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Abstract—Skin cancer is a concerning health issue with yearly
increasing numbers. Detecting and classifying cancer type is
problematic, especially since patients have to undergo several
diagnosis over lengthy periods of time, which hinders early
treatment and survival chances. With the aid of digital image
processing, features can be extracted to identify skin cancer
and its different types. Convolutional Neural Networks (CNNs)
recently emerged as powerful autonomous feature extractors,
and they have high potential to achieve high accuracy with skin
cancer diagnosis. In this paper, two cancer types in addition
to one non-cancer type taken from Human Against Machine
(HAM10000) dataset are classified using CNN model based on
VGG19 and Transfer Learning technique. The training strategy
is explained, tested, and evaluated by calculating the network’s
overall accuracy and loss.

Index Terms—Skin Cancer, Image Classification, Convolu-
tional Neural Network, Transfer Learning

I. INTRODUCTION

Skin cancer is the most common type of cancer that
affects humans. It is primarily detected visually, followed by
dermoscopic analysis. Dermoscopic analysis is the study of
skin legions using dermatoscope mainly to evaluate pigmented
skin lesions without obstructing skin surface. Detecting and
classifying cancer type in its early stages is a very crucial
task for the patient’s health and well-being. However, even
with dermoscopy, the patient needs to pay several visits to the
clinician in order to monitor the skin pigment and observe any
changes. This is a lengthy process and it is prone to errors,
which puts the patient’s life at risk. Therefore, a faster, more
reliable process is needed in order to detect and classify skin
cancer pigments. In the recent years, Convolutional Neural
Networks (CNNs) outperformed dermatologists in distinguish-
ing between the different types of skin cancer [1]. Therefore,
efforts have been exerted in this research direction to improve
the accuracy of skin cancer classification. In this paper, a skin
cancer classification strategy is proposed, implemented, and
evaluated. Human Against Machine (HAM10000) dataset is
used in order to test the performance of the proposed strategy.
The CNN used for the classification is based on VGGI19.
The training procedure and parameters are explained and
demonstrated. The rest of the paper is organized as follows:
section II probes into the literature of skin cancer detection
and classification, section III describes the dataset and pre-
processing steps, section IV demonstrates the methodology
of the training procedure and CNN parameters, section V

illustrates and discusses the results, and finally, section VI
concludes the paper.

II. LITERATURE REVIEW

There are different types of skin cancer. Melanoma is con-
sidered as the most dangerous one. According to the American
Cancer Society’s statistics, there is an annual increase of
53% in the melanoma cases reported in United States (US)
[2] [3]. Traditional diagnostic methods of the skin cancer
depend on the visual inspection by dermatologists, which is
time consuming and the diagnostic accuracy is dependent on
the professional experience of the dermatologist. Therefore,
developing an automated Computer Aided Diagnoses (CAD)
system that utilizes different image processing algorithms
for the detection of skin cancer can be considered as an
alternative solution of the visual inspection [4]. In the recent
years, CNNs emerged as a powerful image classifier, and this
is the current direction most researchers are taking. Hosny
et al. [5] proposed skin lesion classification technique for
classifying three different types of skin cancer; Melanoma,
Common Nevus, and Atypical Nevus. The authors utilized
pre-trained AlexNet and replaced the last layer of the deep
CNN with a softmax layer for three skin cancer lesions, where
the classification accuracy of 98.61% was achieved and the
results show superior performance compared to other existing
methods. Similarly, Younis et al. [6] developed skin cancer
classification method using pre-trained MobileNet for the clas-
sification of HAM10000 dataset into seven skin cancer types:
Melanoma, Actinic Keratosis, Basal Cell Carcinoma, Benign
Keratosis-like Lesion, Dermatofibroma, Vascular Lesion, and
Melanocytic Nevi. Their approach achieved classification ac-
curacy of 97.07% and fast prediction time within 2-3 sec-
onds. Other approaches that rely on similar strategies include
Pham et al. [7], which presented Inception-v4 network with
data augmentation to improve the Melanoma classification
performance with accuracy of 89.2%. Additionally, Refianti
et al. [8] used LeNet-5 Deep CNN for the classification of
Melanoma images by increasing the number of training images
and number of epochs. Also, Demir et al. [9] presented two
different deep learning algorithms, which are Resnet-101 and
Inception-v3, for the classification of skin lesions into two
types malignant and benign. The performance of Inception-
v3 model is 87.42%, which is superior to 84.09% achieved
with Resnet-101 architecture. Some approaches rely on both
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Fig. 1. Frequency histogram of skin cancer dataset.

Al and human inspection, such as Hekler et al. [10]. The
authors proposed hybrid approach of using both Al and human
for classifying skin cancer into five different classes with
accuracy rate of 82.95% compared to 81.59% achieved by
CNN and 42.94% by human inspection individually. It can
be concluded from the literature that this area of research
requires further boost in classification accuracy, which is what
this study attempts to achieve.

III. DATASET AND PRE-PROCESSING

HAMI10000 dataset was chosen for this study, which con-
tains various types of skin cancer. Two types were selected
from the dataset; Dermatofibroma (DF) and Basal Cell Car-
cinoma (BCC), in addition to one non-cancer type Benign
Keratosis-like Lesions (BKL). However, imbalance exists in
the dataset due to BKL being more common than the other
two. Imbalance can affect the training process negatively and
potentially cause overfitting. This is also a form of data
bias, where one sample is more represented than the others.
Therefore, augmentation is performed to increase DF and BCC
types. The augmentation methods include crop, scale, contrast
and brightness adjustment, horizontal flip, vertical flip, and
combinations of these methods. After the augmentation, each
skin cancer type has 1000 sample in the dataset, and the final
size of the dataset is 3000. Figure 1 shows frequency histogram
of the three types. The images in the dataset were resized to
64 x 64.

IV. METHODOLOGY

VGG19 was first developed in [11], which is an enhanced
version of VGG16. VGG19 is a deep CNN that consists of
several convolutional layers and max pooling layers, known
as feature extractors. These layers are followed by at least
one fully connected layer, known as classifier. The size and
numbers of the convolutional and fully connected layers are
considered as a design choice determined by the architect
of the CNN. The general architecture of VGGI19 is seen in
Figure 3. The input layer is set to size 64 x 64, and the
output layer is replaced with softmax activation function that
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Fig. 2. Flowchart of applying TL to pre-trained VGGI19 for skin cancer
classification.

reflects one of the three cancer types. The autonomous feature
extraction capability of VGG19 renders it easy to locate the
features that distinguish each different cancer type without
having to spend time inspecting them manually. This VGG19
model was utilized for skin cancer classification. By using
a pre-trained VGG19 with fine-tuned parameters, Transfer
Learning (TL) was applied. 80% of the dataset described
in section III was used for training the network, and the
remainder was used for testing. Out of the 2400 training
images, 20% were used for validation to evaluate the network
performance after each epoch. The network was trained over
100 epochs and a batch size of 50, with a learning rate of 0.01
The optimization function chosen for this network is Adam.
After 100 epochs, the parameters of the model with the best
performance were selected and used with the testing images
in order to evaluate the overall performance of the network. A
flowchart of the methodology described is depicted in Figure 2.

V. RESULTS AND DISCUSSION

After training the network, it was tested on 600 images and
the performance was evaluated using the overall accuracy and
loss. The training and testing accuracy were 0.985 and 0.975,
respectively. While the training and testing loss were 0.099
and 0.119, respectively. Figures 4 and 5 show the progression
of accuracy and loss for training and validation from the start
of the training until the final epoch. Table I summarizes the
final results for both training and validation. It can be seen that
the difference of the results between training and testing is not
big, which means that the network is not overfitting. Moreover,
the loss and accuracy stop fluctuating between epochs 60 and
70, which indicates that the network is stable. In order to
further inspect the accuracy of the network, Figure 6 shows
the confusion matrix. It can be observed that the vast majority
of the predictions fall into the correct categories, whereas only
a few incorrect predictions were made.

Figure 7 shows some of the sample results from the network.
Each image is labeled with the network’s prediction. The
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Fig. 3. VGGI9 general architecture. [12]

TABLE 1
RESULTS SUMMARY
Epoch Training Validation
Accuracy Loss Accuracy Loss
25 0.9823 0.1094 0.9708 0.1264
50 0.9849 0.0997 0.9750 0.1188
100 0.9859 0.0991 0.9750 0.1185
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Fig. 5. Training and validation loss at each epoch.

Actual

b&c blld
Predicted

Fig. 6. Confusion matrix of VGG19.

prediction is correct if the predicted label matches the one
in parenthesis.

VI. CONCLUSION AND FUTURE WORK

In this paper, a training strategy for classifying Dermatofi-
broma (DF), Keratosis-like Lesions (BKL), and Basal Cell
Carcinoma (BCC) types of cancer was explained, demon-
strated, and evaluated. VGG19-based CNN and TL proved
to be powerful tools to aid skin cancer diagnosis with high
accuracy. The overall accuracy and loss of the network indicate
satisfactory outcome that can be improved further. The next
steps in this research include covering a wider variety of skin
cancer types. Additionally, further pre-processing steps can be
taken to enhance the training accuracy further, such as hair
removal.
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