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Abstract: Eighty years ago J. C. Jaeger et al. introduced a class of improper integrals, currently

called “Jaeger integrals” that occur in theoretical models of diverse physical phenomena characterized

by cylindrical geometry. One application area is electroanalytical chemistry, where, in particular, the

limiting Faradaic current in a potential step chronoamperometric experiment at a cylindrical electrode is

described by the Jaeger I (0, 1; t) integral. In a recently published paper the first author determined the

Laplace transform of the nonlimiting Faradaic current for a reversible charge transfer between members

of a redox couple characterized by different diffusion coefficients. In this study we invert the novel

Laplace transform and observe that, while it cannot be expressed by any of the Jaeger integrals, it can

be perceived as a generalization of the I (0, 1; t) integral. We also describe how to compute this integral

with the modulus of the relative error close to 10−16 or smaller, using a C++ code employing exclusively

standard floating point variables, without resorting to quad precision or other external high precision

libraries.

keywords: Jaeger integrals; Bessel functions; contour integration; Laplace transform; potential step

chronoamperometry; cylindrical microelectrodes; computational electrochemistry
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1 Introduction

In 1942, Jaeger and Jaeger and Clarke [1, 2] introduced a class of improper integrals

de�ned by

I (p; q; t) =

ˆ 1
0

1

[puJ1(u) + qJ0(u)]2 + [puY1(u) + qY0(u)]2
e�u

2t

u
du; (1)

where t > 0, and Jν(u) and Yν(u) with � = 0; 1, are Bessel functions of the �rst and second

kind, respectively, of order �. The integrals resulted from theoretical solutions of the heat

conduction or di�usion partial di�erential equations (PDEs), in spatial domains possess-

ing a cylindrical geometry. Later, they were identi�ed in mathematical models of diverse

physical phenomena, including, for example, heat transport in solids [3], thermal engi-

neering [4], marine hydrogeology [5], land-atmosphere interactions [6], wellbore hydraulics

[7], biomedical modelling [8], animal abundance evaluations [9], polymer physicochemistry

[10], and electroanalytical chemistry [11]. A number of authors also investigated various

mathematical properties of these integrals [11, 12, 13].

In electroanalytical chemistry, the Jaeger integrals can be used to describe some aspects

of the di�usional transport of reactants at cylindrical wire electrodes. An example which

motivated the present communication, is the dependence of the Faradaic current on time,

observed in the so-called potential step chronoamperometric experiments. It has been

known for some time (see, in particular Refs. [14, 15, 16, 17, 11, 18]) that, under limiting

current conditions, this dependence can be expressed using the I (0; 1; t) integral:

I(t) =
4

�2
I (0; 1; t): (2)

In (2) it is assumed that t is a dimensionless time de�ned as a product of the dimen-

sional time and the parameter � =
p
D=r0, where D is the di�usion coe�cient of the

electroactive species, and r0 is the electrode radius. The quantity I(t) is a dimensional

current normalised by �nFAc?
p
D�, where n is the number of electrons transferred in

an electrochemical reaction, F is the Faraday constant, A is the electrode area, and c?

is the initial concentration of the electroactive species (see [18] for details). Equation (2)

refers to a single chemical species (satisfying a single di�usion PDE) consumed in a single

electrochemical reaction. The limiting current conditions mean that the concentration of

the species is forced to be zero at the electrode, so that the Faradaic current is the largest

possible (in absolute value).

Electrochemists often use the Laplace transform method to obtain solutions of the evo-

lutionary di�usion PDEs describing electroanalytical experiments. By applying this ap-
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proach, an alternative formula for the limiting current was obtained [14, 15]:

I(t) = L �1
{
f̂(s)

}
= L �1

{
K1(
p
s)p

sK0(
p
s)

}
; (3)

where Kν(
p
s) with � = 0; 1, are the modi�ed Bessel functions of the second kind, and

the Laplace transform is between the domains of t and s. Note we shall employ f̂(s) to

express a generic Laplace transform, either in the form of (3) or (6) below. The proof of

the equivalence:

4

�2
I (0; 1; t) = L �1

{
K1(
p
s)p

sK0(
p
s)

}
; (4)

can be deduced from Carslaw and Jaeger ([3], Ch. 13). A numerical C++ procedure,

combining various series expansions and �tted polynomials, initially described in [17], and

improved in [18], can be used to calculate I (0; 1; t) values with relative error moduli close

to 10�19.

The I (0; 1; t) integral also describes the chronoamperometric current under non-limiting

current conditions, if the electrochemical reaction is reversible (which in the electrochem-

ical terminology means that the reaction is in a permanent virtual equilibrium), provided

that the di�usion coe�cients DO and DR of the chemical species O and R (that represent

a redox couple) are identical [18]. In such a case the normalised Faradaic current is [18]

I(t) = (1 + �)�1 4

�2
I (0; 1; t); (5)

where � = exp(U), with �1 < U < 1, is a nonnegative parameter. Parameter U is

de�ned as U = nF
RT

(Estep � E0), where R is the gas constant, T is the absolute temper-

ature, Estep is the imposed electrode potential step, and E0 is the conditional potential

of the electrochemical reaction. From the mathematical point of view, � is the ratio of

the concentrations of O and R at the electrode surface, so that it represents a coupling

of two di�usion PDEs by a linear Dirichlet boundary condition. The coupling vanishes

under limiting current conditions, when �! 0 (U ! �1):

A di�erent situation occurs when the electrochemical reaction is reversible, but DO is not

equal DR. As was shown in [18], in this case the current is given by the inverse Laplace

transform:

I(t) = L �1
{
f̂(s)

}
= L �1

{
K1(
p
s)p

sK0(
p
s)

[
1 +
p
��

K1(
p
s)=K0(

p
s)

K1(
p
�s)=K0(

p
�s)

]�1
}
; (6)
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where � = DO=DR. Formula (6) cannot be expressed by any of the Jaeger I (p; q; t)

integrals, which will become evident later. Attempts to design a practical C++ procedure

for calculating I(t) from (6) with relative error moduli close to 10�16 or smaller, were only

partially successful in Ref. [18]. A numerical Laplace transform inversion had to be used

in a large domain of t, � and �, and despite the employment of quad precision variables,

the accuracy of the inversion was not entirely satisfactory.

In the present communication we show that although (6) is not expressible in terms of

I (p; q; t), it can be rewritten in the form of (1), but with a more complicated expression

multiplying e�u
2t=u in the integrand. Thus, the resulting integral can be viewed as a

speci�c generalization of the I (0; 1; t) integral, which reduces to I (0; 1; t) when � ! 0

and � ! 1. Having a representation of the formula (6) in terms of an integral of a real-

valued integrand is potentially very useful. As we shall demonstrate, numerical evaluation

of such an integral can be performed very accurately using exclusively standard oating

point variables, so that it is more advantageous for computing I(t) than the numerical

Laplace transform inversion. The latter is often ill-posed (see, for example, [19]). It may

require multiple precision that is rarely available as a standard in programming languages

(in particular, the standard C++ essentially relies on the IEEE-754-compliant oating

point variables [20] and does not involve multiple precision). Or, it may require the use

of complex variables and functions.

2 The generalized I (0; 1; t) integral

In order to derive the integral representing the inverse Laplace transform (6), it is instruc-

tive to �rst reconsider the simpler inverse transform (3).

The Bessel functions K0(
p
z) and K1(

p
z) both tend to 1 as z tends to zero, and both

tend to zero as z tends to 1. In particular, we have

K0(
p
z) � � ln

p
z (7)

K1(
p
z) � 1p

z
(8)

as z ! 0, while

Kν(
p
z) �

√
�

2
p
z

exp(�
p
z)

[
1 +

4�2 � 1

8
p
z

+ :::

]
; � = 0; 1; :::; (9)

as z !1 [21, 22].

We �rst notice that a branch point (of type � ln
p
z) occurs at z = 0. Furthermore, it

is noted that K0(
p
z) has no zeros in the left-hand plane [23, 24]. Thus the appropriate
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Figure 1: Bromwich contour

Bromwich contour is given by the Figure 1, where R is the radius of the large circle and

� is the radius of the small circle.

Cauchy's theorem implies that

f(t) = L �1
{
f̂(s)

}
= lim

ε!0
R!1

1

2�{

ˆ
AB

estf̂(s) ds

= � lim
ε!0
R!1

1

2�{

{ˆ
BC

+

ˆ
CD

+

ˆ
DEF

+

ˆ
FG

+

ˆ
GA

}
estf̂(s) ds: (10)

We next observe that when s = Reıθ, f̂(s) � O( 1
R1/2 ) as R!1 so that clearly 9M;k > 0,

independent of R, such that

jf̂(s)j < M=Rk

for large R, implying that the integrals around BC and GA converge to zero as R ! 1
[25].

Let us now consider the three remaining integrals. For integral around DEF let s = �eıθ
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so that ∣∣∣∣ˆ
DEF

estf̂(s)ds

∣∣∣∣ =

∣∣∣∣limε!0

ˆ �π+ε

π�ε
f̂(�eıθ){�eıθeεe

ıθt d�

∣∣∣∣
=

∣∣∣∣∣limε!0

ˆ �π+ε

π�ε

K1(�1/2eıθ/2){�eıθeεe
ıθt

�1/2eıθ/2K0(�1/2eıθ/2)
d�

∣∣∣∣∣
� lim

ε!0

ˆ �π+ε

π�ε

∣∣∣∣ 1

ln(�1/2eıθ/2)

∣∣∣∣ d�

= 0 : (11)

Consider the integral along CD, and let s = xeıπ = �x, so that
p
s =
p
xeıπ/2 = {

p
x.

Then

� 1

2�{

ˆ
CD

estf̂(s) ds = � lim
ε!0
R!1

1

2�{

ˆ �ε
�R

K1(s1/2)est

s1/2K0(s1/2)
ds

= � lim
ε!0
R!1

1

2�{

ˆ ε

R

K1({
p
x)e�xt(�dx)

{
p
xK0({

p
x)

=
1

2�

ˆ 1
0

K1({
p
x)e�xtp

xK0({
p
x)

dx: (12)

Consider the integral along FG, and let s = xe�ıπ = �x, so that
p
s =
p
xe�ıπ/2 = �{

p
x.

Then a similar argument shows that

� 1

2�{

ˆ
FG

estf̂(s) ds =
1

2�

ˆ 1
0

K1(�{
p
x)

K0(�{
p
x)

e�xtp
x

dx: (13)

Thus we obtain the inverse Laplace transform:

L �1

{
K1(
p
s)p

sK0(
p
s)

}
=

1

2�

ˆ 1
0

[
K1({
p
x)

K0({
p
x)

+
K1(�{

p
x)

K0(�{
p
x)

]
e�xtp
x

dx: (14)

The integral in (14) admits simpli�cation. From Appendix III of Carslaw and Jaeger [3]

we have:

Kν({z) =
1

2
�{e�

1
2
νπı [�Jν(z) + {Yν(z)] ; (15)

Kν(�{z) = �1

2
�{e

1
2
νπı [�Jν(z)� {Yν(z)] : (16)
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Now

K1({
p
x)

K0({
p
x)

+
K1(�{

p
x)

K0(�{
p
x)

=
K1({
p
x)K0(�{

p
x) +K1(�{

p
x)K0({

p
x)

K0({
p
x)K0(�{

p
x)

(17)

=
�π2

4
f2 [J0(

p
x)Y1(

p
x)� J1(

p
x)Y0(

p
x)]g

π2

4
[J0(
p
x)2 + Y0(

p
x)2]

; (18)

using the above identities (15) and (16) for Kν({z) and Kν(�{z) with z =
p
x.

Furthermore, J1(
p
x) = �J 00(

p
x) and Y1(

p
x) = �Y 00(

p
x) and the Wronskian (see, e.g.

[3]) provides

J0(
p
x)Y 00(

p
x)� Y0(

p
x)J 00(

p
x) =

2

�
p
x
: (19)

Thus the expression (17) becomes

4

�
p
x

1

[J0(
p
x)2 + Y0(

p
x)2]

and so (14) can be written as

L �1

{
K1(
p
s)p

sK0(
p
s)

}
=

2

�2

ˆ 1
0

1

[J0(
p
x)2 + Y0(

p
x)2]

e�xt

x
dx

=
4

�2

ˆ 1
0

1

[J0(u)2 + Y0(u)2]

e�u
2t

u
du (20)

after the transformation
p
x = u. This proves the equivalence (4).

For practical applications of the electrochemical theory it is useful [17] to decompose f̂(s),

as de�ned by (3), into two terms, the �rst of which is characteristic of planar geometry,

and the second represents the e�ect of electrode cylindricity:

f̂(s) =
1p
s

+ ĝ(s); (21)

where

ĝ(s) =
K1(
p
s)�K0(

p
s)p

sK0(
p
s)

(22)

and the inverse transform L �1 fĝ(s)g is identical with the function icylw(
p
t) introduced

in [17], where \icylw" is a shortcut for \i (or current) for cylindrical wire". In this paper

we employ a more compact notation and rename the function �(0; �; t), as a special case

of the function �(�; �; t) to be considered later.

We note that

L �1
{
f̂(s)

}
=

1p
�t

+
4

�2

ˆ 1
0

1� π
2
u[J0(u)2 + Y0(u)2]

[J0(u)2 + Y0(u)2]

e�u
2t

u
du; (23)
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since
2

�

ˆ 1
0

e�u
2tdu =

1p
�t
:

Therefore

f̂(s) =
1p
s

+ L

{
4

�2

ˆ 1
0

1� π
2
u[J0(u)2 + Y0(u)2]

[J0(u)2 + Y0(u)2]

e�u
2t

u
du

}
; (24)

that is,

�(0; �; t) = L �1 fĝ(s)g =
4

�2

ˆ 1
0

1� π
2
u[J0(u)2 + Y0(u)2]

[J0(u)2 + Y0(u)2]

e�u
2t

u
du: (25)

We are now in a position to consider the inversion of the more general expression (6). We

need essentially to invert the following Laplace transform:

f̂(s) =
K1(
p
s)K1(

p
�s)

p
s[K1(

p
�s)K0(

p
s) +

p
��K1(

p
s)K0(

p
�s)]

: (26)

For s real the function f̂(s) is always positive and behaves as O
(

1
(1+
p
δ�)
p
s

)
as s !

1. Furthermore, the expression K1(
p
�s)K0(

p
s) +

p
��K1(

p
s)K0(

p
�s) is also always

positive for positive s, and consequently does not cross the x-axis; it also tends to zero at

in�nity. There is a branch point (1=
p
s) at zero. In theory, of course, zeros could exist in

the complex plane s 2 C, <fsg < 0, =fsg 6= 0. We make the assumption that no zeros

exist in this part of the complex plane and this is borne out by the computation of Section

3 and the earlier paper [18]. We can therefore employ the same Bromwich contour given

by Fig. 1.

As in the previous case we observe that when s = Reıθ, 9M;k > 0, independent of R,

such that ∣∣∣f̂(s)
∣∣∣ < M=Rk;

implying that the integrals around BC and GA converge to zero as R!1.

The integral round the small circle DEF when s = eıθ can be shown to be zero as �! 0.

Thus, using the previous arguments we obtain

L �1
{
f̂(s)

}
=

1

2�

ˆ 1
0

[
X(
p
x) +X(�

p
x)
] e�xtp

x
dx (27)

where

X(
p
x) =

K1({
p
x)K1({

p
�x)

K1({
p
�x)K0({

p
x) +

p
��K1({

p
x)K0({

p
�x)

: (28)
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It is convenient to introduce the following notation:

A(
p
x) = K1({

p
x)K1({

p
�x); (29)

B(
p
x) = K1({

p
�x)K0({

p
x); (30)

C(
p
x) = K0({

p
�x)K1({

p
x): (31)

This allows us to rewrite the integral (27) as

L �1
{
f̂(s)

}
=

1

2�

ˆ 1
0

N(x)

D(x)

e�xtp
x

dx (32)

with

N(
p
x) = A(

p
x)B(�

p
x) + A(�

p
x)B(

p
x) +

p
��
[
A(
p
x)C(�

p
x) + A(�

p
x)C(

p
x)
]

and

D(
p
x) = B(

p
x)B(�

p
x)+
p
��
[
B(
p
x)C(�

p
x) + B(�

p
x)C(

p
x)
]
+��2C(

p
x)C(�

p
x):

Now it can be readily shown, using the relationships (15) and (16), and the Wronskian

(19), that

A(
p
x)B(�

p
x) + A(�

p
x)B(

p
x) =

�3

4
p
x

[
J1(
p
�x)2 + Y1(

p
�x)2

]
; (33)

A(
p
x)C(�

p
x) + A(�

p
x)C(

p
x) =

�3

4
p
�x

[
J1(
p
x)2 + Y1(

p
x)2
]
; (34)

B(
p
x)B(�

p
x) =

�4

16

[
J1(
p
�x)2 + Y1(

p
�x)2

] [
J0(
p
x)2 + Y0(

p
x)2
]
; (35)

C(
p
x)C(�

p
x) =

�4

16

[
J0(
p
�x)2 + Y0(

p
�x)2

] [
J1(
p
x)2 + Y1(

p
x)2
]
: (36)

Calculating B(
p
x)C(�

p
x) + B(�

p
x)C(

p
x) requires a little more work, but can be

shown to be

�4

16

{
8

�2
p
�x

+ 2
[
J0(
p
x)J1(

p
x) + Y0(

p
x)Y1(

p
x)
] [
J0(
p
�x)J1(

p
�x) + Y0(

p
�x)Y1(

p
�x)
]}

:

(37)
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Using (33)-(37) the integral (32) then becomes

L �1
{
f̂(s)

}
=

2

�2

ˆ 1
0

J1(
p
�x)2 + Y1(

p
�x)2 + � [J1(

p
x)2 + Y1(

p
x)2]

�(
p
x)

e�xt

x
dx; (38)

where

�(
p
x) =

[
J1(
p
�x)2 + Y1(

p
�x)2

] [
J0(
p
x)2 + Y0(

p
x)2
]

+
p
��

{
8

�2
p
�x

+ 2
[
J0(
p
x)J1(

p
x) + Y0(

p
x)Y1(

p
x)
]
�[

J0(
p
�x)J1(

p
�x) + Y0(

p
�x)Y1(

p
�x)
]}

+��2
[
J0(
p
�x)2 + Y0(

p
�x)2

] [
J1(
p
x)2 + Y1(

p
x)2
]
: (39)

The transformation
p
x = u then yields

I(t) = L �1
{
f̂(s)

}
=

4

�2

ˆ 1
0

J1(
p
�u)2 + Y1(

p
�u)2 + � [J1(u)2 + Y1(u)2]

�(u)

e�u
2t

u
du:

(40)

The integral in (40) presents the generalization of the Jaeger I (0; 1; t) integral that is

the object of our study.

Observe that (40) cannot be expressed as any of the Jaeger I (p; q; t) integrals when � 6= 1,

as we previously stated, since Jν(
p
�u) and Yν(

p
�u) are not then expressible as functions

of Jν(u) and Yν(u). This can happen only when � = 1. In particular, when � = 1 and

�! 0 (40) reduces to

L �1
{
f̂(s)

}
=

4

�2

ˆ 1
0

[J1(u)2 + Y1(u)2]

[J1(u)2 + Y1(u)2] [J0(u)2 + Y0(u)2]

e�u
2t

u
du;

=
4

�2

ˆ 1
0

1

J0(u)2 + Y0(u)2

e�u
2t

u
du; (41)

that is, to the expression (2) involving I (0; 1; t), for the limiting current, as it should do.

When � = 1 and � > 0 we obtain

B(
p
x)C(�

p
x) + B(�

p
x)C(

p
x) =

2
[
K1({
p
x)K1(�{

p
x)
] [
K0({
p
x)K0(�{

p
x)
]

=

�4

8

[
J1(
p
x)2 + Y1(

p
x)2
] [
J0(
p
x)2 + Y0(

p
x)2
]
: (42)

After some manipulation (and cancellation of �4=8) and the use of the Wronskian (19)
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we obtain

�(
p
x) = (1 + �)2 [J1(

p
x)2 + Y1(

p
x)2
] [
J0(
p
x)2 + Y0(

p
x)2
]

and thus, in this case, after substituting
p
x = u,

L �1
{
f̂(s)

}
=

4

�2(1 + �)

ˆ 1
0

1

J0(u)2 + Y0(u)2

e�u
2t

u
du;

which is equivalent to (5), again involving I (0; 1; t).

By analogy with the decomposition (21), f̂(s) given by (6) can be decomposed (for details

see [18]) into two terms corresponding to the solution for a planar electrode and to a

cylindrical correction, respectively:

f̂(s) =
1

1 +
p
��

[
1p
s

+
1 + �

1 +
p
��

ĝ(s)

]
; (43)

where the inverse transform L �1 fĝ(s)g is identical with the function icylwext(
p
t; �; U)

introduced in [18] and which we now denote by �(�; �; t). Hence, from (43) one obvious

formula for computing �(�; �; t) (via numerical Laplace transform inversion) is

�(�; �; t) = L �1 fĝ(s)g =
1 +
p
��

1 + �

[(
1 +
p
��
)

L �1
{
f̂(s)

}
� 1p

�t

]
; (44)

with L �1
{
f̂(s)

}
given by (6). However, one can also derive an integral representation

of �(�; �; t), by replacing L �1
{
f̂(s)

}
in (44) with the integral (40). This gives

L �1 fĝ(s)g =
1 +
p
��

1 + �
�{

(1 +
p
��)

4

�2

ˆ 1
0

J1(
p
�u)2 + Y1(

p
�u)2 + �[J1(u)2 + Y1(u)2]

�(u)

e�u
2t

u
du� 1p

�t

}

=
1 +
p
��

1 + �
�{

(1 +
p
��)

4

�2

ˆ 1
0

J1(
p
�u)2 + Y1(

p
�u)2 + �[J1(u)2 + Y1(u)2]

�(u)

e�u
2t

u
du

� 2

�

ˆ 1
0

e�u
2tdu

}
=

4

�2

1 +
p
��

1 + �
�{ˆ 1

0

(1 +
p
��)[J1(

p
�u)2 + Y1(

p
�u)2 + �(J1(u)2 + Y1(u)2)]� π

2
u�(u)

�(u)

e�u
2t

u
du

}
:
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Collecting terms in powers of � we obtain

�(�; �; t) = L �1 fĝ(s)g =
4

�2

(
1 +
p
��

1 + �

)
�

ˆ 1
0

M1(u) +
p
��M2(u) + ��2M3(u)

�(u)

e�u
2t

u
du; (45)

where

M1(u) =
[
J1(
p
�u)2 + Y1(

p
�u)2

]
� �

2
u
[
J1(
p
�u)2 + Y1(

p
�u)2

] [
J0(u)2 + Y0(u)2

]
;

M2(u) =
[
J1(
p
�u)2 + Y1(

p
�u)2

]
+

1p
�

[
J1(u)2 + Y1(u)2

]
��

2
u

{
8

�2
p
�u2

+2 [J0(u)J1(u) + Y0(u)Y1(u)]
[
J0(
p
�u)J1(

p
�u) + Y0(

p
�u)Y1(

p
�u)
]}

;

M3(u) =
1p
�

[
J1(u)2 + Y1(u)2

]
� �

2
u
[
J0(
p
�u)2 + Y0(

p
�u)2

] [
J1(u)2 + Y1(u)2

]
:

Function �(�; �; t) then becomes

�(�; �; t) = L �1 fĝ(s)g =
1 +
p
��

1 + �
�

4

�2

ˆ 1
0

M1(u) +
p
��M2(u) + ��2M3(u)

�(u)

e�u
2t

u
du: (46)

The above results (25) and (46) for �(0; �; t) and �(�; �; t) have also been obtained by

using the Bromwich contour to directly invert the Laplace transforms (22), and ĝ(s)

resulting from (43).

3 Numerical evaluations

Integrals (40) and (46) must be evaluated numerically, but this task is not trivial. The

command NIntegrate of Mathematica [26] fails to evaluate the integrals directly, when

default command options are used. Variable transformation u = 1=y combined with the

13



integration along y by means of the Kronrod quadrature (see e.g. [27]), available as one

of the command options, turned out to be helpful in overcoming this problem, as long as

(roughly) 10�40 � t � 1018. For smaller t Mathematica issued error messages, and for

larger t incorrect results were obtained. Therefore, by following the previous practice [18],

the main e�ort was concentrated on designing a C++ code written in extended precision

(long double C++ variables) that would provide the integral values with the smallest

possible relative error in modulus. The code was prepared with the help of the freely

available Bloodshed/Orwell Dev-C++ 5.7.1 programming environment [28, 29], compiled

by a 32-bit release of the TDM GCC 4.8.1 compiler, and run on a laptop computer with an

Intel Centrino 2 processor (2.4 GHz), operating under Windows Vista. Numerical C++

procedures for calculating integrands in (40) and (46) with the modulus of the relative

error not exceeding about 10�19-10�18 were devised, since standard C++ libraries do not

provide procedures for the Bessel functions Jν(u) and Yν(u).

In order to verify the accuracy of integration, reference values of I(t) and �(�; �; t) were

necessary. Such values, having at least 25 accurate signi�cant digits, were obtained from

(6) and (44) by the numerical Laplace transform inversion. The inversion was accom-

plished by the GWR procedure of Valk�o and Abate [30], written in Mathematica. The pro-

cedure implements the Gaver-Wynn-rho method devised by Valk�o and Abate [31, 32]. By

analogy with [18], the reference data were obtained for �60 � log t � 60, �3 � log � � 3

and U = 0, �1, �2, �3, �4, �5, �6, �7, �10, �20, �30, �40 and �45. All numerical

tests were limited to this choice.

The C++ numerical integration routine was based on double exponential quadratures

[33] which are often characterized by an exponential convergence, and are therefore both

accurate and e�cient. Integral (40) was cast into the form

I(t) =
2

�2

ˆ 1
0

J1

(√
�w
t

)2
+ Y1

(√
�w
t

)2
+ �

[
J1

(√
w
t

)2
+ Y1

(√
w
t

)2
]

�
(√

w
t

) e�w

w
dw; (47)

from which it is seen that the integrand already involves one exponential factor exp (�w).

In such cases it is recommended (see e.g. [33]) to use the variable transformation

w = exp [y � exp (�y)] (48)

that ensures a double exponential integrand decay in the limits of y !1 and y ! �1.

Unfortunately, computational experiments revealed that the accuracy of such numerical

integration was very low. The reason seems to lie in the nature of the integrand singularity

as w ! 0. Even when w approaches the lower limit of the range of positive long double

variables (ca. 10�4951), the transformation (48) is not able to suppress the large integrand

values down to a negligible level. In order to overcome this di�culty, integral (47) was

14



split into two integrals: one over the interval 0 � w � wb, and second over the interval

wb � w <1, where wb = min (1:585� 10�18t; 10�19). In the �rst interval the integrand

can be replaced by the �rst term of its asymptotic expansion for w ! 0:

J1

(√
�w
t

)2
+ Y1

(√
�w
t

)2
+ �

[
J1

(√
w
t

)2
+ Y1

(√
w
t

)2
]

�
(√

w
t

) e�w

w

� �2 (1 + ��){
a+ b ln

(
w
t

)
+ c
[
ln
(
w
t

)]2}
w
; (49)

where a = (1 + ��)2 [�2 + 4 (E � ln 2)2]+ 4�� ln
p
�
[
2 (1 + ��) (E � ln 2) + �� ln

p
�
]
,

b = 4 (1 + ��)
[
(1 + ��) (E � ln 2) + �� ln

p
�
]
, and c = (1 + ��)2, with E denoting the

Euler gamma constant.

Expression (49) is integrable analytically, with the result

ˆ wb

0

�2 (1 + ��){
a+ b ln

(
w
t

)
+ c
[
ln
(
w
t

)]2}
w

dw

=
�

1 + ��
arccotan

� ln
(
wb

t

)
+ 2

[
(E � ln 2) + δ�

1+δ�
ln
p
�
]

�

 ; (50)

with the inverse cotangent (arccotan) satisfying 0 < arccotan(z) < � for real z. A

well-conditioned procedure for computing arccotan for large positive arguments is needed

(computations employing the standard C++ function for inverse tangent are inaccurate

due to the subtraction of almost equal numbers) and has been elaborated in this work.

Transformation (48) is then applied to the numerical integration over the interval wb �
w <1, after replacing the variable w by w � wb.

Figure 2A shows the current I(t) calculated in the above way for � = 1 (U = 0).

Corresponding moduli of the relative errors of I(t) are depicted in Figure 2B. The modulus

of the relative error does not exceed 5:096�10�18. This result is better than that obtained

by the procedure in [18], which produced the largest relative error in modulus 5:84�10�15

for the same parameter values (cf. Fig. 2C). Results obtained for other U values were

similar.

The numerical C++ procedure developed in [18] was designed for computing �(�; �; t) =

icylwext(
p
t; �; U) = L �1 fĝ(s)g de�ned by (44), and I(t) was later obtained, from thus

calculated �(�; �; t), by using (Laplace inverted) (43). The procedure had a hybrid char-

acter. It combined a small-t series expansion of �(�; �; t) (valid for t smaller than about

10�8 � 10�6) with a certain large-t approximation, and a numerical Laplace transform

inversion by the Stehfest method [34] used in the intermediate t interval. Out of these
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Figure 2: Current I(t) for Θ = 1 (U = 0), evaluated numerically by the double exponential

quadrature (A); and corresponding moduli of the relative errors (B). Errors obtainable by using

the hybrid algorithm from Ref. [18] are shown in subfigure C, for comparison.
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three approaches to computing �(�; �; t), the Stehfest method was the least accurate,

despite its implementation in quad precision, and the most expensive computationally.

Interested Reader can �nd a discussion of the limitations of the accuracy of the Stehfest,

and related methods, caused by a �nite precision arithmetic, in the recent article [35].

The results shown in Figs. 2A and 2B were obtained, in turn, at the cost of about 1200

integrand evaluations (per single I(t) value), for any t value from the range considered.

The corresponding computational time is slightly smaller than that required by the Ste-

hfest method (although about three orders of magnitude larger than the time needed by

the small-t and large-t approximants).

It is therefore interesting to examine the replacement of the Stehfest method by the present

numerical integration procedure, in the computational procedure described in Ref. [18].

For this purpose one can either use (44), combined with the numerical evaluation of

the integral (40) followed by the subtraction of the 1=
p
�t term, or apply the numerical

integration to the integral (46) (in the way analogous to that described above for I(t)).

Both variants were tested, and in both cases a considerable error growth was observed

with decreasing t values, due to the loss of signi�cant digits through subtraction (present

in both formulae). However, the evaluation of (44) proved somewhat more accurate so

that it was �nally used as a replacement to the Stehfest method. In addition, the interval

of applicability of the small-t expansion of �(�; �; t) was slightly enlarged by adding four

more expansion terms (in addition to the 15 terms employed in [18]). In this way, the

interval of t where formula (44) had to be applied, but which gave the largest errors, was

somewhat reduced.

The moduli of the relative errors of �(�; �; t), obtained in the tests performed by the

hybrid procedure modi�ed in the above way, do not exceed about 4:019 � 10�16. This

error bound is about two orders of magnitude smaller than that observed in [18] (ca.

3:436 � 10�14). The largest error occurred for � � 0:00674 (U = �5), and results

corresponding to this worst case are shown in Figs. 3A and B. For this value of � the

unmodi�ed procedure of [18] produced the largest error of ca. 4:438�10�15 (cf. Fig. 3C).

Apart from the reduction of errors, the replacement of the Stehfest method by numer-

ical integration also slightly reduces the computational times. Furthermore, these im-

provements are achieved without using quad precision, which was necessary in [18]. In

conclusion, the integral formula (40) proves advantageous for computing both I(t) and

�(�; �; t).

4 Conclusions

Summing up, the most important conclusions of this study are:
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Figure 3: Function Ξ(Θ, δ; t) for Θ ≈ 0.00674 (U = −5), evaluated numerically by the hy-

brid procedure from Ref. [18], with the Stehfest method replaced by the double exponential

quadrature for integral (40) (A); and corresponding moduli of the relative errors (B). Errors

obtainable by using the unmodified hybrid algorithm from Ref. [18] are shown in subfigure C,

for comparison.
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� The recently presented [18] model of chronoamperometry at cylindrical electrodes

gives rise to an interesting, and previously unknown generalization of the real-valued

Jaeger I (0; 1; t) integral, given by (40).

� The analytical derivation of this integral from the expression (6) employing inverse

Laplace transforms proceeds in a way analogous to the derivation of the I (0; 1; t)

integral from its corresponding inverse Laplace transform expression (4). The same

Bromwich contour can be applied.

� The generalized integral (40), as well as the original I (0; 1; t) integral, are more

conveniently evaluated by means of the numerical double exponential quadratures,

than by the numerical Laplace transform inversion of expressions (6) or (4), if using

IEEE-754-compliant oating point variables. Although the numerical integration is

not trivial, it can be accomplished with a machine accuracy, by using exclusively

standard precision variables, whereas the numerical Laplace transform inversion

requires multiprecision but is still less accurate. Numerical integration is also less

expensive computationally.

� Consequently, the numerical evaluation of the integrals (40) and (46) should be

preferred in the modelling of relevant electroanalytical phenomena, over numerical

Laplace transform inversion.
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