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This paper presents a novel hybrid method to design the continuous and accurate multi-gravity-assist trajectory for a 
high-fidelity dynamics. The gravitational perturbation of the primary body is considered during the gravity assistance. The 
pseudostate technique is applied to approximate the gravity-assisted trajectory, where the optimal sweepback duration is solved 
using a trained deep neural network. The major factors that affect the optimal sweepback duration of the approach and 
departure segments are investigated. The results show that the optimal sweepback duration of the approach segment only relies 
on the shape of the approach trajectory and is independent of the flight time. Then, a gravity-assisted trajectory patched 
strategy and a hybrid algorithm combining the particle swarm optimization and the sequential quadratic programming are 
developed to optimize the multi-gravity-assist trajectory. The proposed hybrid method is applied to the Europa orbiter mission. 
In comparison with the traditional patched conic method, this method demonstrates outstanding performance on accuracy and 
significantly reduces the computational time and complexity of the trajectory correction with the high-fidelity dynamics. 
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1  Introduction  

Gravity assist (GA) technology is a significantly effective 
approach to save fuel on interplanetary missions and has 
been widely applied in actual missions such as Mariner 10 
[1], Galileo [2], and Cassini [3] et.al. The application of 
gravity assist, especially multiple gravity assistances 
(MGA), makes the mission trajectory complicated and 
diverse [4]. Meanwhile, it’s also a significant challenge to 
design these trajectories because that there are many 
variables to be optimized.  

Since gravity assist technology was first proposed in the 
1950s [5], it has always been one of the research 
popularities in astrodynamics. Minovitch [6] developed the 

patched conic method (PCM) and provided a convenient 
and efficient approach to solve the gravity-assist trajectory. 
Then, many optimization methods based on the PCM and 
its improvements have been proposed for designing 
gravity-assist trajectories [7-9]. Prado [8] presented the 
powered swing-by method, which added an impulse 
maneuver during the GA and showed better performance 
than the pure GA. Zimmer and Ocampo [9] derived 
analytical derivatives of the cost and constraint functions 
with respect to the free parameters using the state transition 
matrix method, which was used to address gravity-assisted 
trajectory optimization. These methods improved the 
performance of GA trajectory design. However, the 
challenge is MGA trajectory optimization, which has no 
routine approach so far. Miller [10] and Strange [11] 
applied graphical methods based on the Tisserand’s 



 

 

criterion to determine the MGA sequence. These graphical 
methods only match the energy but do not consider the 
actual phase of gravity-assisting celestial bodies. 
Pisarevsky et.al. [12] addresses the MGA trajectory by 
building and concatenating some blocks with different 
inclinations, which are a series of short sequences of 
Keplerian arcs. Some feasible solutions can be obtained 
quickly using this method, but it is difficult to find the 
optimal solution. Gad et.al. [13] developed a genetic 
algorithm with hidden genes to achieve the global mixed 
optimization of the sequence and local transfer trajectory 
for the MGA trajectory. It shows excellent global solution 
search capability if the number of GAs is limited. Wagner 
and Wei [14] proposed a hybrid algorithm for MGA 
trajectory optimization, which embedded a nonlinear 
programming solver in the genetic algorithm to solve the 
local segment.  

The gravity-assisted trajectory parameter approximation 
is one of the essential problems for MGA trajectory 
optimization. In order to reduce the computational burden, 
the gravity-assisted process is commonly simplified as an 
instantaneous velocity maneuver, the value of which is 
approximated via PCM. However, there are two 
disadvantages of PCM: firstly, PCM only performs velocity 
matching and the solved trajectory is discontinuous in 
position. Secondly, it is assumed that the spacecraft’s 
motion is only affected by the gravitation of the 
gravity-assisted celestial body during the gravity-assist 
process. This assumption will lead to a huge trajectory 
deviation when the perturbation of the central celestial 
body is significantly strong such as Jupiter. Due to these 
deficiencies, it’s difficult to implement and correct those 
PCM-based solutions with the high-fidelity dynamical 
model [15-18].  

The spacecraft’s motion during gravity assist is mainly 
dominated by the gravitation of the gravity-assisted 
celestial body and the central primary celestial body, the 
dynamics of which is a typical restricted three-body 
problem. Prado [16] and Negri et.al. [17] investigated 
respectively the PCM error with the restricted three-body 
dynamics during gravity assist. Ferreira [18] analyzed the 
error of powered gravity assist in the restricted three-body 
problem. The results showed that the accuracy of the 
gravity-assisted trajectory in the restricted three-body 
dynamics is significantly improved than that of the PCM. 
Due to the heavy computational cost of the integration, the 
restricted three-body dynamics cannot directly be applied 
to the MGA trajectory optimization. Pseudostate theory 
proposed by Wilson [19] has outstanding performance on 
approximating trajectory in the restricted three-body 
dynamics, which was extensively applied to design the 
accurate gravity-assisted trajectory [20-22]. Byrnes [23] 
modeled the gravity-assisted trajectory as a three-body 
Lambert problem and transformed it into two conic 
Lambert problems using pseudostate theory. Its application 

to the Jovian system indicated that over 90% of the 
point-to-point conic error is eliminated. Parvathi and 
Ramanan [24] used the pseudostate technique to solve the 
departure and injection trajectory for direct interplanetary 
transfer considering a dynamical model with various 
perturbations. The accuracy of the pseudostate solution 
depends on the sweepback duration [25]. Sweetser [25] and 
Yang et.al. [26] generated the formulas for estimating the 
sweepback duration through empirical parameters and 
linearized approximation, respectively. Therefore, their 
generalization and accuracy are limited. Since machine 
learning (ML) and deep neural networks (DNN) have 
excellent capabilities of approximating complex nonlinear 
systems, they have been generally applied to address the 
low-thrust trajectory [27] and complex perturbation 
dynamics [28] in astrodynamics. Zhang et.al. [29] applied 
supervised machine learning to evaluate the reachable 
domain with gravity assist. Ampatzis and Izzo [30] used an 
artificial neural network to replace the traditional cost 
function in evolutionary algorithms, which significantly 
improves the computational efficiency without affecting 
optimization results.  

The motivation of this work is to achieve the fast 
preliminary design of GA trajectories in the high-fidelity 
dynamics. A patched strategy based on the pseudostate 
technique and a hybrid algorithm combined particle swarm 
optimization (PSO) and sequential quadratic programming 
(SQP) are proposed to address the continuous and accurate 
trajectory for MGA missions with high-fidelity dynamics. 
DNN is firstly applied to facilitate the pseudostate 
technique by identifying the optimal sweepback duration 
that has no universal and effective method of mathematical 
formula solution so far. The proposed method is applied to 
the preliminary design of MGA trajectory in the Jovian 
system, which shows significant advantages in 
computational efficiency and accuracy as compared with 
the traditional patched conic method.  

2  Problem formulation 

For the gravity-assisted interplanetary mission, the 
dynamical model of the transfer phase is different from that 
of the gravity-assist phase. The latter is generally simplified 
as a velocity breakpoint with gravity-assisted maneuver and 
is approximated using the patched conic method [13, 14]. 
Therefore, the MGA trajectory is transformed into the 
sequential connection of a series of gravity-assisted points. 
This rough splicing ignores the effect of the primary central 
celestial body on the spacecraft motion during the 
gravity-assist phase, which is not consistent with reality, 
especially for those systems with a large central celestial 
body (e.g. the Jovian system). To address this problem, a 
gravity assist model based on the pseudostate theory is built 
in this section to approximate the spacecraft motion in the 



 

 

domination of both the central primary body and 
gravity-assisted celestial body during the gravity-assist 
phase. 

2.1  Pseudostate technique 

Pseudostate theory is a simplification of the overlapped 
conic method and has outstanding performance on 
approximating the trajectory in the restricted three-body 
dynamics. The assumption of pseudostate theory is that the 
mass of the secondary is much smaller than that of the 
primary and the spacecraft move along a hyperbolic 
trajectory with respect to the secondary [25]. According to 
the direction (approach or departure) of the spacecraft’s 
motion with respect to the secondary, there are two cases of 
the pseudostate technique, i.e. the approach pseudostate 
case (APC) and the departure pseudostate case (DPC). 
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Figure 1 Diagram of the pseudostate technology. (Bold uppercase vectors, 
e.g. (R0, V0) and (Rf, Vf), are described in the inertial coordinate frame 
centered on the central primary celestial body. Bold lowercase vector, e.g. 
e.g. (rd, vd) , (rdp, vdp) and (ra, va), are described in the inertial coordinate 
frame centered on the gravity-assisted celestial body.) 

The diagram of the solutions of these two cases is 
illustrated in Figure 1. Taking the DPC as an example, the 
detailed solution steps are given as follows [25]: 
(1) Propagate the initial state (r0, v0) in the gravitational 

field of the secondary body for the departure 
sweepback duration ΔTd until reaching the 
pseudo-sphere (rdp, vdp). 

(2) Propagate backward linearly along the opposite 
direction of the velocity vdp for the sweepback 
duration. 

(3) Transform the state with respect to the secondary body 
(rd, vd) into the state with respect to the primary body 

(Rd, Vd). 
(4) Propagate forward to the desired time td in the 

gravitational field of the primary body. 
The solution of the APC is the reverse of the above steps. 

For the pseudostate technique, the propagated trajectories 
are either the Keplerian conics (i.e. the hyperbola and the 
ellipse) or the straight line, which are solved analytically. 
Therefore, this technique has prominent computational 
efficiency.  

In addition to the initial state and the required time, 
another essential parameter for the pseudostate technique is 
the sweepback duration, which is related to the size of the 
pseudosphere. The definition of pseudo-sphere is similar to 
the sphere of influence (SOI). Outside the pseudosphere, 
the spacecraft is only affected by the gravitation of the 
primary celestial body. Inside the pseudosphere, the motion 
of the spacecraft is dominated by the gravitational fields of 
both the primary and secondary celestial bodies [25]. This 
is different from the SOI model that does not consider the 
influence of the primary celestial body in the SOI. 
According to the above definition of the pseudo-sphere, the 
accuracy of the pseudostate technology completely depends 
on the radius of the pseudosphere that is usually 
represented by the sweepback duration. Therefore, the 
sweepback duration determines the approximation accuracy 
of the pseudostate technique. To ensure the accuracy of the 
pseudostate technique, a novel method to solve the 
sweepback duration will be proposed in section 3. 

2.2  Gravity-assisted model using pseudostate 
technique 

Due to the simple implementation and the high 
computational efficiency, the gravity-assist model based on 
the SOI model is popular in the preliminary design of 
interplanetary missions. However, its poor accuracy brings 
about trouble for subsequent trajectory implementation in 
the high-fidelity dynamical model. A gravity-assist model 
using the pseudostate technique is presented to fast solve 
the gravity-assisted trajectory in the high-fidelity dynamical 
model with the perturbation of the primary body.  

The gravity-assisted model based on the pseudostate 
technique is explained in Figure 2, where a maneuver is 
performed at the specified position to patch the approach 
(red) and departure (blue) legs. The approach and departure 
legs are solved using the pseudostate technique according 
to the steps given in Section 2.1. Because the velocity of 
the spacecraft with respect to the gravity-assisted body has 
changed during gravity assistance, the sweepback durations 
of the approach and departure legs are not the same as well, 
which is different from that in reference [25] and can 
effectively improve the accuracy of such legs. In order to 
match the approach and departure legs at the designated 
position P (denoted as rGA), the necessary corrections are 
made to them and the details will be described in section 



 

 

4.1. The velocity difference between the departure and 
approach legs at position P, GAd GAa∆ = −v v v  is matched 
by an impulse maneuver. 
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Figure 2 The gravity-assisted model using the pseudostate technique 

In summary, the application of the pseudostate technique 
achieves the fast and high-precision solution of the 
gravity-assisted trajectory with the dynamical model 
considering the perturbation of the primary body, which has 
the same computational complexity with that of the SOI 
model. Nevertheless, the proposed model has higher 
accuracy and matches both the position and the velocity 
simultaneously. In addition, the delta-V consumption is 
related to the matching position that needs to be optimized, 

the details of the optimization are introduced in Section 4.1. 

2.3  MGA problem formulation 

A multi-gravity-assisted model with deep space maneuvers 
is presented in this section, as shown in Figure 3. Two types 
of maneuvers, i.e. the deep-space maneuver and the 
gravity-assisted maneuver, are performed to patch the 
whole trajectory smoothly. The deep-space maneuver is 
scheduled in the middle of the transfer trajectory, which 
aims to correct the terminal position error of the approach 
segment of the next gravity assistance. The gravity-assisted 
maneuver is arranged at the matching point of the approach 
and departure legs of the gravity assist trajectory, where the 
closest position of the spacecraft to the gravity-assisted 
body is also located. Therefore, the total velocity increment 
of the MGA trajectory is  
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where 0∆v and f∆v are the initial and terminal velocity 
change respectively, j∆v and GAj∆v  are the velocity 

change of the j-th deep-space maneuver and the j-th 
gravity-assisted maneuver, respectively. n is the number of 
gravity assistances.
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Figure 3 The MGA model with deep space maneuver using the pseudostate technique 

Firstly, given the gravity-assist sequence and time, a 
series of Keplerian transfer segments are solved to connect 
the gravity-assisted celestial bodies in turn, which is given 
as follows.   
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where L(·) denotes the solution function for the Lambert 
problem. R0 and Rf are the initial and target positions of the 



 

 

MGA transfer trajectory at t0 and tf, respectively. RGi is the 
position of the i-th gravity-assisted body at tGAi, which is 
solved from its ephemeris. VGAdi and VGAai are the approach 
and departure velocities of the i-th gravity assist, 
respectively, which are obtained by solving the Lambert 
problem.  

Then, the whole trajectory is divided into several 
approach legs (blue lines) and departure legs (red lines). 
The former starts at the middle time of each transfer 
segments tmi and the latter starts at the gravity-assisted time 
tGAi.  
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Deep-space maneuvers and gravity-assisted maneuvers 
are performed at tmi and tGAi to patch these segments, which 
will be described in section 4.1. These maneuvers are 
directly related to the matching position, which is shown as 
follows 
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where *
GAir  is the optimum matching position for the i-th 

gravity assistance. Fsa and Fsd are the processes of the 
approach and departure shooting correction, respectively. Pa 
is the propagation of the approach leg using the pseudostate 
technique. (Rmi, Vmi) is the spacecraft state at tmi. tof and 

T∆ are the time of flight and the sweepback duration, the 
subscripts “a” and “d” denote the approach and departure 
legs, respectively. *

saiV  and *
GAdiv  are the spacecraft 

velocities at tmi and tGAi after the shooting correction. The 
method of solving the optimal matching position *

GAir  for 
each gravity assistance and the shooting correction process 
will be introduced in detail in Section 4.  

Therefore, the MGA trajectory optimization is 
transformed into a problem of searching the gravity 
assistance time windows. The performance index in Eq. (1) 
is denoted as the function of the initial time, the terminal 
time and the gravity-assist time and sequence, which is 
shown as follow, 

 ( )tol 0 f GA1 GA1 GA GA, , , , , ,n nJ V f t t t N t N= ∆ =   (6) 

where t0 and tf are the initial and terminal time, tGAi is the 
time of the i-th gravity assistance, NGAi is the sign of the 
i-th gravity-assisted body and n is the number of gravity 
assistances. 

In conclusion, a continuous MGA trajectory model is 
formulated base on the pseudostate technique in this section. 
Compared with the traditional PCM, the proposed model 
considers the gravity assistance process and the 
perturbation effect of the central celestial body on the 
gravity-assisted trajectory, which improves the accuracy of 
the solution. The application of the pseudostate technique 
replaces the integration of the perturbative trajectory and 
significantly reduces the calculation time. 
 

3  Sweepback duration approximation using 
DNN 

In the pseudostate technique, sweepback duration is defined 
as the time duration of the linear sweepback segment that 
connects the primary elliptical segment and the secondary 
hyperbolic segment. The sweepback duration is a crucial 
parameter and significantly affects the approximation 
accuracy of the pseudostate technique. Figure 4 shows a 
typical example of the effect of the sweepback duration on 
the terminal position error. When the sweepback duration 
approaches zero, the pseudostate method degenerates into 
the pure patched conic method. Then the sweepback 
duration increases to the optimum when the terminal 
position error reaches its minimum. After the optimum 
point, the error increases gradually with the increase of the 
sweepback duration.  
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Figure 4 The effect of sweepback duration on the terminal position error  

3.1  Sweepback duration analysis 

For a specific pair of primary and secondary celestial 
bodies, the sweepback duration is a function of the 
spacecraft state (r, v) with respect to the secondary body, 
the position and velocity of the secondary body (R, V) with 
respect to the primary and time-of-flight tof. However, it is 



 

 

difficult to establish an explicit mathematical expression to 
describe this function. Therefore we devote to solve the 
mapping between the sweepback duration and its reliable 
variables using a deep neural network. First of all, it is 
necessary to identify the major factors from all dependent 
variables. The ones that have significant effects on the 
sweepback duration are reserved in the sample of the DNN. 
The others that have minor factors are neglected to reduce 
the dimensions of the sample. Without loss of generality, 
the subsequent simulations in this section take the 
Jupiter-Ganymede system as an example. 

3.1.1  Departure case 
The optimal sweepback duration depends on the departure 
trajectory. The prior-known parameters for solving a 
departure trajectory of the gravity assist are the initial 
position and velocity vectors of the spacecraft with respect 
to the secondary celestial body, the time-of-flight, and the 
position and velocity vectors of the secondary body. 
Therefore, they are the candidate parameters for calculating 
the optimal sweepback duration as well.  

The magnitude of the initial position vector is the initial 
distance from the secondary body to the spacecraft, which 
is an important parameter to represent the effect of the 
gravitation of the secondary body on the spacecraft 
trajectory. Figure 5 shows that the relation between the 
optimal sweepback duration and magnitudes of initial 
positions. In particular, 13 cases with different initial time, 
time of flight, and initial velocities are randomly generated 
and tested. For each case, the optimal sweepback duration 
varies slightly with the magnitude of the initial position, 
and the gradient of the curve decreases with the increase of 
the altitude. This indicates that the influence of the initial 
position altitude on the optimal sweepback duration 
becomes less with the increasing initial altitude. 
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Figure 5 The optimal sweepback duration varies with different altitudes of 
the initial positions for departure case 

The magnitude of the initial velocity vector indicates 
how fast the spacecraft moves away from the secondary 
body. Numerical simulations are performed to investigate 
the effect of the initial velocity magnitude on the optimal 
sweepback duration. In Figure 6, three test cases (Case A, 
B and C) are shown, and three examples with different 
initial altitudes (h0 = 100 km, 1000 km and 10000 km) are 
given for each case. The examples in the same case have 
the same initial time epoch, initial velocity direction and 
the time of flight. In each example, we sample different 
initial velocity magnitudes (markers on each line) to verify 
their effect on the optimal sweepback duration. 
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Figure 6 The effect of the magnitude of the initial velocity on the optimal 
sweepback duration for departure case 

Some conclusions can be summarized from Figure 6. 
First, it is observed that the optimal sweepback duration 
varies with the initial velocity magnitude for all lines. This 
proves that the magnitude of the initial velocity is one of 
the major factors of the optimal sweepback duration. 
Second, the examples for the same case have the same 
variational tendencies of the optimal sweepback duration 
with the increasing initial velocity magnitude, but the value 
of the optimal sweepback duration is slightly different 
when the initial velocity magnitude is the same. This means 
the initial altitude has little effect on the optimal sweepback 
duration. Finally, the variational tendencies of the optimal 
sweepback duration with increasing initial velocity 
magnitude are obviously different for these lines with the 
same color in different cases, which have the same initial 
altitude but different initial velocity direction and the time 
of flight. This indicates that the optimal sweepback 
duration has strong correlations with the initial velocity 
direction and the time of flight. 

As analyzed previously, the direction of the spacecraft’s 
motion has a significant impact on the optimal sweepback 
duration and is mainly determined by the direction of the 
initial velocity. Since the departure trajectory is also 
relative to the position and velocity of the secondary body, 



 

 

α  and the angle between 
the initial velocity vector and the velocity vector of the 
secondary β  to describe the direction of the spacecraft’s 

motion. The variation of the optimal time *T∆  with the 
direction of spacecraft’s motion is given in Figure 7, where 
six cases with different initial time, time of flight, and 
initial velocity magnitudes are simulated.  

 
Figure 7 The variation of the optimal sweepback duration with the 
direction of initial velocity for departure case 

In Figure 7, points on the same line have the same 
simulation parameters, except for the initial velocity 
direction. The optimal sweepback duration varies 
significantly with the directions of motion and its 
variational extent is related to the magnitude of the initial 
velocity. 

Following on, 1000 cases are randomly generated and 
simulated to verify the effect of the flight time on the 
optimal sweepback duration. The results are given in Figure 
8. The points on the same line have the same initial position 
and velocity. When the time of flight is generally short, the 
optimal sweepback duration varies significantly with the 
time of flight. However, the sweepback duration gradually 
converges to a fixed value with increasing time-of-flight, 
due to the fact that the range of the influence of the 
gravitational perturbation of the secondary is limited.  

 

Figure 8 The effect of the time of flight on the optimal sweepback 
duration for departure case 

In summary, the optimal sweepback duration of the 
departure case is mainly affected by the initial velocity and 
the time of flight and is slightly influenced by the 
magnitude of the initial position. Therefore, for the 
departure trajectory, the major factors considered for the 
optimal sweepback duration are the time of flight, the 
magnitude and direction of the initial velocity. 

3.1.2  Approach case 
The resolution of the approach trajectory is the reverse 
solving of the departure trajectory. The influence of the 
gravitation of the secondary on the spacecraft’s motion 
gradually becomes stronger as it approaches the secondary. 
According to the steps of the solution described in section 
2.1, the sweepback duration is only needed when solving 
the sweepback line arc and the hyperbolic arc. The elliptic 
arc can be calculated using the time of flight and the 
position and velocity of the spacecraft at the 
gravity-assisted time epoch tGA. Therefore, the relevant 
factors of the optimal sweepback duration for the approach 
trajectory are the time of flight, the spacecraft velocity and 
the position and velocity of the secondary at the time epoch 
tGA. Here we follow the analysis of the departure case to 
investigate the impact of the flight time, and the magnitude 
and direction of the spacecraft hyperbolic excess velocity 
on the optimal sweepback duration, respectively. 

Numerical simulations are performed to verify the 
influence of the hyperbolic excess velocity magnitude vinf 
on the sweepback duration. The results of five study cases 
are shown in Figure 9. The five different cases have 
different gravity-assist time epoch, the time of flight, and 
directions of the hyperbolic excess velocity.  

 
Figure 9 The effect of the magnitude of the hyperbolic excess velocity on 
the optimal sweepback duration for approach case 

For each case, the value of the optimal sweepback 
duration changes significantly with the increasing 
magnitude of the hyperbolic excess velocity. In addition, 



 

 

the variational tendencies of different cases are different, 
indicating that other parameters such as the direction of vinf 
also affect the optimal sweepback duration. 

The direction of the hyperbolic excess velocity is 
represented by two angles between vinf and the position and 
velocity of the secondary body at tGA, which are denoted as 
θ and γ. To test the influence of this direction on the 
optimal sweepback duration, ten cases are simulated and 
shown in Figure 10. It is obvious that the optimal 
sweepback duration varies with the changes of the direction 
of the hyperbolic excess velocity for each case. The 
tendency of this variation is similar for the different cases, 
but magnitudes of these variations are different due to the 
different magnitudes of the hyperbolic excess velocity. 
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Figure 10 The effect of the direction of the hyperbolic excessive velocity 
on the optimal sweepback duration for approach case 

Another potential factor that affects the optimal 
sweepback duration is the time-of-flight, which is 
investigated with numerical simulations and the result is 
shown in Figure 11. In order to eliminate the effects from 
other factors, each test case uses the same approach 
trajectory, which ensures the same hyperbolic excess 
velocities. For the simulation of each specific case, the 
initial state of the spacecraft is sampled at equal time 
interval along the approach trajectory. It is seen from 
Figure 11 that the optimal sweepback duration has a fixed 
value for each case, which proves that the time of flight 
does not affect the optimal sweepback duration for the 
approach trajectory. 

 
Figure 11 The effect of the time of flight on the optimal sweepback 
duration for approach case 

Therefore, for the approach case, the optimal sweepback 
duration is mainly affected by the magnitude and direction 
of the hyperbolic excess velocity and is independent of the 
time of flight. This is different from the departure case. 

3.2  Sweepback duration estimator via DNN 

It is very challenging to estimate the optimal sweepback 
duration using the analytical mathematical formulas. A 
novel method based on DNN that does not require intuitive 
empirical parameters is proposed in this section to address 
this challenge. DNN trains and learns from a large sample 
database, and then establishes a mapping between the 
inputs and the outputs. DNN has demonstrated outstanding 
performance in approximating complex nonlinear systems.  

A typical DNN structure is shown in Figure 12, 
consisting of an input layer, an output layer and several 
hidden layers. Each layer has a number of neurons and 
neurons in adjacent layers are connected to each other. 
These neurons receive signals from the previous layer and 
send the processed signals to the next layer. The signal 
processing includes weighted summation and activation 
operations that are given as follows [28]. 
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where b is the bias coefficient and wk is the weight 
coefficient of the input signal xk. N is the number of 
neurons in the previous layer. f(·) is the activation function. 
The common activation functions include Sigmoid, tanh 
and relu are, whose mathematical expressions are given as 
follows [28] 



 

 

 

( )

( )

( )

relu( ) max 0,

tanh

1sigmoid
1

x x

x x

x

y x x

e ey x
e e

y x
e

−

−

−


= =


− = =
+


= =

+

 (8) 

x1

x2

x3

y1

y2

y3

y4

z1

z2

z3

z4

o1

Input 
Layer Hidden Layers

Output 
Layer

x1

x2

x3

b

Weight Sum

i is b w x= +∑

Activation

( )y f s=
y

w1

w2

w3

•••

•••

•••

•••

 
Figure 12 The illustration of the DNN structure and the neuron 
calculation 

The goal of the training is to find the optimal weights 
and bias coefficients to minimize the output error. During 
the training process, the sample input is passed to DNN, 
and the predicted value is gathered from the output layer 
after processing by hidden layers. The error of the predicted 
value is then obtained as the difference between the real 
output and the prediction and is fed back to the input layer 
to adjust the weights and bias parameters of DNN. 

However, the estimation error is unavoidable in 
approximation methods. If the estimated value is less than 
the optimum, the terminal position error quickly diverges as 
the estimated error increases. Nevertheless, this divergence 
trend is relatively slowly as the estimated value is over the 
optimum. This is a common phenomenon for both 
approach and departure cases in our simulations. Therefore, 
a confidence interval is introduced to reduce the influence 
of this asymmetric divergence error trend on both sides of 
the optimum, which is shown in Figure 13. 
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Figure 13 The definition of the confidence interval [ΔTlow, ΔTup] of the 
optimal sweepback duration 

The steps to solve for the confidence interval are given 
as follows: 
(1) Solve the optimal sweepback duration *T∆ , and 

calculate the corresponding terminal position error 
*r∆ ; 

(2) Calculate the tolerance of the terminal position error 
of the confidence interval, i.e. *

toler rε∆ = ∆ , where 
ε  is the weight coefficient with the range of values [0, 
1] and its default value is 0.01. 

(3) Find the upper and lower bounds of the confidence 
interval, i.e. low up,T T ∆ ∆  , which are the sweepback 

duration corresponding to the terminal position error 
( ) *1 rε+ ∆ . 

(4) Calculate the median of the confidence interval, 
( )m low up0.5T T T∆ = ∆ + ∆ . 

In the subsequent simulations, the median of the 
confidence interval is used instead of the optimal 
sweepback duration. As the tolerance of the terminal 
position error of the confidence interval is small enough, 
the optimal sweepback duration is equivalent to the median 
of the confidence interval. 

According to the analysis of the major factors affecting 
the optimal sweepback duration, the data structures of the 
training samples for the approach and departure optimal 
sweepback duration approximation are designed as follows 
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There are five and three inputs for departure and 
approach cases, respectively. Their outputs are both the 
median of the confidence interval of the optimal sweepback 
duration. The details of the training process are described in 
section 5. 



 

 

4  MGA trajectory optimization algorithm 

According to the model in Section 2, the variables to be 
optimized in the MGA trajectory optimization for a fixed 
gravity-assisted sequence are the time and the matching 
position of gravity assist. The optimal matching position 
can be solved from the given time of the gravity-assist. 
Therefore, a hybrid MGA trajectory optimization algorithm 
is proposed, including a global optimizer and a local 
trajectory solver. The global optimizer is applied to find the 
optimal time windows. The local solver is embedded in the 
global optimizer to obtain the optimal matching position 
and calculate the delta-V consumption for a specific time 
window. 

4.1  The patching strategy of gravity-assisted 
trajectory  

For a specific scenario with the given time and sequence of 
the gravity assistance, the transfer segments are patched 
using the pseudostate gravity-assisted model given in 
section 2. Therefore, it’s important to find an optimal 
gravity-assisted matching position to reduce the delta-V for 
matching the trajectory. A gravity-assisted trajectory 
patched strategy is developed to smooth the 
gravity-assisted trajectory with the least delta-V required.  

In the pseudostate gravity-assisted model, both the 
approach and departure legs consist of a primary elliptic arc, 
a sweepback straight line and a secondary hyperbolic arc, 
as shown in Figure 2. If the initial state (t0, R0, V0) and the 
gravity-assisted time tGA are fixed, the approach leg is 
solved with the terminal position of the primary elliptic arc 
of the approach leg rae. Firstly, the velocity of the primary 
elliptical arc is solved from the Lambert problem as 
follows, 

 ( )a0 ae 0 GA ae GA 0, ( , , )L t t= + −V V R R r  (10) 

where RGA is the position of the gravity-assist body that is 
obtained from its ephemeris after a given time tGA. rae is the 
terminal position of the approach elliptical arc, which is 
described in the inertial coordinate frame centered on the 
gravity-assisted body. 

The terminal state of the approach legs (rGAa, vGAa) is 
then calculated as follows according to the pseudostate 
technique. 
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where haΨ  denotes the state transition matrix dominated 
by the gravitation of the gravity-assisted body. aT∆  is the 
optimal sweepback duration of the approach leg, which is 
obtained using the trained DNN introduced in Section 3.  

 ( )a a ae ae ae, ,T DNN v θ γ∆ =  (12) 

where vae is the magnitude of the velocity vae, aeθ  and 

aeγ  are the angles vae makes with RGA and VGA, 
respectively. 

Therefore, the terminal position of the approach leg rGAa 
is a mapping of the position rae, donated as rGAa = F(rae). 
When the matching position rGA is given, the position rae 
can be obtained by solving the equation rGA = F(rae) using 
the command fsolve in Maltab. The terminal velocity of the 
approach leg vGAa is then obtained from Eq. (11). 

The matching position is used as the initial position of 
the departure leg and the initial velocity must be corrected 
to ensure that the departure leg reaches the desired position 
Rf. The initial position and velocity of the departure 
primary elliptical arc (rde, vde) can be solved from the 
following equation when the initial position and velocity 
(rGAd, vGAd) are known. 
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where rGAd and vGAd are the magnitudes of the initial 
position and velocity of the departure leg. hdΨ  denotes 
the state transition matrix of the hyperbolic trajectory 
dominated by the gravitation of the gravity-assisted body. 

The desired velocity *
deV that brings the spacecraft to the 

final position is then solved from the Lambert problem. 

 ( )*
de df GA de f f GA, ( , , )L t t= + −V V R r R  (14) 

The patched departure leg is obtained by solving the 
following equation using fsolve in Maltab. 

 ( ) ( )*
de de de GA GAdG∆ = − − = = 0v v V V v  (15) 

The gravity-assisted trajectory patching aims to match 
the position of the departure and approach legs with the 
least delta-V consumption. Therefore, the objective 
function is defined as 
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where [ ]GA GA GA, ,r α β is the spherical coordinate of rGA in 
the inertial frame centered on the gravity-assisted body. 

Several constraints are introduced to ensure the 
matching accuracy and security of the gravity-assisted 
trajectory. Firstly, the terminal state of the approach and the 
initial state of the departure must take place before and 
after the periapsis passage respectively, to ensure the 
accuracy of pseudostate technology. Secondly, the radius of 
the matching position must be larger than the safety altitude 
rGAmin. The formulations of these constraints are given as 
follows.  
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Here the default tool fmincon in MATLAB, whose 
build-in optimizer is set to the sequential quadratic 
programming, is used to solve the optimal matching 
position of the approach and departure legs. Because the 
robustness and efficiency of the method mainly depend on 
the initial guess, an adaptive initial guess algorithm is 
proposed to obtain a better guess. According to the 
pseudostate theory, the desired optimal matching position is 
close to the periapsis of approach and departure legs, where 
the angle between the approach and departure velocity 
vectors is the smallest or even equals zero. Therefore, the 
initial guess for SQP is obtained by the following equation,  
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where (rap, vap) and (rdp, vdp) are the pseudo-states of the 
approach and departure legs, and rGAmin is the minimum 
gravity-assist radius. 

4.2  Hybrid optimization algorithm of MGA 
trajectory  

A hybrid optimization algorithm combining the particle 
swarm optimization (PSO) and the sequential quadratic 
programming is proposed to optimize the 
multi-gravity-assist trajectory. The framework of the 
algorithm is illustrated in Figure 14. PSO is used to find the 
optimal time windows, while SQP is embedded in PSO as a 
local trajectory solver to calculate the fitness value that is 
the total delta-V defined in Eq. (1) and to optimize the 

gravity-assisted matching position. The gravity-assisted 
matching position optimization model has been introduced 
in Sections 2.3 and 4.1. 

Initialize the particle's position and velocity vector

Calculate particle's fitness value using the 
local trajectory solver 

Find the particle with the best fitness value Update particle's position and 
velocity based on the Eq. (18) 

Whether the convergence 
condition is met?

Output the optimal particle

Update the inertia weight w in the 
Eq. (19) 

Adaptive mutation of particle's 
position and velocity 

 
Figure 14 Schematic of the hybrid optimization algorithm combining PSO 
and SQP. 

The principle of PSO is to find the optimal solution by 
making all the particles in the swarm move in a 
multi-dimensional hyper-volume [31, 32]. The motion of 
the particles is guided by the best-known positions of 
themselves and also the entire swarm in the search space. 
The particle motion is modeled as [31] 
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where the subscript i and superscript k denote the i-th 
particle in the swarm and the k-th iteration, respectively. X 
and V are the position and velocity of the particle, 
respectively. k

ibX  is the best-known position of the i-th 

particle up to the k-th iteration. k
gX is the swarm's 

best-known position up to the k-th iteration. w, c1 and c2 
are, respectively, the inertia weight, the self-cognition 
coefficient and the global-cognitive coefficient, which are 
constants in the standard PSO algorithm. 

To improve the performance of the standard PSO, two 
adjustments are made. Since the inertia weight determines 
the global and local search capabilities of the algorithm, a 
larger weight value enhances the global capability and 
weakens the local search capability. Actually, the algorithm 
is expected to have a stronger global and local capability in 
the early and later stages of execution, to avoid the local 
optimum and to improve computational efficiency. 
Therefore, an adaptive function is introduced to replace the 
constant inertia weight [32].  
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where w0 and wf are the initial and final inertia weights, and 
kmax is the maximum number of iterations. 

In addition, to improve the global optimization 
capability, an adaptive mutation is performed after the 
particle's position and velocity are updated. Particles are 
randomly selected and their position and velocity are 
randomly initialized. 

5  Numerical simulations  

This section uses the proposed method to perform the 
preliminary design of the MGA trajectory for the 
exploration of the Jovian system. Firstly, DNNs are built 
and trained to estimate the optimal sweepback duration for 
the gravity-assisted trajectories with the gravity-assisted 
central bodies of Europa, Ganymede and Calisto, 
respectively. Then, the trajectory of a Europa orbiter 
mission with multiple gravity assists of Galilean moons is 
designed using the proposed hybrid algorithm. The design 
is compared with the traditional patched conic method to 
validate the performance of the proposed algorithm in 
terms of accuracy and efficiency.  

5.1  Optimal sweepback duration approximation 
using DNN 

As mentioned in Section 3, since the major factors affecting 
the optimal sweepback duration of the approach and 
departure cases are different, two types of DNNs are built 
and trained to approximate the optimal approach and 
departure sweepback duration for each gravity-assist 
celestial body. The structures of these two DNNs are listed 
in Table 1, which are summarized from a series of 
simulation experiments. Both approach and departure 
DNNs are fully connected networks and use tanh and relu 
as the activation functions of the hidden and output layers, 
respectively. The departure DNN has more hidden layers 
because of more inputs. The training part runs using Python 
and the rest of the simulations, e.g. the hybrid optimization 
algorithm in Section 4, run using Matlab. All simulations 
are performed on the personal computer with Intel Core-i7 
4.2 GHz CPU and 16 GB of RAM. 

Table 1 The structures of the approach and departure DNNs. 

Type of DNN Approach DNN Departure DNN 
Neurons of input layer 3 5 
Number of hidden layers 3 4 
Neurons per hidden layer 30 30 

 
The process of generating the approach sample is given 

as follows: 
Approach Sample Generation Algorithm: 
step 1: Randomly generate the initial time t0, the initial position R0 and 

the time of flight tof. 

step 2: Calculate the position RGA and the velocity VGA of the 
gravity-assist body at t0+tof using its ephemeris. 

step 3: Solve for the initial velocity V0 form the Lambert problem (V0, 
Va) = L(R0, RGA, tof ). 

step 4: Propagate the initial state (R0,V0) to the terminal state (Rf,Vf) 
under the gravitational influence of the Jupiter and the 
gravity-assisted body. 

step 5: Solve for the optimal sweepback duration *T∆ to minimize the 

terminal position error *r∆ using fmincon in Matlab. 
step 6: Calculate the median amT∆  of the confidence interval of the 

approach sweepback duration via the method mentioned in 
Section 3.2. 

step 7: Calculate the angles between vinf = Va-VGA and RGA and VGA, 
which are denoted as θ and γ. 

step 8: Output the sample Sa = {[vinf, θ, γ], ΔTam}. 
 
Similarly, the process of generating the departure sample 

is also given as follows: 
Departure Sample Generation Algorithm: 
step 1: Randomly generate the initial time t0, the hyperbolic excess 

velocity vinf and the time of flight coefficient tofε . 

step 2: Calculate the position RGA and the velocity VGA of the 
gravity-assisted body at t0 using its ephemeris. 

step 3: Calculate the departure velocity Vd = VGA + vinf, and the angle 
δ  between Vd and VGA. 

step 4: If δ is less than 0.5π , continue to step 5, otherwise go back 
to step 1. 

step 5: Calculate the time of flight tof = εtofT, where T is the orbital 
period of departure trajectory (RGA, Vd). 

step 6: Calculate the initial position r0 and velocity v0 with respect to 
the gravity-assisted body using the method in Reference [24]. 

step 7: Propagate the initial state (r0, v0) to the terminal state (Rf, Vf) 
under the gravitational influence of the Jupiter and the 
gravity-assisted body. 

step 8: Solve for the optimal sweepback duration *T∆ to minimize 

the terminal position error *r∆ using fmincon in Matlab. 
step 9: Calculate the median dmT∆  of the confidence interval of the 

approach sweepback duration via the method mentioned in 
section 3.2. 

step 10: Calculate the angles formed by v0 with RGA and VGA, denoted 
as α  and β . 

step 11: Output the sample Sd = {[r0, v0, α, β, tof], ΔTdm }. 
The sample database is obtained by repeating the above 

process. The ranges of the randomly generated parameters 
are given in Table 2. The initial time t0 is expressed in the 
modified Julian day. [R0, α0, β0] is the representation of R0 
in a spherical coordinate inertial frame centered on Jupiter. 
[vinf, αinf, βinf] is the representation of vinf in the spherical 
coordinate inertial frame centered on the gravity-assisted 
body. RJ = 71492 km is the mean equatorial radius of the 
Jupiter. 

Table 2 The ranges of the randomly generated initialization parameters for 
sample generation 

Initialization parameter Value ranges Unit 
t0 [65941, 66151] MJD2000 
R0 [5RJ, 100RJ] km 
α0 [0, 360] deg 
β0 [-10, 10] deg 
tof [1, 100 ] day 



 

 

vinf [1, 15] km/s km/s 
αv [0, 360] deg 
βv [-90, 90] deg 
εtof [0, 1) - 

For the approach and departure cases of the Europa, 
Ganymede and Calisto, 50000 samples are generated using 
the proposed algorithm for each case. The Adaptive 
moment estimation (Adam) is used as the optimizer. The 
maximum epoch is set at 10000 and the initial learning rate 
is selected as 0.001. The buildup and the training of the 
DNN are based on the TensorFlow and Python. The mean 
square error (MSE) between the predication of DNN and 
the output of the sample are defined as the cost with the 
mathematical expression as [27] 
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where n is the number of samples, and ˆ
iy and yi denote the 

DNN prediction and the actual sample output, respectively.  
Finally, the variations of MSE during the training 

process are shown in Figure 15. The final MSEs of the 
DNN’s prediction are less than 10-4 for all cases, which 
transforms into the mean absolute error (MAE) of the 
DNN’s output in 0.01 per day. MAE is the average value of 
the error between the predicted value and the actual output. 
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Figure 15 The variations of MSE during the training process (E: Europa, 
G: Ganymede, C: Calisto, A and D denote the approach and departure 
cases) 

Then 1000 new samples are generated for each case to 
verify the performance of these trained DNNs. The terminal 
position errors of these samples are calculated using the 
sweepback duration estimated by these DNNs, and are 
given in Figure 16. For all cases, the terminal relative 
position error is greater than 0.25%, because the output of 
DNN is the median of the confidence interval instead of the 
optimal sweepback duration. Moreover, the means of the 
terminal relative position errors are all no larger than 0.5%, 
as reflected by the blue points in Figure 16. Their standard 
deviations are less than 0.3%. This indicates that the 
approximation accuracy of the DNNs can meet the 
requirements, since the error of the terminal relative 

position does not exceed 1% of the optimal value. 
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Figure 16 The terminal position errors of the 1000 new samples using the 
sweepback duration estimated by DNN (E: Europa, G: Ganymede, C: 
Calisto, A and D denote the approach and departure cases) 

In this work, three measures are performed to simplify 
the problem for improving DNN’s accuracy. First, the 
sample trajectory is limited to the low-inclination orbit (i.e. 
-10°≤β0≤10°). Because all inclinations of the Galilean 
moons’ orbits are close to zero, the Europa orbiter mission 
trajectory also has a low inclination to obtain better 
gravitational assistance effects. Second, the sample 
dimension is reduced by identifying the major factors of the 
sweepback duration. Finally, for the same gravity-assist 
celestial body, two DNNs are trained separately for 
approach and departure cases. Different DNNs are trained 
for different gravity-assist celestial bodies. 

5.2  Trajectory design of the Europa orbiter mission  

The four Galilean moons are the focus of the Jovian system 
exploration, which is significant for understanding the solar 
system evolution and the origin of life. In this section, the 
proposed method is applied to perform the preliminary 
design of the Europa orbiter mission trajectory, which 
includes multiple gravity assists of Europa, Ganymede and 
Calisto.  

It is assumed that the spacecraft parks on an elliptical 
orbit after being captured by Jupiter on June 12, 2039. The 
orbital elements of the parking orbit are listed in Table 3.  

Table 3 The orbital elements of the initial parking orbit 

Initial state Value 
MJD (day) 65951 
a (km) 6878410.350 
e 0.8982 
inc (deg 0.206 
RAAN (deg) 43.977 
w (deg) 84.129 
u (deg) 180 

The Tisserand graph is a graphical technique for quick 
gravity-assist sequence search. It parameterizes the 
Tisserand invariant with respect to the infinity velocity of 
the spacecraft relative to the gravity assist body [33]. A 
feasible gravity-assist sequence that includes 9 gravity 



 

 

assistances is found via the Tisserand graph and shows in 
Figure 17. This sequence is represented by 
G-G-G-C-C-G-C-G-G-E, where E, G and C denote Europa, 
Ganymede and Calisto, respectively. First, three Ganymede 
gravity assistances are performed to lower the apoapsis of 
mission trajectory. Next, its periapsis is raised by applying 
two gravity assistances of Calisto. Finally, a G-C-G-G-E 
gravity-assisted sequence is employed for the rendezvous 
with Europa. 
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Figure 17 The gravity-assisted sequence of Galilean moons for Europa 
orbiter mission 

The hybrid algorithm described in Section 4 is applied to 
solve the smooth mission trajectory in the restricted 
three-body dynamics. The swarm size and maximum 
generation of PSO are 100 and 200, respectively. The 
position accuracy tolerance of SQP is 1 km. The flight time 
constraints for each gravity-assisted leg are set according to 
the results of the Tisserand plot and are given in Table 4. In 
addition, the minimum safe altitude of the gravity-assisted 
legs of the Galilean moons is 100 km. 

Table 4 The constraints of the time of flight for each gravity-assisted leg 

Variables Range (day) Leg 
tof1 [80, 110] Inject 
tof2 [47, 52] G1 
tof3 [12, 17] G2 
tof4 [7, 11] G3 
tof5 [16,32] C4 
tof6 [14,18] C5 
tof7 [10,13] G6 
tof8 [10,13] C7 
tof9 [6, 9] G8 
tof10 [4,6] G9 

The optimal results of the proposed method and the 
PCM are listed in Table 5. For comparison, the PCM model 
is also used to solve the same problem and its results are 
shown in Table 5. For the solution of the proposed method, 

the spacecraft takes 206.781 days and a delta-V of 
1916.322 m/s to correct its trajectory and rendezvous 
Europa. The trajectory is illustrated in Figure 18. For the 
solution of the PCM, the flight time and delta-V are 
247.962 days and 1858.455 m/s, respectively. In addition, 
the CPU computational time of the proposed method and 
PCM are 352.359 s and 95.246 s, respectively. Because the 
PCM is based on two-body dynamics, its computational 
efficiency is higher than that of the proposed method. 
However, its poor accuracy will cost more time and delta-V 
for the correction to the high-fidelity dynamical model. 

A high-fidelity dynamical model that considers the 
gravitation of Jupiter and its four Galileo moons is used to 
verify the accuracy of the preliminary design. The formula 
of the high-fidelity dynamics is defined as 
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where μJ is the gravitational constant of Jupiter. μg (g = 
1,2,3, and 4) are the gravitational constants of Galilean 
moons. R and Rg denote the position vectors of the 
spacecraft and the Galilean moon g. Rgs is the relative 
position vector for the Galilean moon g to the spacecraft. 
All position vectors are described in the inertial coordinate 
frame centered on Jupiter. 

The terminal position error of each leg of the 
preliminary design solutions is shown in Table 5, which is 
denoted as ΔRf. The terminal position error of the 
preliminary design solution of the proposed method is 
reduced by an order of magnitude with the comparison of 
the PCM’s solution. 

 
Figure 18 The MGA trajectory of the solution of the proposed method

Table 5 The preliminary design results of the proposed method and PCM for the Europa orbiter mission. 

Leg Proposed Method  PCM  
time (MJD) rpe (km) Δv (m/s) ΔRf (km) time (MJD) rpe (km) Δv (m/s) ΔRf (km) 



 

 

Inject 65951 -- 19.923 7848 65951  16.612 524231 
G1 66036.393 2734 17.578 858 66064.047 2734 0.903 44126 
G2 66086.448 3047.771 6.603 551 66112.940 2734 2.274 3699 
G3 66099.992 10876.652 36.840 385 66127.009 4818.408 0.291 6547 
C4 66102.306 6431.124 28.299 2436 66134.164 2508 24.278 10365 
C5 66127.022 14817.494 2.741 154 66165.077 2508 8.457 35652 
G6 66129.595 2734 2.342 142 66168.815 6232.847 3.014 78837 
C7 66139.463 3631.935 52.287 112 66181.892 2508. 8.823 15162 
G8 66142.583 9320.329 3.354 678 66185.794 2734. 2.756 113476 
G9 66155.482 2734 2.019 268 66197.384 2734. 6.518 5930 
E 66157.781 -- 1744.336 151 66198.962 -- 1784.529 3920 
Total -- -- 1916.322 -- -- -- 1858.455 -- 

To obtain the high-fidelity solution, the Newton’s 
method is used to correct the preliminary solution in the 
high-fidelity dynamics. The terminal position tolerance of 

the correction is set to 1 km. The corrected results are given 
in Table 6. Δvc is the velocity change after the correction.  

Table 6 The correction results based on the high-fidelity dynamics using the proposed method and PCM solutions as the initial trajectories 

Event Proposed Method PCM 
Δvc (m/s) iterations CPU time Δvc (m/s) iterations CPU time 

Inject 21.939 312 31.034 17.612 1325 121.151 
G1 16.257 145 13.559 38.245 973 91.305 
G2 10.631 129 12.385 62.704 652 62.860 
G3 29.465 86 8.249 16.931 1313 129.943 
C4 35.129 69 6.524 62.265 1297 123.306 
C5 9.411 36 3.316 38.957 1179 110.294 
G6 5.132 48 4.559 62.204 655 62.362 
C7 46.728 39 3.700 21.356 255 24.778 
G8 9.264 44 4.195 12.756 657 65.109 
G9 7.391 19 1.776 56.518 148 13.561 
E 1714.336 24 2.326 1794.529 137 12.866 
Total 1905.683 951 91.623 2184.077 8591 817.535 

For each transfer leg, the terminal position error of the 
PCM solution is much larger than that of the proposed 
method solution, resulting in more iterations and more CPU 
computational time for the correction. The total 
computational time is defined as the summation of the 
computational time of the preliminary design and the 
correction. For the proposed method, the design and 
correction computational time are respectively 91.623 s and 
352.359 s, and the total computational time is 443.982 s. 
For the PCM, the design and correction computational time 
are 95.246s and 817.535 s, respectively. Therefore, its total 
computational time is 912.781 s. After the correction, the 
total delta-V of the proposed method is 1905.683 m/s, 
which is less than the PCM solution 2184.077 m/s. In 
addition, Comparing the total delta-V of the preliminary 
design solution in Table 5 with the total delta-V after 
accurate correction in Table 6, the delta-V errors of 
preliminary design solutions of the PCM and the proposed 
method are 325.622 m/s and 10.936 m/s, respectively. 
Therefore, when considering both the preliminary design of 
MGA trajectory and the subsequent correction for the 
high-precision dynamics, the proposed method 
demonstrates significant advantages in both computational 
efficiency and accuracy. 

6  Conclusions 

A preliminary design method for generating accurate and 

continuous trajectories using the pseudostate technique and 
a hybrid algorithm has been proposed to solve the MGA 
trajectory. The major contribution of this novel method is to 
develop a gravity-assisted patched strategy based on the 
pseudostate technique, whose sweepback duration is firstly 
approximated using DNN. It is demonstrated that the DNN 
is capable to provide an accurate sweepback duration for 
the pseudostate gravity-assisted model, which significantly 
improves the accuracy and efficiency of solving the 
gravity-assisted trajectory. In the simulations of the 
Galilean moons gravity assistances, the terminal position 
error caused by the estimated sweepback duration using the 
well-trained DNN, does not exceed 1% of the optimal value. 
Additionally, both the proposed method and the PCM are 
applied to solve the MGA trajectory for the Europa orbiter 
mission. The simulation results show that the solution of 
the proposed method is more accurate and easier to refine 
in the high-fidelity dynamics. Therefore, the proposed 
method demonstrates significant advantages in the 
computational efficiency and accuracy for the high-fidelity 
dynamics. 

The dataset and accuracy of DNN is a major concern of 
the application. In fact, we found it is very difficult to 
generate a satisfactory training dataset using one general 
DNN for all case and all gravity-assist bodies. This 
challenge is the focus of our future work. Additionally, the 
Jovian system is a nonlinear multi-body dynamics, which is 
the expansion goal of our future work as well. 
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