaxation
times), and the velocity undershoot seen for the FENE-P dumbbell
model after the initial almost inertial velocity increase (and stretch of
the fluid molecules) is much more pronounced than for the sPTT
model. If we identify that velocity decreases as a manifestation of
recoil, Fig. 8 shows that recoil for the FENE-P model is more intense
than recoil for the sPTT model.

As most complex flows involving extensional flow kinematics
only involve transient stretching due to finite residence time/Hencky
strain (with the noticeable exception of cross-slot type flows

containing internal stagnation points that couple finite strain rate and
zero velocity72), the results in this section and the Sec. VB would sug-
gest that non-linear simulations of the sPTT and FENE-P dumbbell
models in complex geometries may exhibit significant differences. We
now test this hypothesis in a range of such geometries in Sec. VD.

D. Complex flows

In Subsections VA–VC, we have shown that, although in steady-
state homogeneous flows both models predict identical behavior at small
extensibility parameters under the transformation e ¼ 1=L2, beyond a
critical Weissenberg number, they exhibit different stress growths under
otherwise identical transient “start-up” tests in both homogeneous shear
and extension and non-homogeneous start-up of the channel flow.
Start-up simulations for both shear and extensional regimes show that
agreement between the models only holds under transient conditions
untilWi� 2 for the conditions highlighted.

In this section, we extend our analysis to more geometrically
complicated flows by undertaking a series of comprehensive simula-
tions in complex geometries. We restrict our analysis here to flows
that remain Eulerian steady (so typically, Wi based on characteristic
length and velocity scales remains on the order of 1). Of course, these

FIG. 9. Normalized streamwise velocity profiles along (a, c) the flow centerline and (b, d) the transverse direction at the flow centreplane of the duct in a region where the flow
is fully developed for increasing Wi for the FENE-P dumbbell and the sPTT models with (a), (b) b ¼ 1/9, while L2¼ 100 and e ¼ 0.01 and (c), (d) b ¼ 1/9, while L2¼ 5000
and e ¼ 0.0002, respectively.
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flows are Lagrangian unsteady and that is why we refer to them as
“complex.” The flows selected are those which have previously been
proposed as “benchmark” geometries as they are known to be chal-
lenging and contain significant regimes of both shear and extension-
dominated kinematics.55

1. Developing flow in a square duct

In this section, the behavior of the FENE-P dumbbell and the
sPTT models is investigated for a flow within a duct of square cross
section. For all cases, a uniform velocity profile is applied at the inlet of
the geometry (magnitude U), and thus, the duct is made long enough
so that the flow is able to reach to a fully developed state. This length is
L¼ 60H, where H is the width (and the depth) of the duct. The
Weissenberg number for this configuration is then defined as Wi
¼ kU/H. Although this flow is seemingly complex, this is only true in
the developing region of the flow as, once it is fully developed, this
flow is basically “viscometric”46 and the response is completely deter-
mined via the shear viscosity (the normal stress sxx playing no role in

the momentum equations). This holds because neither the sPTT
model nor the FENE-P dumbbell model exhibits a non-zero second
normal-stress difference in steady simple shearing.73 Thus, developing
steady flow in a square duct represents an interesting analog of the
transient start-up flows discussed in Sec. VD in that the flow develops
spatially and is a mixture of both shear and extension (as the flow is
uniform at th inlet, it must be decelerating simple shearing near the
walls and acceleration/purely extensional along the centerline). Finally,
just as the start-up flows at long times must approach the steady-state
values, in this case, the flow develops spatially until it becomes fully
developed (i.e., there is no further spatial development), and then, the
flow is simple shear and also equal to its steady-state viscosity (at the
local shear rate magnitude). However, in contrast to the homogeneous
flow fields discussed in Sec. VA, the shear rate (and hence viscosity) is
non-homogeneous and increases from zero at the centerlines to larger
values at the walls.

In Fig. 9, the normalized streamwise velocity profiles along the
centerline [Fig. 9(a)] and along the transverse direction on the centre-
plane [Fig. 9(b); z¼ 0] for the cases of e ¼ 0.01 and L2¼ 100, b ¼ 1/9

FIG. 10. Streamlines superimposed onto the trace of the polymeric stress tensor for Wi¼ 3 and b ¼ 1/9 using (a) the FENE-P dumbbell model with L2¼ 100 and (b) the
sPTT model with e¼ 0.01. The difference between the traces of the non-dimensional stress tensor for each of the models are presented in (c) where it can be seen that differ-
ences are concentrated around the sharp corners.
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are shown. It can be seen that for all the investigated Weissenberg
numbers, when the flow becomes fully developed, both models predict
very similar maximum velocities and identical transverse profiles
(maximum velocities agreeing to within better than 0.16% in all cases).
More interestingly, the developing flow near the inlet—as evidenced
by the variation of the centerline velocity in Fig. 9(a)—shows that there
are marked differences between the models. Although both model
data sets exhibit significant overshoots close to the inlet (reaching
� 2.1U), the sPTT data decay monotonically back to the fully devel-
oped values, which themselves decrease with the increasing
Weissenberg number (as a consequence of shear thinning). In marked
contrast, the FENE-P data at higher Weissenberg number first over-
shoots then undershoots the fully developed values. As the flow along
the centerline is pure-extension (the flow is accelerating, and due to
symmetry, there must be no shear), we see over-and under-shoots in
velocity, which were absent in the equivalent start-up extensional flow.
These interesting features must be a consequence of the non-
homogeneous nature of the extensional deformation along the square-
duct centerline. The behavior within the same configuration when
L2¼ 5000 for the FENE-P model and e ¼ 0.0002 for the sPTT model,

and the obtained profiles, as shown in Figs. 9(c) and 9(d), are basically
identical and Oldroyd-B like.

2. Planar 4:1 contraction

In this subsection, we present an investigation of the viscoelastic
flow in a planar sudden contraction of contraction ratio 4 (i.e., the
downstream channel height is simply a quarter of the upstream chan-
nel height). This problem is a very well-studied “benchmark” in non-
Newtonian fluid mechanics,43 and therefore, we fix the solvent-to-total
viscosity ratio at b¼1/9 in order to be consistent with those conditions.
We test both the FENE-P and sPTT constitutive models to compare
the difference between the results in the limit that L2 is large and e is
small. Although both models have been directly compared in this
geometry previously,74,75 these studies have not focused on this same
parameter range.

The 4:1 contraction is a flow in which the upstream flow, once
fully developed away from the inlet, is simple shearing and then the
acceleration bought by the presence of the contraction gives rise to
locally more complex flow, mixing regions of shear, rotation and,

FIG. 11. Evolution of (a)Xr (corner vortex size) and (b) Xl (lip vortex size) as a function of Wi for L2¼ 100 and 500 (e¼ 0.01 and 0.002) and b ¼ 1/9.
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along the centerline, pure (planar) extension (see, e.g., contour plots of
the flow-type parameter in Mompean et al.76). We note that the nature
of the flow along the centerline is always transient extensional flow as
fluid elements are being advected at the same time as being stretched,
such that they do not accumulate a significant amount of Hencky
strain. Far downstream of the contraction, the flow once again
becomes simple shearing. From a fundamental point of view, the vis-
coelastic fluid flow through such ducts with the abrupt change of cross
section, either contractions (as studied here), expansions,77 or contrac-
tion/expansions,78 is important as they highlight many unusual phe-
nomena brought about by elasticity. These phenomena include
complex recirculation patterns, vortex enhancement or suppression,
the possibility of the unsteady flow due to elastic instabilities, complex
stress behavior near geometrical singular points, and enhanced pres-
sure drops significantly above the equivalent creeping flow Newtonian
result.79

In Fig. 10, we show streamlines superimposed on top of contours
of the trace of the polymeric stress tensor (to give an unambiguous
measure of the “elasticity”) which show that, qualitatively, the flow at
Wi¼ 3 is very similar between the two models. To highlight the small
differences, in Fig. 10(c), we show a contour plot of the differences
between these trace fields, which do highlight some deviations that are
concentrated around the sharp corners. More quantitatively, the varia-
tion of the corner and lip vortex sizes represented as Xr and Xl , respec-
tively, are shown in Fig. 11 (these quantities are defined in Alves
et al.43). By increasing the Weissenberg number (defined here based
on the downstream channel height and average velocity here), the cor-
ner vortices reduce, whereas the lip vortices increase in size. In general,

the difference between the sPTT and FENE-P dumbbell models is
small for the selected conditions especially for the length of the corner
vortices. On the other hand, the difference between the sizes predicted
by sPTT and FENE-P dumbbell models for the lip vortex seems to be
slightly smaller when e ¼ 0:01, which could be related to the singular-
ity appearing near the re-entrant corner.43

3. Flow through a cylinder in a two-dimensional
channel (50% blockage ratio)

The flow through a cylinder confined in a planar channel is
another classical benchmark problem in non-Newtonian fluid
mechanics.53,80,81 Although there is no geometric singularity in the
flow, unlike the sharp corners present in the planar contraction flow,
for example, the interior stagnation points, especially that at the rear of
the cylinder, may drive the growth of very large polymeric stresses
downstream of the cylinder especially along the centerline.82–84 Thus,
this problem is particularly challenging from a numerical simulation
viewpoint and should be a case where differences may be expected to
occur between the two models due to this strongly Lagrangian
unsteady flow along this line. Representative streamlines superim-
posed on contours of the trace of the polymeric stress shown in Fig.
12, once again highlight that qualitatively the two models—here
shown atWi¼ 0.5 (note here, for consistency with the literature,Wi is
based on the radius of the cylinder and upstream velocity)—are in
very close agreement (also highlighting that, under these conditions,
the largest stresses appear in the regions of shear above and below the
cylinder in the gap where the flow must accelerate). Figure 12(c) shows

FIG. 12. The streamlines superimposed by the trace of the stress tensor for Wi¼ 0.5 and b ¼ 0 using (a) the FENE-P dumbbell model with L2¼ 100 and (b) the sPTT model
with e¼ 0.01. The difference between the trace of the stress tensor between the FENE-P dumbbell and sPTT models is presented in (c).
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that differences between the two fields are also concentrated more
toward the poles of the cylinder rather than in the birefringent strand
downstream of the rearward stagnation point.

In Fig. 13, the variation of the drag force with the Weissenberg
number for three different viscosity ratio parameters of b ¼ 0; 1=9,
and 0.59 are reported for two different extensibility parameters of
e ¼ 1=L2 ¼ 0.01 and 0.002. As can be seen, the difference between the
predicted drag coefficient for both models are small and the agreement
between the two models gets slightly better as we approach the dilute
regime limit (b! 1). Following this strong agreement between the
two models for the prediction of the drag coefficient, we show the vari-
ation of the streamwise normal stress sxx along the symmetry line
downstream of the cylinder in Fig. 14. The variation of the normal
stress with e ¼ 1=L2 ¼ 0.002 is almost negligible between the two
models. At a higher value of e ¼ 1=L2 ¼ 0.01, the difference between
the two models becomes slightly larger but again as you move toward
the more dilute regimes, the difference becomes smaller.

4. Cross slot

The cross-slot geometry is a stagnation point flow, which allows
large strains to develop in a well-controlled flow field. It can, therefore,
be used for extensional rheometry measurements85 or once instability
arises, as a mixing device.86 Indeed, it has been proposed as a
benchmark case precisely because the base steady symmetric flow
may undergo a bifurcation to a steady asymmetric configuration at

well-defined conditions.87 Despite the presence of the extensional flow
at the stagnation point and the concomitant large extensional stresses,
which may accrue at this location, it has recently been shown that the
steady symmetry-breaking instability is, most likely, related to the
(transient) shear-dominated flow around the corners.72,88 The critical
value of the Weissenberg number where this steady asymmetry occurs,
thus providing a subtle differentiator of constitutive equations (see,
e.g., the FENE models compared in Ref. 89). In Fig. 15, we show the
variation of the asymmetry parameter (Ap) (see the definition pro-
vided in Ref. 90) with theWeissenberg number for two different values
of e ¼ 1=L2 ¼ 0.01 and 0.002. Although at the larger value of e
(smaller L2), there are some noticeable differences being on the order
of 10% under the critical conditions; as e is reduced, the two models
essentially bifurcate at the same critical value ofWi (�0.37).

5. Extensional viscometer-rheometer-on-a-chip

Microfluidic contraction devices have been proposed for exten-
sional rheometry measurements, in particular, as a useful method for
determining the extensional viscosity of low elasticity solutions. The
first commercially available “extensional viscometer-rheometer-on-a-
chip” (e-VROCTM)48 developed by Rheosense is a hyperbolically
shaped contraction/expansion geometry, which incorporates pressure-
drop measurement capabilities. We have previously studied this geom-
etry numerically,52 including comparisons between the sPTT and
FENE-P dumbbell models (see, e.g., Fig. 13 in Zografos et al.52).

FIG. 13. The variation of the drag coefficient (CD) with the Weissenberg number for (a) L2 ¼ 100 e ¼ 0:01ð Þ and (b) L2 ¼ 500 ðe ¼ 0:002Þ.
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Figure 16 shows typical results through the EVROC geometry. At
small L2 (¼100), the FENE-P dumbbell model is shown to produce a
very large velocity overshoot and concomitantly increase the strain
rate [Figs. 16(a) and 16(b)]. The pressure drop for these model condi-
tions is less than or approximately equal to the equivalent for a
Newtonian fluid [Fig. 16(c)], and it appears that shear thinning domi-
nates the pressure drop over any extensional or transient effects, espe-
cially when b¼ 1/9. Small differences in the pressure drop between
the two models are apparent at the highest values of Wi that could be

achieved in these cases (�4). At the same value of solvent to total vis-
cosity (b¼1/9), but at significantly higher L2(¼ 5000) (velocity and
strain rate profiles not shown for conciseness), the two models behave
very similar in terms of both velocity profiles and pressure [Fig. 16(c)].
At higher levels of solvent viscosity (b¼ 0.95), the pressure drop for
the sPTT model essentially remains the same as the Newtonian result
for all Weissenberg numbers. In contrast, the FENE-P dumbbell
model, beyond aWi� 10, starts to show pressure-drop enhancements.
As the flow along the centerline is basically the same between the two

FIG. 14. The variation of the streamwise normal stress sxx along the centerline downstream of the cylinder for (a) L2 ¼ 100 e ¼ 0:01ð Þ and (b) L2 ¼ 500 ðe ¼ 0:002Þ.

FIG. 15. The variation of the asymmetry parameter AP with the Weissenberg number for b ¼ 1=9. See Poole et al.90 for the definition of the asymmetry parameter.
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models, the differences observed in the dissipation here must be due to
the shear flow outside of this region.

VI. CONCLUSIONS

Others have previously discussed similarities between the sPTT
and FENE-P dumbbell models in homogeneous flows,18 between the
PTT model and the extended pom pom (XPP) model,91 and also
between the modified FENE-P equation and the sPTT model19 but a
comparison across the range of flows that we have discussed in the
current paper has not previously been undertaken.

Although the response of the two models in steady viscometric
flows is essentially identical for e ¼ 1=L2 when L2 � 3, this does not
necessarily mean results in more complex flows—where the under-
lined term in Eq. (12) is not identically zero—will necessarily be the
same. To investigate how much the models may differ in more general
flow conditions, we investigated the response of the two models when
the flow is “complex” in a number of different definitions: first, when
the applied deformation field is homogeneous in space but transient in
time (so-called “start-up” shear and planar extensional flow), as an
intermediate case, the start-up of the channel flow and then for a range
of “complex” flows, which, although Eulerian steady, are unsteady in a

FIG. 16. (a) Velocity and (b) strain rate profiles along the EVROC centerline and (c) pressure drop caused by the presence of contraction/expansion (consult Zografos et al.52

for more information).
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Lagrangian sense. In such flows, the effects of unsteadiness or non-
homogeneous flow/Lagrangian unsteadiness may result in differences
between the models and indeed cause the functions fPTT and fFP to dif-
fer, for example, if complexity in the flow/flow history causes skk to
differ between the two models. Despite these differences in the two
models, we find fairly good agreement between the two models, espe-
cially in the complex flows where we restricted our simulations to the
(Eulerian) steady regime. The equivalence in the spring functions
between the two models help to explain these similarities, despite the
very different molecular origin of the two models.
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APPENDIX: ANALYSIS OF START-UP OF THE
EXTENSIONAL FLOW FOR THE FENE-P DUMBBELL
MODEL

To better understand the behavior of the FENE-P dumbbell
model observed in the numerical “start-up” simulations of transient
extensional flow, in this appendix, we analyze the underlying equa-
tions based on the conformation tensor [Eq. (2a)]. For transient
uniaxial or planar extension, the evolution of the primary normal
component of A is governed by

fAxx þ k@Axx=@t ¼ 2k_eAxx þ a: (A1)

The Warner function [Eq. (3)] is f ðxÞ ¼ 1=ð1� xÞ, which is a
monotonically increasing function of the square of stretch

x ¼ Akk=L2. If we assume that Ayy 
 Axx (verified by simulations
provided Wi � k_e �	 0:1), then Akk ffi Axx or x ffi Axx=L2, and Eq.
(A1) written for x ¼ Axx=L2 becomes

k@x=@t ¼ 2k_e � f ðxÞð Þx þ a=L2 � mx þ a=L2: (A2)

When Wi� 1 (in practice, as we see in Fig. 5, Wi > 2), the uncoil
of the molecule is exponentially fast and it may be assumed that f
remains approximately constant at its equilibrium value
feq ¼ a ¼ L2=ðL2 � 3Þ, giving the largest value for the parameter m
defined in Eq (A2). With this assumption and neglecting the effect
of the last term a=L2, the solution, starting from equilibrium (initial
condition: Axx ¼ 1 and x ¼ x0 ¼ 1=L2, for t ¼ 0), is

x ¼ Axx=L
2 ¼ exp 2Wi� að Þt=k

	 

=L2: (A3)

Figure 17 shows that the solution provided by Eq. (A3) captures
very well the variation observed in the full numerical simulations.
At these large values of Wi and L2, the elongational viscosity gE that
was shown in Fig. 4 basically follows Axx (gE 	 aAxx=Wi) or can be
determined more precisely as gE ffi fAxx=Wi ¼ L2x=½ð1� xÞWi

with x from Eq. (A3).

The time instant at which the molecule is totally stretched (ts)
may be evaluated by intersecting the exponential growth of Eq.
(A3) with the final limiting value of Axx [obtained by solving the
quadratic equation that arises from Eq. (A1) when @Axx=@t ¼ 0,
approximately Axx;1 ¼ ðL2ð2k_e � 1Þ � aÞ=2k_e],

ts
k
¼

log L2 1� 1þ a=L2

2k_e

� �� �
2k_e � að Þ or _ets 	

1
2

log L2 1� 1=2Wið Þ
	 

1� a=2Wið Þ :

(A4)

For example, for L2¼500 and Wi ¼ k_e ¼ 20, Eq. (A4) gives
_ets ¼ 3:17. At large Wi, we have the following limiting values:

_ets;max ¼
1
2
log L2 ¼ log L ) emax ¼ log ðLÞ; (A5)

where e ¼
Ð

_edt is here the accumulated strain (not to be confused
with the PTT parameter). Hence, the case L2 ¼ 500 has a maximum
stretch or Hencky strain of emax ¼ _ets;1 ¼ 3:107. This explains the
behavior observed in Fig. 5. The parameter L2 changes the maxi-
mum attainable Axx but does not otherwise change the described
behavior, as shown in Fig. 17 with L2 ¼ 100. When the
Weissenberg number is not large, say Wi � 2, the constant term

FIG. 17. Evolution of Axx for the FENE-P
model (L2 ¼ 500 and 100) with two val-
ues of Wi ¼ 10 and 20. The black curves
give the numerical results; and the dashed
red follows Eq. (A3).
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a0 ¼ a=L2 in Eq. (A2) cannot be discarded and, considering that
x � Axx=L2 is initially small, we obtain

k@x=@t ¼ 2Wi� 1
1� x

� �
x þ a0 	 2Wi� 1ð Þ � x½ 
x þ a0

� m� xð Þx þ a0; (A6)

whose solution is (now, m ¼ 2Wi� 1)

x ¼ Axx=L
2 ¼ 1

2
mþm0tanh

1
2k

m0ðt � t1Þ
� �� �

(A7)

with

m0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 4a0
p

; t1 ¼
1
m0

ln
x1 � x0
x0 � x2

� �
;

x1 ¼
1
2

mþm0ð Þ; x2 ¼ �
1
2

m0 �mð Þ:
(A8)

The complete approximated solution to the normal conformation
component is finally obtained by limiting the value of Eq. (A7) with
the large-time, steady-state solution (Axx;max used above),

Axx ¼ min L2x;Axx;max

� �
: (A9)

Figure 18 illustrates the improvement achieved by Eqs. (A8) and
(A9) [denoted 1þtanh(m0t) in the figure] compared to the previous
exponential approximation of Eq. (A3) [denoted exp((2Wi-a)t)]. It
is also apparent from Fig. 18 that for Wi> 2, Eq. (A3) becomes
adequate.

For the sPTT model with the linear function, the solution for
x ¼ eAxx is also given by Eq. (A7) but without the need of the limi-
tation imposed by Eq. (A9); the new meaning of the parameters are
m ¼ 2Wi� 1þ 8

3 e, a0 ¼ e 1� 5
3 e

� �
, and Axx;1 ¼ m=e.
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