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Abstract

This paper is concerned with the stabilization problem for nonlinear stochastic
delay systems with Markovian switching by feedback control based on discrete-time
state and mode observations. By constructing an efficient Lyapunov functional,
we establish the sufficient stabilization criteria not only in the sense of exponential
stability (both the mean square stability and the almost sure stability) but also in
other sense–that of H∞ stability and asymptotic stability. Meanwhile, the upper
bound on the duration τ between two consecutive state and mode observations is
obtained. Numerical examples are provided to demonstrate the effectiveness of our
theoretical results.

Key words: hybrid stochastic delay systems, stabilization, feedback control, discrete-
time state and mode, Lyapunov functional.

1 Introduction

As an important class of hybrid systems, hybrid stochastic differential equations (SDEs)
(also known as SDEs with Markovian switching) have been widely employed as models to
delineate many practical systems that have variable structures subject to random abrupt
changes, which may result from unpredictable situations such as components failures
or repairs, sudden environment disturbances, unexpected transformation of subsystem
interconnections, and so on [1–8]. Accordingly, considerable attention has been given to
the stochastic systems with Markovian switching. Great research efforts are focused on
the automatic control of such systems, with subsequent emphasis being placed on the
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analysis of stability, and a great number of remarkable results have been reported, see for
instance [9–14].

It is well known that time delay exists inevitably in various practical dynamic systems
including population systems, manufacturing, telecommunication and network control
systems due to the limitation of transmission or switching speeds. And very often, it has
an unstable effect and leads to poor performance of control systems. For example, time
delay can destabilize the evolution of predator-prey systems [15]. It is therefore of great
significance to take the time delay information into account and investigate the stability
and stabilization problems of hybrid stochastic systems with time delays. Many efforts
have been devoted to these topics and lots of related literature has been published [16–26].

Now that we have known the stability of stochastic systems may encounter degra-
dation, or even become unstable due to time delays, Markovian switching or some other
factors. It is vital to investigate how these factors act on stochastic systems and it is
more meaningful and urgent to study how to make the unstable stochastic delay systems
with Markovian switching return to be stable, which is involved with the stabilization of
hybrid stochastic delay systems. To realize the stabilization of a system, scholars have
proposed different control schemes [27–33], of which feedback control is a universal and
effective strategy. However, it has to be pointed out that the feedback controllers in
most of the pioneering works on stabilization for stochastic systems are based on con-
tinuous observations of the state, which is expensive and sometimes not possible as the
observations are always of discrete time in practice. Therefore, Mao [34] initiated a novel
feedback control based on discrete-time state observations to stabilize continuous-time
hybrid stochastic differential equations. Since then, this new design has attracted in-
creasing interests of researchers. Mao et al. [35] provided us with a better bound on the
duration between two consecutive state observations. You et al. [36] weakened the global
Lipschitz assumption on coefficients and further considered the asymptotic stabilization
of nonlinear hybrid stochastic systems. While Yang et al. [37] and Wu et al. [38] applied
this new feedback control to the synchronization of stochastic neural networks and stabi-
lization of stochastic coupled systems, respectively. Furthermore, taking time delay into
account, Zhao et al. [39] extended the theory in [34] to discuss the stabilization of hybrid
stochastic functional differential equations by discrete-time feedback control and based
on Razumikhin technique, Li et al. [40] investigated discrete-state-feedback stabilization
of hybrid stochastic systems with time-varying delay.

It is worth noting that the feedback controls in [34–40] are based on discrete-time ob-
servations of the state but they still depend on continuous-time observations of the mode.
Of course this is perfectly fine if the mode of the system is fully observable at no cost.
However, the mode is not obvious in many real-world situations and it costs to identify
the current mode of a hybrid stochastic system. Also, Geromel and Gabriel [41] empha-
sized the necessity to design the feedback control based on discrete-time observations of
both state and mode from the numerical point of view when studying the state feedback
sampled-data control design for Markov jump systems. So it is necessary and reasonable
that we identify the mode at discrete times when we make observations for the state.
Having this point in mind, we have once designed a feedback controller u(x(δ(t)), r(δ(t))),
where δ(t) = [t/τ ]τ for t ≥ 0 and τ > 0, which is based on the discrete-time observations
of both state and mode, to stabilize linear hybrid stochastic systems [42]. But employing
this developed controller, which is more practical and costs less, to solve the problem of
stabilization for the more general nonlinear hybrid stochastic delay systems still remains
an important, meaningful and challenging problem.
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Motivated by the above discussion, our principal aim is to explore the stabilization
for nonlinear hybrid stochastic delay systems by feedback control based on discrete-time
observations of both state and mode. The primary contributions of our main findings lie
in:

1. We use a more practical and cheaper controller, which is based on the discrete-time
observations of both state and mode, to deal with the stabilization for a class of
more general nonlinear hybrid stochastic delay systems. Furthermore, the upper
bound of the duration between two consecutive observations is gotten.

2. An effective Lyapunov functional is constructed to achieve our goal. When trying to
use the controller u(x(δ(t)), r(δ(t))) to stabilize the more general nonlinear hybrid
stochastic delay systems, the analysis becomes much more complicated due to the
difficulties arisen from the discrete-time Markov chain r([t/τ ]τ), nonlinearity and
delay and the methods in [39, 40, 42] can not work well. Fortunately, we come up
with the Lyapunov functional method.

3. The sufficient conditions, which ensure the stabilization of nonlinear hybrid stochas-
tic delay systems in the sense of exponential stability, H∞ stability and asymptotic
stability, are established.

The rest of this paper is organized as follows. Section 2 covers some necessary pre-
liminaries and the problem formulation. Section 3 devotes to establishing some sufficient
criteria that guarantee the stabilization of nonlinear hybrid stochastic delay systems.
Subsequently, the theoretical findings are illustrated by numerical examples in Section 4.
Finally, Section 5 ends this study and concisely summarizes the main conclusions of this
paper.

2 Preliminaries and problem formulation

2.1 Preliminaries

We first introduce some basic notations. If x ∈ Rn, then |x| is its Euclidean norm. For
a matrix A, we let |A| =

√
trace(ATA) be its trace norm and ‖A‖ = max{|Ax| : |x| =

1} be the operator norm. For a symmetric matrix A, denote by λmin(A) and λmax(A)
its smallest and largest eigenvalue, respectively. Given two symmetric matrices A and
B, A > (<,≥,≤)B means that A − B is positive definite (negative definite, positive
semidefinite, negative semidefinite, respectively). Let τ > 0 and C([−τ, 0];Rn) denote the
family of continuous functions ϕ from [−τ, 0] to Rn with the norm ‖ϕ‖ = sup−τ≤θ≤0 |ϕ(θ)|.
If both a, b are real numbers, then a ∨ b = max{a, b} and a ∧ b = min{a, b}. Moreover,
let (Ω,F , {Ft}t≥0,P) be a complete probability space with a filtration {Ft}t≥0 satisfying
the usual conditions (i.e. it is increasing and right continuous with F0 containing all P-
null sets) and w(t) = (w1(t), · · · , wm(t))T be an m-dimensional Brownian motion defined
on the probability space. Let r(t) represent a right-continuous Markov chain on the
probability space, which is assumed to be independent of the Brownian motion w(·) and
take values in a finite state space S = {1, 2, · · · , N} with generator Γ = (γij)N×N given
by

P{r(t+ ∆) = j|r(t) = i} =

{
γij∆ + o(∆) if i 6= j,

1 + γii∆ + o(∆) if i = j,
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where ∆ > 0 and γij ≥ 0 is the transition rate from i to j if i 6= j while γii = −
∑

j 6=i γij.

Denote by Cb
F0

([−τ, 0];Rn) the family of all bounded, F0-measurable C([−τ, 0];Rn)-valued
random variables.

Next, let us introduce a useful lemma, which will play an important role in coping
with the discrete-time Markov chain. For its explanation and proof details, we refer the
reader to [42,43].

Lemma 2.1 For any t ≥ 0, v > 0 and i ∈ S, we have

P(r(s) 6= i for some s ∈ [t, t+ v]|r(t) = i) ≤ 1− e−γ̄v,

in which
γ̄ = max

i∈S
(−γii).

2.2 Problem formulation

Consider an n-dimensional unstable hybrid stochastic delay differential equation (SDDE)

dx(t) = f(x(t), x(t− h), r(t), t)dt+ g(x(t), x(t− h), r(t), t)dw(t) (2.1)

on t ≥ 0, with initial data x0 = ξ ∈ Cb
F0

([−h, 0];Rn) and r(0) = r0 ∈ S, where h > 0
stands for the time delay, and f : Rn×Rn×S×R+ → Rn, g : Rn×Rn×S×R+ → Rn×m.
Now our aim is to design a feedback control u(x(δt), r(δt), t) so that the controlled hybrid
SDDE

dx(t) =
(
f(x(t), x(t−h), r(t), t)+u(x(δt), r(δt), t)

)
dt+g(x(t), x(t−h), r(t), t)dw(t) (2.2)

will become stable in some certain sense, where u : Rn × S × R+ → Rn and δt = [t/τ ]τ ,
in which [t/τ ] is the integer part of t/τ and hence τ > 0 means the duration between two
consecutive observations.

We can observe that the feedback control u(x(δt), r(δt), t) is designed based on the
discrete-time state observations x(0), x(τ), x(2τ), · · · and discrete-time mode observations
r(0), r(τ), r(2τ), · · · as well, though the given hybrid SDDE (2.1) is of continuous-time.

In this study, we impose the following conditions on the coefficients and the controller
function.

Assumption 2.2 Assume that the coefficients f and g are locally Lipschitz continuous
and obey linear growth condition. That is, for each integer k ≥ 1, there exists a positive
constant Lk such that for those x, y, x̄, ȳ ∈ Rn with |x|∨|y|∨|x̄|∨|ȳ| ≤ k and (i, t) ∈ S×R+,
one has

|f(x, y, i, t)− f(x̄, ȳ, i, t)| ∨ |g(x, y, i, t)− g(x̄, ȳ, i, t)| ≤ Lk(|x− x̄|+ |y − ȳ|) (2.3)

and there is a constant L > 0 such that

|f(x, y, i, t)| ∨ |g(x, y, i, t)| ≤ L(|x|+ |y|) (2.4)

holds for all (x, y, i, t) ∈ Rn ×Rn × S ×R+.

Therefore, it is easy to obtain that for all (i, t) ∈ S ×R+,

f(0, 0, i, t) = 0, g(0, 0, i, t) = 0. (2.5)
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Assumption 2.3 There exists a positive constant K such that

|u(x, i, t)− u(y, i, t)| ≤ K|x− y| (2.6)

for all (x, y, i, t) ∈ Rn ×Rn × S ×R+. Moreover, for all (i, t) ∈ S ×R+,

u(0, i, t) = 0 (2.7)

Also, we can see that Assumption 2.3 implies the following linear growth condition
on the controller function:

|u(x, i, t)| ≤ K|x| (2.8)

for all (x, i, t) ∈ Rn × S ×R+.

From the above assumptions, it follows that system (2.2) has a unique solution x(t)
with initial value x0 = ϕ ∈ Cb

F0
([−τ ∗, 0];Rn), r(0) = r0 ∈ S such that E(sup−τ∗≤t<∞ |x(t)|2)

< ∞ (see e.g. [6, 42]), where τ ∗ = h ∨ τ . And it is known that x(t) ≡ 0 is the trivial
solution of system (2.2).

3 Stabilization analysis for hybrid SDDE

In this section, we aim to establish sufficient criteria to ensure the stabilization for system
(2.1) in different senses. To realize our purpose, let’s first construct the Lyapunov func-
tional on the segments x̂t := {x(t+s) : −2τ ∗ ≤ s ≤ 0} and r̂t := {r(t+s) : −2τ ∗ ≤ s ≤ 0}
for t ≥ 0, where τ ∗ = h ∨ τ . For x̂t and r̂t to be well defined for 0 ≤ t < 2τ ∗, we set
x(s) = ϕ̄ ∈ Cb

F0
([−2τ ∗, 0];Rn), r(s) = r0 for −2τ ∗ ≤ s ≤ 0. The Lyapunov functional

used in this paper will be of the form

V (x̂t, r̂t, t) =U(x(t), r(t), t) +

∫ t

t−h
x(s)TP (r(s))x(s)ds

+ θ

∫ t

t−τ

∫ t

s

[
τ |f(x(v), x(v − h), r(v), v) + u(x(δv), r(δv), v)|2

+ |g(x(v), x(v − h), r(v), v)|2
]
dvds (3.1)

for t ≥ 0, where P (r(s)) := Pi are all symmetric positive-definite matrices and θ is a
positive number to be determined later. We set

f(x, y, i, s) = f(x, y, i, 0), g(x, y, i, s) = g(x, y, i, 0), u(x, i, s) = u(x, i, 0)

for (x, y, i, s) ∈ Rn×Rn×S× [−2τ ∗, 0) and (x, i, s) ∈ Rn×S× [−2τ ∗, 0). We also require
U ∈ C2,1(Rn × S × R+;R+), the family of non-negative functions U(x, i, t) defined on
(x, i, t) ∈ Rn×S×R+ which are continuously twice differentiable in x and once in t, and
define an operator LU : Rn ×Rn × S ×R+ → R by

LU(x, y, i, t) =Ut(x, i, t) + Ux(x, i, t)[f(x, y, i, t) + u(x, i, t)]

+
1

2
trace[gT (x, y, i, t)Uxx(x, i, t)g(x, y, i, t)]

+
N∑
j=1

γijU(x, j, t), (3.2)

where Ut(x, i, t) = ∂U(x,i,t)
∂t

, Ux(x, i, t) =
(
∂U(x,i,t)
∂x1

, · · · , ∂U(x,i,t)
∂xn

)
, Uxx(x, i, t) =

(
∂2U(x,i,t)
∂xi∂xj

)
n×n

.

To develop our theory, let us put forward an assumption on U .
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Assumption 3.1 Assume that there is a function U ∈ C2,1(Rn× S ×R+;R+) and three
positive numbers λ1, λ2 and λ3 such that

LU(x, y, i, t) + λ1|Ux(x, i, t)|2 ≤ −λ2|x|2 + λ3|y|2 (3.3)

for all (x, y, i, t) ∈ Rn ×Rn × S ×R+ and (x, i, t) ∈ Rn × S ×R+.

3.1 Asymptotic stabilization

Theorem 3.2 Let Assumptions 2.2, 2.3 and 3.1 hold. Assume that there exist positive-
definite symmetric matrices Pi(i ∈ S) such that λ2 > λPM := maxi∈S λmax(Pi) and λ3 ≤
λPm := mini∈S λmin(Pi). Set

θ =
2K2

λ1

(
1 + 8(1− e−

γ̄
4K )
)
. (3.4)

If τ > 0 is sufficiently small for

λ2 >
4K2

λ1

(1− e−γ̄τ ) + θτ(4τ + 2)L2 + 4θτ 2K2 + λPM ,

λ3 ≤ λPm − θτ(4τ + 2)L2 and τ ≤ 1

4K
, (3.5)

then the controlled system (2.2) is H∞-stable in the sense that∫ ∞
0

E|x(s)|2ds <∞. (3.6)

for every initial data x0 = ϕ̄ ∈ Cb
F0

([−2τ ∗, 0];Rn) and r0 ∈ S.

Proof. For any given x0 = ϕ̄ ∈ Cb
F0

([−2τ ∗, 0];Rn) and r0 ∈ S, regarding the solution x(t)
of equation (2.2) as an Itô process and applying the generalized Itô formula (see e.g. [6])
to U(x(t), r(t), t), we can get

dU(x(t), r(t), t)

=
(
Ut(x(t), r(t), t) + Ux(x(t), r(t), t)[f(x(t), x(t− h), r(t), t) + u(x(δt), r(δt), t)]

+
1

2
trace[gT (x(t), x(t− h), r(t), t)Uxx(x(t), r(t), t)g(x(t), x(t− h), r(t), t)]

+
N∑
j=1

γr(t),jU(x(t), j, t)
)
dt+ dM(t).

On the other hand, the fundamental theory of calculus shows

d
(∫ t

t−τ

∫ t

s

[
τ |f(x(v), x(v − h), r(v), v) + u(x(δv), r(δv), v)|2 + |g(x(v), x(v − h), r(v), v)|2

]
dvds

)
=
(
τ
[
τ |f(x(t), x(t− h), r(t), t) + u(x(δt), r(δt), t)|2 + |g(x(t), x(t− h), r(t), t)|2

]
−
∫ t

t−τ

[
τ |f(x(s), x(s− h), r(s), s) + u(x(δs), r(δs), s)|2 + |g(x(s), x(s− h), r(s), s)|2

]
ds
)
dt.
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Applying the generalized Itô formula to the Lyapunov functional defined by (3.1) and
combining the above two equalities, we have

dV (x̂t, r̂t, t) = LV (x̂t, r̂t, t)dt+ dM(t) (3.7)

for t ≥ 0, where M(t) is a continuous martingale with M(0) = 0 and

LV (x̂t, r̂t, t)

=Ut(x(t), r(t), t) + Ux(x(t), r(t), t)[f(x(t), x(t− h), r(t), t) + u(x(δt), r(δt), t)]

+
1

2
trace[gT (x(t), x(t− h), r(t), t)Uxx(x(t), r(t), t)g(x(t), x(t− h), r(t), t)]

+
N∑
j=1

γr(t),jU(x(t), j, t) + x(t)TP (r(t))x(t)− x(t− h)TP (r(t− h))x(t− h)

+ θτ
[
τ |f(x(t), x(t− h), r(t), t) + u(x(δt), r(δt), t)|2 + |g(x(t), x(t− h), r(t), t)|2

]
− θ

∫ t

t−τ

[
τ |f(x(s), x(s− h), r(s), s) + u(x(δs), r(δs), s)|2 + |g(x(s), x(s− h), r(s), s)|2

]
ds.

(3.8)

Taking the expectation of both sides of equality (3.8) and recalling (3.2), we obtain

ELV (x̂t, r̂t, t)

=ELU(x(t), x(t− h), r(t), t)

− E (Ux(x(t), r(t), t)[u(x(t), r(t), t)− u(x(δt), r(t), t) + u(x(δt), r(t), t)− u(x(δt), r(δt), t)])

+ E
(
x(t)TP (r(t))x(t)

)
− E

(
x(t− h)TP (r(t− h))x(t− h)

)
+ θτE

[
τ |f(x(t), x(t− h), r(t), t) + u(x(δt), r(δt), t)|2 + |g(x(t), x(t− h), r(t), t)|2

]
− θE

∫ t

t−τ

[
τ |f(x(s), x(s− h), r(s), s) + u(x(δs), r(δs), s)|2 + |g(x(s), x(s− h), r(s), s)|2

]
ds.

(3.9)

Moreover, by Assumption 2.3 and Lemma 2.1, we can derive that

− E (Ux(x(t), r(t), t)[u(x(t), r(t), t)− u(x(δt), r(t), t) + u(x(δt), r(t), t)− u(x(δt), r(δt), t)])

≤λ1E|Ux(x(t), r(t), t)|2

+
1

4λ1

E|u(x(t), r(t), t)− u(x(δt), r(t), t) + u(x(δt), r(t), t)− u(x(δt), r(δt), t)|2

≤λ1E|Ux(x(t), r(t), t)|2 +
K2

2λ1

E|x(t)− x(δt)|2 +
1

2λ1

E|u(x(δt), r(t), t)− u(x(δt), r(δt), t)|2

≤λ1E|Ux(x(t), r(t), t)|2 +
K2

2λ1

E|x(t)− x(δt)|2 +
2K2

λ1

(1− e−γ̄τ )E|x(δt)|2

≤λ1E|Ux(x(t), r(t), t)|2 +

[
K2

2λ1

+
4K2

λ1

(1− e−γ̄τ )
]
E|x(t)− x(δt)|2 +

4K2

λ1

(1− e−γ̄τ )E|x(t)|2.

(3.10)
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In addition, according to Assumptions 2.2 and 2.3, it follows that

θτE
[
τ |f(x(t), x(t− h), r(t), t) + u(x(δt), r(δt), t)|2 + |g(x(t), x(t− h), r(t), t)|2

]
+ E

(
x(t)TP (r(t))x(t)

)
− E

(
x(t− h)TP (r(t− h))x(t− h)

)
≤
[
θτ(4τ + 2)L2 + λPM

]
E|x(t)|2 +

[
θτ(4τ + 2)L2 − λPm

]
E|x(t− h)|2 + 2θτ 2K2E|x(δt)|2

≤
[
θτ(4τ + 2)L2 + 4θτ 2K2 + λPM

]
E|x(t)|2 +

[
θτ(4τ + 2)L2 − λPm

]
E|x(t− h)|2

+ 4θτ 2K2E|x(t)− x(δt)|2. (3.11)

Substituting (3.10) and (3.11) into (3.9) yields

ELV (x̂t, r̂t, t)

≤ELU(x(t), x(t− h), r(t), t) + λ1E|Ux(x(t), r(t), t)|2

+

[
4K2

λ1

(1− e−γ̄τ ) + θτ(4τ + 2)L2 + 4θτ 2K2 + λPM

]
E|x(t)|2

+
[
θτ(4τ + 2)L2 − λPm

]
E|x(t− h)|2

+

[
K2

2λ1

+
4K2

λ1

(1− e−γ̄τ ) + 4θτ 2K2

]
E|x(t)− x(δt)|2

− θE
∫ t

t−τ

[
τ |f(x(s), x(s− h), r(s), s) + u(x(δs), r(δs), s)|2 + |g(x(s), x(s− h), r(s), s)|2

]
ds.

(3.12)

By Assumption 3.1 and the conditions in (3.5), one finds

ELV (x̂t, r̂t, t)

≤− λE|x(t)|2 +

[
K2

2λ1

+
4K2

λ1

(1− e−γ̄τ ) + 4θτ 2K2

]
E|x(t)− x(δt)|2

− θE
∫ t

t−τ

[
τ |f(x(s), x(s− h), r(s), s) + u(x(δs), r(δs), s)|2 + |g(x(s), x(s− h), r(s), s)|2

]
ds,

(3.13)

where

λ = λ(θ, τ) := λ2 −
4K2

λ1

(1− e−γ̄τ )− θτ(4τ + 2)L2 − 4θτ 2K2 − λPM .

Considering that t− δt ≤ τ for all t ≥ 0, we can prove from equation (2.2) that

E|x(t)− x(δt)|2

≤2E
∫ t

t−τ

[
τ |f(x(s), x(s− h), r(s), s) + u(x(δs), r(δs), s)|2 + |g(x(s), x(s− h), r(s), s)|2

]
ds.

(3.14)

We choose

θ =
2K2

λ1

(
1 + 8(1− e−

γ̄
4K )
)
, τ ≤ 1

4K
,

then it follows from (3.13) and (3.14) that

E(LV (x̂t, r̂t, t)) ≤ −λE|x(t)|2. (3.15)
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Hence we can further obtain

E(V (x̂t, r̂t, t)) ≤ C1 − λ
∫ t

0

E|x(s)|2ds (3.16)

for t ≥ 0, where

C1 = U(ϕ̄(0), r0, 0) + hλPM ||ϕ̄||2 + 4θτ 2
[
(2τ + 1)L2 + 2τK2

]
||ϕ̄||2,

which is a positive number and we notice condition (3.5) indicates λ > 0. It thus follows
from (3.16) immediately that ∫ ∞

0

E|x(s)|2ds ≤ C1/λ.

This implies the desired assertion (3.6). 2

Theorem 3.3 Assume that all the conditions in Theorem 3.2 are satisfied. Then, the
solution of the controlled system (2.2) is asymptotically stable in mean square, namely

lim
t→∞

E|x(t)|2 = 0

for every initial data x0 = ϕ̄ ∈ Cb
F0

([−2τ ∗, 0];Rn) and r0 ∈ S.

Proof. Fix any x0 = ϕ̄ ∈ Cb
F0

([−2τ ∗, 0];Rn) and r0 ∈ S. Applying the Itô formula leads
to

E(|x(t)|2) =|ϕ̄(0)|2 + E
∫ t

0

(
2x(s)[f(x(s), x(s− h), r(s), s) + u(x(δs), r(δs), s)]

+ |g(x(s), x(s− h), r(s), s)|2
)
dt

for all t ≥ 0. Under Assumptions 2.2 and 2.3, we can show that

E|x(t)|2 ≤ ‖ϕ̄‖2+C

∫ t

0

E|x(s)|2ds+C

∫ t

0

E|x(s−h)|2ds+C

∫ t

0

E|x(s)−x(δs)|2ds, (3.17)

where, and in the remaining part of this paper, C denotes a positive constant that may
change from line to line but its special form is of no use. For any s ≥ 0, there is a unique
integer v ≥ 0 for s ∈ [vτ, (v+1)τ). Moreover, δz = vτ for z ∈ [vτ, s]. Then we can deduce
from (2.2) that

x(s)− x(δs) = x(s)− x(vτ)

=

∫ s

vτ

[f(x(z), x(z − h), r(z), z) + u(x(vτ), r(vτ), z)]dz +

∫ s

vτ

g(x(z), x(z − h), r(z), z)dw(z).

By Assumptions 2.2 and 2.3, we can derive

E|x(s)− x(δs)|2

≤3(τ + 1)L2E
∫ s

vτ

(|x(z)|+ |x(z − h)|)2dz + 3τ 2K2E|x(vτ)|2

≤6(τ + 1)L2

(∫ s

δs

E|x(z)|2dz +

∫ s

δs

E|x(z − h)|2dz
)

+ 6τ 2K2(E|x(s)|2 + E|x(s)− x(δs)|2).
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We know from condition (3.5) that 6τ 2K2 < 1 and hence

E|x(s)− x(δs)|2 ≤
6(τ + 1)L2

1− 6τ 2K2

(∫ s

δs

E|x(z)|2dz +

∫ s

δs

E|x(z − h)|2dz
)

+
6τ 2K2

1− 6τ 2K2
E|x(s)|2.

(3.18)

Substituting this into (3.17) yields

E|x(t)|2 ≤‖ϕ̄‖2 + C

∫ t

0

E|x(s)|2ds+ C

∫ t

0

E|x(s− h)|2ds

+ C

∫ t

0

∫ s

δs

(
E|x(z)|2 + E|x(z − h)|2

)
dzds. (3.19)

On the other hand, it is easy to show∫ t

0

E|x(s− h)|2ds =

∫ t−h

−h
E|x(z)|2dz,

∫ t

0

∫ s

δs

E|x(z)|2dzds ≤
∫ t

0

∫ s

s−τ
E|x(z)|2dzds

≤
∫ t

−τ
E|x(z)|2

∫ z+τ

z

dsdz ≤ τ

∫ t

−τ
E|x(z)|2dz

and ∫ t

0

∫ s

δs

E|x(z − h)|2dzds ≤
∫ t

0

∫ s

s−τ
E|x(z − h)|2dzds

=

∫ t

0

∫ s−h

s−τ−h
E|x(y)|2dyds ≤

∫ t−h

−τ−h
E|x(y)|2

∫ y+h+τ

y+h

dsdy

≤τ
∫ t−h

−τ−h
E|x(y)|2dy.

Substituting these into (3.19) and applying Theorem 3.2, we can obtain

E|x(t)|2 ≤ C, ∀t ≥ 0. (3.20)

In addition, by means of Itô formula, we reach

E|x(t2)|2 − E|x(t1)|2

=E
∫ t2

t1

(
2x(t) [f(x(t), x(t− h), r(t), t) + u(x(δt), r(δt), t)] + |g(x(t), x(t− h), r(t), t)|2

)
dt

for any 0 ≤ t1 < t2 < ∞. By (3.20) and Assumptions 2.2 and 2.3, we can easily show
that

|E|x(t2)|2 − E|x(t1)|2| ≤ C(t2 − t1).

That is, E|x(t)|2 is uniformly continuous in t on R+. It then follows from (3.6) that
limt→∞ E|x(t)|2 = 0, as required. 2

10



Theorem 3.4 Under the same assumptions of Theorem 3.2, the solution of the controlled
system (2.1) satisfies

lim
t→∞

x(t) = 0 a.s.

for every initial data x0 = ϕ̄ ∈ Cb
F0

([−2τ ∗, 0];Rn) and r0 ∈ S. That is, the controlled
system (2.2) is almost surely asymptotically stable.

Proof. We divide the proof into three steps.

Step 1. Again we fix any x0 = ϕ̄ ∈ Cb
F0

([−2τ ∗, 0];Rn) and r0 ∈ S. It follows from
Theorem 3.3 and the well known Fubini theorem that

E
∫ ∞

0

|x(t)|2dt <∞. (3.21)

This implies ∫ ∞
0

|x(t)|2dt <∞ a.s.

We must therefore have
lim inf
t→∞

|x(t)| = 0 a.s. (3.22)

We now claim that
lim
t→∞
|x(t)| = 0 a.s. (3.23)

If this is false, then

P
(

lim sup
t→∞

|x(t)| > 0
)
> 0

Hence there exist a sufficiently small positive number ε such that

P(Ω1) ≥ 3ε, (3.24)

where
Ω1 =

{
lim sup
t→∞

|x(t)| > 2ε
}
.

Step 2. Let h > ‖ϕ̄‖ be a number. Define the stopping time

βh = inf{t ≥ 0 : |x(t)| ≥ h},

where throughout this paper we set inf ∅ =∞ (in which ∅ denotes the empty set as usual).
Then, by the Itô formula, we have

E|x(t ∨ βh)|2

= |ϕ̄(0)|2 + E
∫ t∨βh

0

(
2x(s)[f(x(s), r(s), s) + u(x(δs), r(s), s)] + |g(x(s), r(s), s)|2

)
dt

for all t ≥ 0. By Assumptions 2.2 and 2.3 as well as Theorem 3.2, it is easy to show that

E|x(t ∨ βh)|2 ≤ C.

Hence
h2P(βh ≤ t) ≤ C.
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Letting t→∞ and then choosing h sufficiently large, we get

P(βh <∞) ≤ C

h2
≤ ε.

This implies
P(Ω2) ≤ ε, (3.25)

where
Ω2 = {|x(t)| ≥ h for all 0 ≤ t <∞}.

It then follows easily from (3.24) and (3.25) that

P(Ω1 \ Ω2) ≥ 2ε. (3.26)

Step 3. Define a sequence of stopping times:

α1 = inf{t ≥ 0 : |x(t)|2 ≥ 2ε},
α2i = inf{t ≥ α2i−1 : |x(t)|2 ≤ ε}, i = 1, 2, · · · ,

α2i+1 = inf{t ≥ α2i : |x(t)|2 ≥ 2ε}, i = 1, 2, · · · .
We observe from (3.22) and the definitions of Ω1 and Ω2 that α2i <∞ whenever α2i−1 <
∞, and moreover,

βh(ω) =∞ and αi(ω) <∞ for all i ≥ 1 whenever ω ∈ Ω1 \ Ω2. (3.27)

By (3.21), we derive

∞ > E
∫ ∞

0

|x(t)|2dt ≥
∞∑
i=1

E
(
I{α2i−1<∞,βh=∞}

∫ α2i

α2i−1

|x(t)|2dt
)

≥ ε
∞∑
i=1

E
(
I{α2i−1<∞,βh=∞}[α2i − α2i−1]

)
. (3.28)

Let use now define

F (t) = f(x(t), r(t), t) + u(x(δt), r(t), t) and G(t) = g(x(t), r(t), t)

for t ≥ 0. By Assumptions 2.2 and 2.3, we see that

|F (t)|2 ∨ |G(t)|2 ≤ Kh ∀t ≥ 0

whenever |x(t)| ∨ |x(δt)| ≤ h (in particular, for ω ∈ Ω2), where Kh is a positive constant.
By the Hölder inequality and the Doob martingale inequality, we then derive that, for
any T > 0,

E
(
I{βh∨α2i−1<∞} sup

0≤t≤T
|x(βh ∨ (α2i−1 + t))− x(βh ∨ α2i−1)|2

)
≤2E

(
I{βh∨α2i−1<∞} sup

0≤t≤T

∣∣∣ ∫ βh∨(α2i−1+t)

βh∨α2i−1

F (s)ds
∣∣∣2)

+2E
(
I{βh∨α2i−1<∞} sup

0≤t≤T

∣∣∣ ∫ βh∨(α2i−1+t)

βh∨α2i−1

G(s)dw(s)
∣∣∣2)

≤2TE
(
I{βh∨α2i−1<∞}

∫ βh∨(α2i−1+T )

βh∨α2i−1

|F (s)|2ds
)

+8E
(
I{βh∨α2i−1<∞}

∫ βh∨(α2i−1+T )

βh∨α2i−1

|G(s)|2ds
)

≤2KhT (T + 4). (3.29)
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Let θ = ε/(2h). It is easy to see that

||x|2 − |y|2| < ε whenever |x− y| < θ, |x| ∨ |y| ≤ h. (3.30)

Choose T sufficiently small for

2KhT (T + 4)

θ2
< ε. (3.31)

It then follows from (3.29) that

P
(
{βh ∨ α2i−1 <∞} ∩

{
sup

0≤t≤T
|x(βh ∨ (α2i−1 + t))− x(βh ∨ α2i−1)| ≥ θ

})
≤ 2KhT (T + 4)

θ2
< ε.

Therefore

P
(
{α2i−1 <∞, βh =∞} ∩

{
sup

0≤t≤T
|x(α2i−1 + t)− x(α2i−1)| ≥ θ

})
=P
(
{βh ∨ α2i−1 <∞, βh =∞} ∩

{
sup

0≤t≤T
|x(βh ∨ (α2i−1 + t))− x(βh ∨ α2i−1)| ≥ θ

})
≤P
(
{βh ∨ α2i−1 <∞} ∩

{
sup

0≤t≤T
|x(βh ∨ (α2i−1 + t))− x(βh ∨ α2i−1)| ≥ θ

})
≤ε.

Using (3.26) and (3.27), we then have

P
(
{α2i−1 <∞, βh =∞} ∩

{
sup

0≤t≤T
|x(α2i−1 + t)− x(α2i−1)| < θ

})
=P({α2i−1 <∞, βh =∞})

−P
(
{α2i−1 <∞, βh =∞} ∩

{
sup

0≤t≤T
|x(α2i−1 + t)− x(α2i−1)| ≥ θ

})
≥2ε− ε = ε.

By (3.30), we get

P
(
{α2i−1 <∞, βh =∞} ∩

{
sup

0≤t≤T
||x(α2i−1 + t)|2 − |x(α2i−1)|2| < ε

})
≥P
(
{α2i−1 <∞, βh =∞} ∩

{
sup

0≤t≤T
|x(α2i−1 + t)− x(α2i−1)| < θ

})
≥ε. (3.32)

Set
Ω̂i =

{
sup

0≤t≤T
||x(α2i−1 + t)|2 − |x(α2i−1)|2| < ε

}
.

Note that
α2i(ω)− α2i−1(ω) ≥ T if ω ∈ {α2i−1 <∞, βh =∞} ∩ Ω̂i.
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Using (3.28) and (3.32), we finally derive that

∞ > ε
∞∑
i=1

E
(
I{α2i−1<∞,βh=∞}[α2i − α2i−1]

)
≥ ε

∞∑
i=1

E
(
I{α2i−1<∞,βh=∞}∩Ω̂i

[α2i − α2i−1]
)

≥ εT
∞∑
i=1

P
(
{α2i−1 <∞, βh =∞} ∩ Ω̂i

)
≥ εT

∞∑
i=1

ε =∞, (3.33)

which is a contradiction. Hence, (3.23) must hold. The proof is complete. 2

3.2 Exponential stabilization

We have just discussed the asymptotic stabilization for system (2.1) by feedback control
based on discrete-time state and mode observations. To reveal the rate at which the
solution tends to zero, we will further investigate the exponential stabilization for system
(2.1) by discrete-time feedback control. Before establishing our main result, we need to
impose another condition.

Assumption 3.5 Assume that there is a pair of positive numbers c1 and c2 such that

c1|x|2 ≤ U(x, i, t) ≤ c2|x|2

for all (x, i, t) ∈ Rn × S ×R+.

Theorem 3.6 Let Assumptions 2.2, 2.3, 3.1, 3.5 and Lemma 2.1 hold and recall that

θ =
2K2

λ1

(
1 + 8(1− e−

γ̄
4K )
)

and

λ = λ2 −
4K2

λ1

(1− e−γ̄τ )− θτ(4τ + 2)L2 − 4θτ 2K2 − λPM .

If τ > 0 is sufficiently small for (3.5) to hold, then the solution of the controlled system
(2.2) satisfies

lim sup
t→∞

1

t
log(E|x(t)|2) ≤ −γ (3.34)

and

lim sup
t→∞

1

t
log(|x(t)|) ≤ −γ

2
a.s. (3.35)

for every initial data x0 = ϕ̄ ∈ Cb
F0

([−2τ ∗, 0];Rn) and r0 ∈ S, where γ > 0 is the unique
root to the following equation

2τγe2τγ(H1 + τH3) + 2τγe(2τ+h)γ(H2 + τH3) + γ(c2 + hλPM) = λ, (3.36)
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where

H1 = 4θτ 2(L2 +K2) + 2θτL2 +
24θτ 4K4

1− 6τ 2K2
, H2 = 2θτL2(2τ + 1),

H3 =
24θτ 2(τ + 1)K2L2

1− 6τ 2K2
.

Proof. According to the generalized Itô formula, we have

E
[
eγtV (x̂t, r̂t, t)

]
= V (x̂0, r̂0, 0) + E

∫ t

0

eγz[γV (x̂z, r̂z, z) + LV (x̂z, r̂z, z)]dz

for t ≥ 0. Recalling the definition of the Lyapunov functional (3.1), by using (3.15), (3.16)
and Assumption 3.5, we can derive that

c1e
γtE|x(t)|2 ≤ C1 +

∫ t

0

eγz[γE(V (x̂z, r̂z, z))− λE|x(z)|2]dz. (3.37)

Define

V̄ (x̂t, r̂t, t) =

∫ t

t−h
x(s)TP (r(s))x(s)ds

+ θ

∫ t

t−τ

∫ t

s

[
τ |f(x(v), x(v − h), r(v), v) + u(x(δv), r(δv), v)|2

+ |g(x(v), x(v − h), r(v), v)|2
]
dvds. (3.38)

Then by (3.1) and Assumption 3.5, we can obtain

E(V (x̂z, r̂z, z)) ≤ c2E|x(z)|2 + E(V̄ (x̂z, r̂z, z)). (3.39)

Moreover, it follows from Assumptions 2.2 and 2.3 that

E(V̄ (x̂z, r̂z, z)) ≤hλPME|x(z)|2

+ θτ

∫ z

z−τ

[ (
4τ(L2 +K2) + 2L2

)
E|x(v)|2 + 2L2(2τ + 1)E|x(v − h)|2

+ 4τK2E|x(v)− x(δv)|2
]
dv. (3.40)

By Theorem 3.2, it is easy to know that E(V̄ (x̂z, r̂z, z)) is bounded on z ∈ [0, 2τ ∗]. For
z ≥ 2τ ∗, by (3.18), we get

E(V̄ (x̂z, r̂z, z)) ≤hλPME|x(z)|2 +H1

∫ z

z−τ
E|x(v)|2dv +H2

∫ z

z−τ
E|x(v − h)|2dv

+H3

∫ z

z−τ

∫ v

δv

(E|x(y)|2 + E|x(y − h)|2)dydv, (3.41)

where H1, H2 and H3 have been defined in (3.36). However,∫ z

z−τ

∫ v

δv

(E|x(y)|2 + E|x(y − h)|2)dydv ≤
∫ z

z−τ

∫ v

v−τ
(E|x(y)|2 + E|x(y − h)|2)dydv

≤τ
∫ z

z−2τ

(E|x(y)|2 + E|x(y − h)|2)dy = τ

∫ z

z−2τ

E|x(y)|2dy + τ

∫ z

z−2τ

E|x(y − h)|2)dy.
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Consequently, we have

E(V̄ (x̂z, r̂z, z)) ≤hλPME|x(z)|2 + (H1 + τH3)

∫ z

z−2τ

E|x(y)|2dy

+ (H2 + τH3)

∫ z

z−2τ

E|x(y − h)|2dy. (3.42)

Substituting this into (3.39) and then putting the resulting inequality further into (3.37),
we can find that, for t ≥ 2τ ∗,

c1e
γtE|x(t)|2 ≤C + γ(H1 + τH3)

∫ t

2τ

eγz
(∫ z

z−2τ

E|x(y)|2dy
)
dz

+ γ(H2 + τH3)

∫ t

2τ

eγz
(∫ z

z−2τ

E|x(y − h)|2dy
)
dz

− (λ− γ(c2 + hλPM))

∫ t

0

eγzE|x(z)|2dz, (3.43)

where C is still a positive constant, whose special form is of no use. But∫ t

2τ

eγz
(∫ z

z−2τ

E|x(y)|2dy
)
dz ≤

∫ t

0

E|x(y)|2
(∫ y+2τ

y

eγzdz

)
dy

≤2τe2τγ

∫ t

0

eγyE|x(y)|2dy

and ∫ t

2τ

eγz
(∫ z

z−2τ

E|x(y − h)|2dy
)
dz ≤

∫ t

0

E|x(y − h)|2
(∫ y+2τ

y

eγzdz

)
dy

≤2τe2τγ

∫ t

0

eγyE|x(y − h)|2dy ≤ 2τe(2τ+h)γ

∫ t−h

−h
eγyE|x(y)|2dy

<C + 2τe(2τ+h)γ

∫ t

0

eγyE|x(y)|2dy.

Substituting this into (3.43) leads to

c1e
γtE|x(t)|2 ≤C +

(
2τγe2τγ(H1 + τH3) + 2τγe(2τ+h)γ(H2 + τH3)

+ γ(c2 + hλPM)− λ
)∫ t

0

eγzE|x(z)|2dz.

Recalling (3.36), we see
c1e

γtE|x(t)|2 ≤ C, ∀t ≥ 2τ ∗. (3.44)

Immediately, the assertion (3.34) follows. Finally, we can obtain assertion (3.35) from
(3.44) by [6, Theorem 8.8 on page 309]. The proof is therefore complete. 2

3.3 Corollaries

Assumption 3.7 Assume that there is a function U ∈ C2,1(Rn× S ×R+;R+) and three
positive numbers λ4, λ5 and λ6 such that

LU(x, y, i, t) ≤ −λ4|x|2 + λ5|y|2 (3.45)
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and
|Ux(x, i, t)| ≤ λ6|x| (3.46)

for all (x, y, i, t) ∈ Rn ×Rn × S ×R+ and (x, i, t) ∈ Rn × S ×R+.

Under this condition, if we choose a positive number λ1 < λ4/λ
2
6, then

LU(x, y, i, t) + λ1|Ux(x, i, t)|2 ≤ −(λ4 − λ1λ
2
6)|x|2 + λ5|y|2. (3.47)

If we set λ2 = λ4 − λ1λ
2
6, it reaches the desired condition (3.3). That is to say, we have

shown that Assumption 3.7 implies Assumption 3.1. The following corollary therefore
follows.

Corollary 3.8 All the theorems in Sections 3 and 4 hold if Assumption 3.1 is replaced
by Assumption 3.7.

In practice, the quadratic functions are widely used to be the Lyapunov functions.
That is, we use U(x, i, t) = xTQix, where Qi’s are all symmetric positive-definite n × n
matrices. In this case, Assumption 3.5 holds automatically with c1 = mini∈S λmin(Qi) and
c2 = maxi∈S λmax(Qi). Moreover, condition (3.46) holds as well with λ6 = 2 maxi∈S ‖Qi‖.
So all we need is to find Qi’s for (3.45) to hold. This gives us the following another
assumption.

Assumption 3.9 Assume that there are symmetric positive-definite matrices Qi ∈ Rn×n

(i ∈ S) and two positive numbers λ4, λ5 such that

2xTQi[f(x, y, i, t) + u(x, i, t)] + trace[gT (x, y, i, t)Qi(x, i, t)g(x, y, i, t)]

+
N∑
j=1

γijx
TQjx ≤ −λ4|x|2 + λ5|y|2, (3.48)

for all (x, y, i, t) ∈ Rn ×Rn × S ×R+ and (x, i, t) ∈ Rn × S ×R+.

The following corollary follows immediately from Theorem 3.6.

Corollary 3.10 Let Assumptions 2.2, 2.3 and 3.9 hold. Set

c1 = min
i∈S

λmin(Qi), c2 = max
i∈S

λmax(Qi), λ6 = 2 max
i∈S
‖Qi‖.

Choose λ1 < λ4/λ
2
6 and then set λ2 = λ4 − λ1λ

2
6. Let τ > 0 be sufficiently small for (3.5)

to hold and set

θ =
2K2

λ1

(
1 + 8(1− e−

γ̄
4K )
)

and

λ = λ2 −
4K2

λ1

(1− e−γ̄τ )− θτ(4τ + 2)L2 − 4θτ 2K2 − λPM

(so λ > 0). Then the assertions of Theorem 3.6 hold.
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4 Example

Example 4.1 We first consider an unstable linear hybrid SDDE

dx(t) =
(
A(r(t))x(t) + Ad(r(t))x(t− h)

)
dt+

(
B(r(t))x(t) + Bd(r(t))x(t− h)

)
dw(t)

(4.1)

on t ≥ 0 with initial value x0 = ϕ ∈ Cb
F0

([−h, 0];Rn). Here h = 0.1, w(t) is a scalar
Brownian motion; r(t) is a Markov chain on the state space S = {1, 2} with the generator

Γ =

[
−2 2

1 −1

]
;

and the system matrices are

A1 =

[
0.9 3.2

4.05 −5.02

]
, A2 =

[
0.94 6.93
6.02 2.01

]
,

Ad1 =

[
0.1 −0.2

−0.05 0.02

]
, Ad2 =

[
0.06 0.07
−0.02 −0.01

]
,

B1 =

[
1.98 3.04

0 1.05

]
, B2 =

[
2.01 1.04
2.08 2

]
.

Bd1 =

[
0.02 −0.04

0 0.05

]
, B2 =

[
0.01 −0.04
−0.08 0

]
.

The computer simulation (Figure 6.1) shows this hybrid SDDE is not mean square expo-
nentially stable.

Let us now design a feedback control based on discrete time state and mode obser-
vations to stabilize the system. Assume that the controlled hybrid SDDE has the form

dx(t) = [A(r(t))x(t) + Ad(r(t))x(t− h) + F (r(δt))G(r(δt))x(δt)]dt

+
(
B(r(t))x(t) + Bd(r(t))x(t− h)

)
dw(t), (4.2)

namely, our controller function has the form u(x, i, t) = FiGix. Here, we assume that

G1 = (−1.41,−1.4402), G2 = (3.1016, 1.9571),

and our aim is to seek for F1 and F2 in R2×1 and then make sure τ is sufficiently small
for this controlled SDDE to be exponentially stable in mean square and almost surely as
well. To apply Corollary 3.10, we observe that by Assumptions 2.2 and 2.3, it is easy to
know L = 8.0406 and K = 11.7523. Then we need to verify Assumption 3.9. It is easy to
see the left-hand-side term of (3.48) becomes xT Q̄ix (i = 1, 2), where

Q̄i := Qi(Ai + Adi + FiGi) + (ATi + ATdi +GT
i F

T
i )Qi +BT

i QiBi +
2∑
j=1

γijQj.

Let us now choose

Q1 =

[
2.5048 0.9239
0.9239 3.1738

]
, Q2 =

[
5.3836 3.0928
3.0928 3.3392

]
.
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Figure 6.1: Computer simulation of the paths of r(t), x1(t) and x2(t) for the hybrid SDE (4.1)
using the Euler–Maruyama method with step size 10−6 and initial values r(0) = 1, x1(0) = −6

and x2(0) = 10.

and

F1 =

[
5
3

]
, F2 =

[
1
−10

]
.

We then have

Q̄1 =

[
−14.9558 −4.2385
−4.2385 −35.3341

]
, Q̄2 =

[
−53.8195 −36.4580
−36.4580 −30.9954

]
.

Hence, xT Q̄ix ≤ −80.6096|x|2. We also know that λ3 = 0.09. In other words, (3.48)
holds with λ4 = 80.6996. We further compute the parameters specified in Corollary
3.10: c1 = 1.1041, c2 = 7.6187 and λ6 = 15.2374. Choosing λ1 = 0.3, we then have
λ2 = 10.9561. In addition, we choose λPM = 5.6 and λPm = 5.42. Then, condition (3.5)
becomes

10.9561 > 1841.554(1− e−τ ) + 69553.04τ(4τ + 2) + 594353.7τ 2 + 5.6,

69553.04τ(4τ + 2) ≤ 5.33 τ ≤ 0.021.

These hold as long as τ < 0.0000383. By Corollary 3.10, if we set Fi as above and
make sure that τ < 0.0000383, then the discrete-time-state-and-mode feedback controlled
hybrid SDDE (4.2) is exponentially stable in mean square and almost surely as well. The
computer simulation (Figure 6.2) supports this result clearly.
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Figure 6.1: Computer simulation of the paths of r(t), x1(t) and x2(t) for the hybrid SDE (4.2)
using the Euler–Maruyama method with step size 10−6 and initial values r(0) = 1, x1(0) = −6

and x2(0) = 10.

Example 4.2 Let us now consider a nonlinear uncontrolled system (2.2). Given that
its coefficients f and g satisfy the linear growth condition (2.4), we consider a linear
controller function of the form u(x, i, t) = Dix, where Di ∈ Rn×n for all i ∈ S. That is,
the controlled hybrid SDDE has the form

dx(t) =
(
f(x(t), x(t− h), r(t), t) +Dr(δt)x(δt)

)
dt+ g(x(t), x(t− h), r(t), t)dw(t). (4.3)

It is easy to observe that Assumption 2.3 holds with K = maxi∈S ‖Di‖. Let us now
establish Assumption 3.9 in order to apply Corollary 3.10. We choose Qi = qiI, where
qi > 0 and I is the n× n identity matrix. We estimate the left-hand-side of (3.48):

2xTQi[f(x, y, i, t) + u(x, i, t)] + trace[gT (x, y, i, t)Qi(x, i, t)g(x, y, i, t)] +
N∑
j=1

γijx
TQjx

≤ 2qiL|x|(|x|+ |y|) + 2qix
TDix+ qiL

2(|x|+ |y|)2 +
N∑
j=1

γijqj|x|2

≤ 2qiL|x|2 + qiL|x|2 + qiL|y|2 + 2qix
TDix+ 2qiL

2(|x|2 + |y|2) +
N∑
j=1

γijqj|x|2

= xT
(
qi(3L+ 2L2)I + qi(Di +DT

i ) +
N∑
j=1

γijqjI
)
x+ yT (qi(L+ 2L2))y. (4.4)
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Assume that the following linear matrix inequalities

qi(3L+ 2L2)I + Yi + Y T
i +

N∑
j=1

γijqjI < 0 (4.5)

have their solutions of qi > 0 and Yi ∈ Rn×n (i ∈ S). Set Di = q−1
i Yi and

−λ4 = max
i∈S

λmax

(
qi(3L+ 2L2)I + Yi + Y T

i +
N∑
j=1

γijqjI
)

(4.6)

λ5 = max
i∈S

λmax

(
qi(L+ 2L2)I

)
. (4.7)

We then see Assumption 3.9 is satisfied. The corresponding parameters in Corollary 3.10
becomes

c1 = min
i∈S

qi, c2 = max
i∈S

qi, λ6 = 2c2.

Choose λ1 < λ4/λ
2
6 and then set λ2 = λ4 − λ1λ

2
6. Let τ > 0 be sufficiently small for (3.5)

to hold. Then, by Corollary 3.10, the controlled system (4.3) is exponentially stable in
mean square.

For example, if we have the same Markov chain as that in Example 4.1, and set

f(t) =

[
0.2 sin x2(t) 1

0 0.5 cos x1(t)

]
x(t) +

[
0.01 cos x2(t) 0

0.02 0.01 sin x1(t)

]
x(t− h),

g(t) =

[
0.8 sin 2x2(t) 0

−1 0.8 cos 2x1(t)

]
x(t) +

[
0.01 cos 2x2(t) 0.03

0 0.01 sin 2x1(t)

]
x(t− h).

and h = 0.1. Hence we observe that L = 1.4434. Then subsitute into the linear matrix
inequalities (4.5) and get their solutions q1 = 1, q2 = 2,

Y1 =

[
−6 1

0 −8

]
and Y2 =

[
−9 4
−2 −10

]
.

Then we get

D1 =

[
−6 1

0 −8

]
and D2 =

[
−4.5 2
−1 −5

]
.

Hence K = 8.1359. We also observe that λ4 = 0.77, λ5 = 11.2204, c1 = 1, c2 = 2 and
λ6 = 4. Choose λ1 = 0.02 and set λ2 = 0.45. Let τ < 6.54 × 10−6, then by Corollary
3.10,the controlled system (4.3) is exponentially stable in mean square.

5 Generalization

In this section, we will discuss a more general case. Consider an unstable hybrid SDDE

dx(t) = f(x(t), x(t− h(t)), r(t), t)dt+ g(x(t), x(t− h(t)), r(t), t)dw(t), (5.1)

where t ≥ 0, x(t) ∈ Rn is the state, w(t) = (w1(t), · · · , wm(t))T is an m-dimensional
Brownian motion, r(t) is a continuous-time Markov chain. But h is now defined on the
entire R+, namely h : R+ → [0, τ̄ ], and we assume that h is differentiable and its derivative
is bounded by a constant h̄ ∈ [0, 1), that is ḣ(t) ≤ h̄, for any t. In addition, SDDE (5.1)
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has initial data x0 = ξ ∈ Cb
F0

([−τ̄ , 0];Rn) (such that E||ξ||2 < ∞) and r(0) = r0 ∈ S at
time zero.

We aim to design a feedback control u(x(δt), r(δt), t) so that the controlled hybrid
SDDE

dx(t) =
(
f(x(t), x(t− h(t)), r(t), t) + u(x(δt), r(δt), t)

)
dt+ g(x(t), x(t− h(t)), r(t), t)dw(t)

(5.2)
becomes H∞-stable, asymptotically stable and exponentially stable in mean square, where
τ > 0, and u : Rn × S ×R+ → Rn.

By employing the same Lyapunov functional as (3.1), all the results still hold in this
paper. But Theorem (3.6) experiences changes in some coefficients. We state this result
in the following theorem.

Theorem 5.1 Let Assumptions 2.2, 2.3, 3.1, 3.5 and Lemma 2.1 hold. Let τ > 0 be
sufficiently small for (3.5) to hold. Recall that θ is defined as (3.4) and λ is defined as
(3.12) (so λ > 0). Then the solution of the controlled system (5.2) satisfies

lim sup
t→∞

1

t
log(E|x(t)|2) ≤ −γ (5.3)

and

lim sup
t→∞

1

t
log(|x(t)|) ≤ −γ

2
a.s. (5.4)

for every initial data x0 = ϕ ∈ Cb
F0

([−2τ ∗, 0];Rn) and r0 ∈ S, where γ > 0 is the unique
root to the following equation

2τγe2τγ(H1 + τH3) +
2τe(2τ+τ∗)γ

1− h̄
(H2 + τH3) + γ(c2 + h̄λPM) = λ, (5.5)

H1 = 4θτ 2(L2 +K2) + 2θτL2 +
24θτ 4K4

1− 6τ 2K2
, H2 = 2θτL2(2τ + 1), (5.6)

H3 =
24θτ 2(τ + 1)K2L2

1− 6τ 2K2
. (5.7)

6 Conclusion

In this paper, we have proved the stabilization of continuous-time hybrid stochastic differ-
ential delay equations by feedback controls based on discrete-time state and mode observa-
tions. The stabilities here mainly referred to the H∞ stability, mean squared asymptotic
stability and mean squared exponential stability. Moreover, we also managed to build the
upper bound on the duration τ between two consecutive state observations. We achieved
these by employing Lyapunov functional.
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