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ABSTRACT

Unsteady two-dimensional coating flow of a thin film of a viscous fluid on the outside of a uniformly rotating horizontal circular cylinder in
the presence of a steady two-dimensional irrotational airflow with circulation is considered. The analysis of this problem by Newell and
Viljoen [Phys. Fluids 31(3), 034106 (2019)], who sought to generalize the work of Hinch and Kelmanson [Proc. R. Soc. London, Ser. A
459(2033), 1193–1213 (2003)] to include the effect of the airflow, is revisited. In contrast with the claim of Newell and Viljoen that the flow
is conditionally unstable (in the sense that the solution for the film thickness grows without bound for certain values of the physical parame-
ters), it is shown that, in fact, the film remains unconditionally stable in the presence of the airflow.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0084472

I. INTRODUCTION

Since the publication of the seminal papers by Moffatt1 and
Pukhnachev2 in 1977, coating flow and rimming flow (i.e., flow of a
film of fluid on the outside and inside, respectively, of a rotating solid
horizontal cylinder) have come to be regarded as paradigm problems
in the study of free-surface flows of viscous fluids. A rather large litera-
ture has grown up concerning these flows, including the study of dis-
continuous “shock” solutions in rimming flow by Johnson,3 the
pioneering numerical investigation of coating flow by Hansen and
Kelmanson,4 the study of “curtain” solutions, which are unbounded at
the top and the bottom of the cylinder, by Duffy and Wilson,5 the
study of the effect of capillarity in rimming flow by Ashmore et al.,6

studies of the large-time dynamics of unsteady coating flow by Hinch
and Kelmanson,7 Hinch et al.,8 Kelmanson,9 and Groh and
Kelmanson,10 the numerical investigations of two- and three-
dimensional coating flow by Evans et al.,11,12 the bifurcation analysis
of coating flow by Lin et al.,13 and the discovery of new branches of
steady solutions in coating and rimming flow by Lopes et al.14 In addi-
tion, there have been many extensions to the basic problems, including
the studies of the effect of a uniform azimuthal shear stress on the free
surface of the film by Black15 and Villegas-D�ıaz et al.,16 the studies of
coating flow on elliptical cylinders by Hunt17 and Li et al.,18 the study

of thermoviscous effects in coating and rimming flow by Leslie et al.,19

the study of coating flow on patterned cylinders by Li et al.,20 the stud-
ies of unsteady and steady coating flow in the presence of an irrota-
tional airflow with circulation by Newell and Viljoen21 and Mitchell
et al.,22 respectively, the study of a “thick-film” model for coating flow
by Wray and Cimpeanu,23 and the study of coating flow of a film
laden with colloidal particles in the presence of solvent evaporation by
Parrish and Kumar.24

Studies of the stability of coating and/or rimming flow in various
parameter regimes have been undertaken. Hosoi and Mahadevan25

found numerically that two-dimensional solutions for rimming flow
can be stable even to three-dimensional perturbations in the presence
of capillarity and weak inertia. Peterson et al.26 determined regions of
parameter space for which unsteady solutions of the Stokes equation
for coating flow approach steady states at large times. O’Brien27 con-
firmed the conclusion of Benjamin et al.28 that subcritical solutions for
rimming flow (that is, those for which the mass of fluid is less than a
critical maximum value) are neutrally stable to small two-dimensional
perturbations, and O’Brien29 showed subsequently that weak capillar-
ity can render these solutions stable. Villegas-D�ıaz et al.16 used
kinematic-wave theory to show that subcritical solutions are stable
and that solutions with a shock on the rising side of the cylinder are
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stable if the shock is in the lower quadrant but unstable if it is in the
upper quadrant. Benilov et al.30 found that the linearized equations for
rimming flow have non-harmonic solutions that develop singularities
in finite time, and Benilov et al.31 showed subsequently that the inclu-
sion of capillarity precludes these singular solutions and renders most
of the eigenmodes stable. Groh and Kelmanson32 revealed previously
undiscovered contributions to capillary decay and gravitational drift in
coating flow. Pougatch and Frigaard33 showed that in rimming flow
capillarity may stabilize some modes but destabilize others.

In the present work, we are concerned with the flow of a thin
film of a viscous fluid on a moving substrate in the presence of an air-
flow. As Newell and Viljoen21 describe, just such a situation arises in
the operation of a novel rotary pesticide applicator for crops, compris-
ing a rotating cylinder covered in a film of fluid (pesticide) that
brushes the undersides of leaves of plants as it is moved through the
foliage. Similar situations include the jet-wiping (or air-knife) coating
process in which impinging jets of air are used to control the thickness
of a film of fluid (see, for example, Mendez et al.34 and Barreiro-
Villaverde et al.35) and the interaction between the airflow within and
the film of oil on the inside of the outer shaft of the bearing chamber
in a rapidly rotating aeroengine, which is a key element of the overall
performance of the engine (see, for example, Farrall et al.,36 Noakes
et al.,37 andWilliams et al.38)

In the present study, we model the air as inviscid, so that it exerts
a non-uniform pressure but no shear stress on the film. Specifically,
we investigate unsteady two-dimensional coating flow of a thin film of
a viscous fluid on the outside of a uniformly rotating solid horizontal
circular cylinder in the presence of a steady two-dimensional irrota-
tional airflow with circulation. Three of the above-mentioned papers
are particularly relevant to the present study, namely, those by Hinch
and Kelmanson,7 Newell and Viljoen,21 and Mitchell et al.22 Very
recently, Mitchell et al.22 investigated the steady version of the present
problem in the absence of capillarity. They classified the possible
steady solutions that can occur and proved (by a straightforward gen-
eralization of the argument of O’Brien27) that subcritical solutions
remain neutrally stable to small two-dimensional perturbations in the
presence of the airflow. Earlier, Hinch and Kelmanson7 constructed
the asymptotic solution for unsteady coating flow in the absence of an
airflow in the case in which the effects of gravity and of capillarity are
weak compared with those of viscous shear; in particular, they showed
that at very large times the solution decays to a steady state in which
the thickness of the film exhibits a gravity-induced phase lag relative
to the solid cylinder. More recently, Newell and Viljoen21 sought to
generalize the work of Hinch and Kelmanson7 to include the effect of
the airflow; specifically, they sought to obtain the corresponding
asymptotic solution to the present problem and found that it is condi-
tionally unstable (in the sense that it grows without bound at large
times for certain values of the physical parameters). However, the
work of Newell and Viljoen21 is compromised by a number of unfor-
tunate errors, and so in the present study we revisit their analysis. In
particular, we shall show that, in fact, the film remains unconditionally
stable in the presence of the airflow.

II. PROBLEM FORMULATION

We consider unsteady two-dimensional coating flow of a thin
film of incompressible viscous fluid of constant density q and viscosity
l on a solid horizontal circular cylinder of radius a rotating

anticlockwise with uniform angular speed X (> 0) in the presence of a
steady two-dimensional airflow, as sketched in Fig. 1. Specifically, we
take the air to be undergoing steady two-dimensional irrotational flow
with uniform horizontal velocity U1 from left to right and pressure
p1 in the far field and a circulation j (measured anticlockwise)
around the cylinder. In particular, we assume that since the film is
thin, the airflow is unaffected by the presence of the film.

For the airflow around the cylinder to be even approximately
irrotational, it is necessary that the Reynolds number based on the cir-
cumferential speed of the cylinder, qaa

2X=la � 1, where la is the vis-
cosity of the air, is large, and that the boundary layer that forms in the
air remains attached to the cylinder. As Mitchell et al.22 describe, the
conclusions of a body of analytical and numerical studies of high-
Reynolds-number flow around a rotating cylinder without a film of
viscous fluid (notably the work by Glauert,39 Moore,40 Kang et al.,41

Stojkovic et al.,42 Mittal and Kumar,43 and Aljure et al.44) are that the
rotation of the cylinder tends to suppress the separation of the bound-
ary layer, that when also the circumferential speed of the cylinder is
large compared with the speed of the far-field airflow, aX � U1, the
boundary layer does indeed remain attached all the way around the
cylinder, and that the circulation then takes the value j ¼ 2pa2X. The
question of what effect the presence of the thin film of viscous fluid
may have on the suppression of boundary-layer separation remains
open.

Referred to polar coordinates r–h with origin on the axis of the
cylinder and with h measured from the horizontal, the pressure in the
film, denoted by p ¼ pðh; tÞ, where t denotes time, is given by

p ¼ p1 þ r
a
� r
a2

@2h

@h2
þ h

� �
þ qa

2
U2
1 � 2U1 sin h� j

2pa

� �2
" #

;

(1)

where h ¼ hðh; tÞ is the thickness of the film, r is the constant coeffi-
cient of surface tension, and qa is the constant density of the air. The

FIG. 1. Definition sketch: two-dimensional coating flow of a thin film of incompress-
ible viscous fluid of thickness hðh; tÞ on a solid horizontal circular cylinder of radius
a rotating with uniform angular speed X in the presence of a steady two-
dimensional irrotational flow of air with uniform horizontal velocity U1 and pressure
p1 in the far field and a circulation j around the cylinder. The streamlines and
stagnation points of the airflow (the latter marked with dots) are sketched in a case
with 0 < j < 4paU1.
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azimuthal volume flux of fluid per unit axial length in the film,
denoted by Q ¼ Qðh; tÞ, is given by

Q ¼ aXh� h3

3l
qg cos hþ 1

a
@p
@h

� �
; (2)

where g is the magnitude of the acceleration due to gravity, and the
statement of conservation of mass in the film gives the evolution equa-
tion for h,

@h
@t

þ 1
a
@Q
@h

¼ 0: (3)

We non-dimensionalize t withX�1, h with the (constant) average
film thickness �h, given by

�h ¼ 1
2p

ð2p
0
hðh; tÞ dh; (4)

p� p1 � r=a with qga, and Q with aX�h. Then the pressure (1)
becomes

p ¼ � a
c

@2h

@h2
þ h

� �
þ F2

2
� 1
2

2F sin h� Kð Þ2; (5)

the flux (2) becomes

Q ¼ h� ch3 cos hþ @p
@h

� �
; (6)

that is,

Q ¼ h� ch3 cos hþ ah3
@

@h
@2h

@h2
þ h

� �

� 2cFh3 K cos h� F sin 2hð Þ; (7)

and, hence, the governing evolution equation (3) takes the form

@h
@t

þ @

@h

�
h� ch3 cos hþ ah3

@

@h
@2h

@h2
þ h

� �

� 2cFh3ðK cos h� F sin 2hÞ
�
¼ 0; (8)

where a, c, F, and K, which are defined by

a ¼ r
3Xla

�h
a

� �3

; c ¼ qga
3Xl

�h
a

� �2

;

F ¼ qaU
2
1

qga

 !1
2

; K ¼ j
2pa

qa
qga

� �1
2

;

(9)

are nondimensional measures of surface tension, acceleration due to
gravity, the speed of the far-field airflow, and the circulation of the air-
flow, respectively. Note that a � 0; c � 0, and F � 0, but that K has
the same sign as j, which may be positive, negative, or zero (corre-
sponding to anticlockwise, clockwise, and no circulation, respectively).
The evolution equation (8) is to be solved subject to periodicity condi-
tions on h and its derivatives, and an initial condition specifying hðh; 0Þ.

In the special case of no far-field airflow, F¼ 0, the parameter K
appears in (5) only in a constant contribution �K2=2 to p, and does
not appear in (7) or (8), showing that the evolution of the film is unaf-
fected by a purely circulatory airflow.

Equation (8) is invariant under the transformation

h ! hþ p; K ! � K þ 1
F

� �
ðF > 0Þ; (10)

showing that if a free-surface profile hðh; tÞ is a solution of (8) corre-
sponding to a given value of the circulation K, then the phase-shifted
profile hðhþ p; tÞ is a solution corresponding to the circulation
�½K þ ð1=FÞ�. Moreover, although Eq. (8) involves all four of the
parameters a, F, K, and c, for F 6¼ 0, it may be reduced to the form

@h
@t

þ @

@h
h� ĉbh3 cos hþ ah3

@

@h
@2h

@h2
þ h

� �
þ 1
2
ĉh3 sin 2h

� �
¼ 0;

(11)

involving only a and two new parameters b and ĉ defined by

b ¼ 1þ 2KF
4F2

; ĉ ¼ 4F2c; (12)

which may be regarded as reduced measures of K and c, respectively
[and we note that the transformation of K in (10) corresponds simply
to b ! �b]. Despite this reduction in the number of parameters, it is
usually more convenient to use the evolution equation in its original
form (8), because (11) obscures somewhat the dependence of the film
flow on the original parameters F and K of the airflow; in particular,
(8) makes the comparison between our analysis and that of Hinch and
Kelmanson7 in the case F ¼ K ¼ 0 more transparent. However, the
reduced form (11) is useful when the dependence of results on a is
being discussed.

In the absence of the airflow, F ¼ K ¼ 0, Eq. (8) reduces to
Eq. (3.14) of Pukhnachev,2 whose parameters l and v are related
to a and c by l ¼ 3c and v ¼ 3a. Moreover, Eqs. (5)–(8) reduce to
the leading-order versions of Eqs. (35), (52), and (54), respectively,
of Evans et al.,11 whose parameters Bo and UX are related to a and
c by Bo ¼ c�h=ðaaÞ and UX ¼ 1=ð3cÞ, and to Eq. (2.13) of Lopes
et al.,14 whose parameters Xk and Bok are related to a and c by
Xk ¼ 1=ð3cÞ and Bok ¼ c=a. Note that the terms in the pressure p
in Eqs. (2.2) and (2.3) of Hinch and Kelmanson7 have the opposite
signs from those in (2) and (1), but this is of no consequence
because these differences in sign cancel out in their evolution equa-
tion (2.4) [which is identical to the present (8) with F ¼ K ¼ 0] on
which all of their subsequent analysis is based. All of the results in
the present work obtained from (8) agree with those of Hinch and
Kelmanson7 in the absence of the airflow.

For flow in the presence of the airflow, F 6¼ 0, Eqs. (1) and (2)
reduce to Eqs. (2.1) and (3.3), respectively, of Mitchell et al.22 in the
case of steady flow in the absence of capillarity, a¼ 0.

Newell and Viljoen21 investigated the particular case j ¼ 2pa2X,
while allowing U1 to take values in the range �aX � U1 � aX.
Note, however, that, irrespective of whether or not a particular choice
of j is made, there are two free parameters associated with the airflow,
namely, F and K in the present notation, or, correspondingly, the
parameters w and u in the notation of Newell and Viljoen,21 which
are related to F and K by w ¼ F=K and u ¼ 2K2; in the case,
j ¼ 2pa2X,

w ¼ F
K
¼ U1

aX
; u ¼ 2K2 ¼ 2qaaX

2

qg
ð� 0Þ (13)
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in the present notation. (Newell and Viljoen21 omitted the factor 2
from the definition of their parameter u, but this appears to be simply
a typographical error.)

As Mitchell et al.22 describe, Newell and Viljoen21 (evidently fol-
lowing Hinch and Kelmanson7) have the opposite signs on p in their
Eqs. (5) and (6) from those in the present (2) and (1), but unfortunately,
unlike for Hinch and Kelmanson,7 these differences in sign do not can-
cel out in their evolution equation (7) [i.e., their version of the present
Eq. (8)], leading to their (7) having the incorrect sign on the term due to
the airflow, i.e., the term involving their parameter u. However, as we
shall show in what follows, obtaining the correct description of the
behavior of the film is not simply a matter of reversing the sign of the
term due to the airflow in the analysis of Newell and Viljoen.21

III. EVOLUTION OF THE FILM THICKNESS

In this section, we revisit the asymptotic analysis of Newell and
Viljoen,21 who, as we have already described, sought to extend the
analysis of Hinch and Kelmanson7 to include the effect of the airflow.

Hinch and Kelmanson7 considered the case c � 1 and a � 1
(in the absence of the airflow, F ¼ K ¼ 0) and showed that the film
evolves on four different timescales, and they posited a two-timescale
expansion of the film thickness to reveal the structure of this evolution.
Specifically, Hinch and Kelmanson7 analyzed the evolution of an ini-
tially uniform film [so that hðh; 0Þ ¼ 1] in the regime

c2 � a � c � 1; (14)

by seeking a solution of (8) with F¼ 0 for h as an expansion in powers
of c,

h ¼ 1þ cw1 þ c2w2 þ c3w3 þ Oðc4Þ; (15)

where the wi ¼ wiðh; t0; t1Þ depend on the two timescales t0 ¼ t and
t1 ¼ c2t, so that @wi=@t ¼ @wi=@t0 þ c2@wi=@t1, and the asymptotic
solution (15) is uniformly valid only for t < Oðc�2Þ. Note that the wi

satisfy the initial conditions wiðh; 0; 0Þ ¼ 0.
Based on the observation that the film thickness h in the absence

of the airflow is only weakly dependent on a, Hinch and Kelmanson7

make the point that, despite the formal restrictions on a in (14), in
practice their analysis is valid for a as large as O(1). For the present
purposes, the main result of Hinch and Kelmanson7 is that the growth
rate of the film thickness, which we denote by s1, is given by

s1 ¼ � 81a
1þ 144a2

� 0; (16)

which, for a > 0, is clearly negative, showing that the solution obtained
is stable in the sense that it decays to a steady state at very large times
and, for a¼ 0, is clearly zero, showing that the solution is neutrally sta-
ble in the absence of capillarity. We adopt the same approach to the
problem in the presence of the airflow by analyzing the evolution equa-
tion (8) for the film with F 6¼ 0, and, in particular, we obtain the corre-
sponding expression for the growth rate s1, to understand how the
presence of the airflow affects the evolution of the film. On the assump-
tion that in the presence of the airflow the film thickness h is again only
weakly dependent on a, we follow Hinch and Kelmanson7 and Newell
and Viljoen21 and allow a to be as large asO(1).

Some of the algebraic manipulations involved in obtaining the ana-
lytical results presented in the next three subsections are rather lengthy,
and so as a check on the accuracy of our results we implemented the

entire calculation in two independent ways using the symbolic computa-
tional systems Maple45 and Mathematica.46 Two simple but important
checks on the validity of the present analysis are that in the absence of
the airflow, F ¼ K ¼ 0, the results obtained reduce to those of Hinch
and Kelmanson,7 and that under the transformation (10) the free-
surface profile hðh; tÞ becomes the phase-shifted profile hðhþ p; tÞ.

A. Solution for w1

Substituting (15) into (8) yields

Lw1 ¼ �ð1þ 2KFÞs1;0 � 4F2c2;0 (17)

at OðcÞ, where the linear operator L, introduced by Hinch and
Kelmanson,7 is defined by

L ¼ @

@t0
þ @

@h
þ a

@4

@h4
þ @2

@h2

� �
; (18)

and ci;j and si;j are defined by ci;j ¼ cos ðih� jt0Þ and si;j
¼ sin ðih� jt0Þ. As Hinch and Kelmanson7 describe, 2p-periodic sol-
utionsWðh; t0; t1Þ of the equation LW ¼ 0 are of the form

Wðh; t0; t1Þ ¼
X1
n¼1

Anðt1Þcn;n þ Bnðt1Þsn;n
� �

exp �n2ðn2 � 1Þat0
� �

;

(19)

where Anðt1Þ and Bnðt1Þ are arbitrary functions of t1, showing that the
nth harmonics cn;n and sn;n (n¼ 2, 3, 4,…) decay exponentially
quickly on the fast timescale at0, but that the fundamental (n¼ 1)
modes c1;1 and s1;1 can decay only slowly via the functions A1ðt1Þ and
B1ðt1Þ on the timescale t1 ¼ c2t0.

The solution of (17) is of the form

w1 ¼
X1
n¼1

A1nðt1Þcn;n þ B1nðt1Þsn;n
� �

exp �n2ðn2 � 1Þat0
� �

þð1þ 2KFÞc1;0 �
2F2

1þ 36a2
ðs2;0 þ 6ac2;0Þ; (20)

where the A1nðt1Þ and B1nðt1Þ are required by the initial condition
w1ðh; 0; 0Þ ¼ 0 to satisfy

A11ð0Þ ¼ �ð1þ 2KFÞ; B11ð0Þ ¼ 0;

A12ð0Þ ¼
12F2a

1þ 36a2
; B12ð0Þ ¼

2F2

1þ 36a2
;

A1nð0Þ ¼ 0; B1nð0Þ ¼ 0 for n ¼ 3; 4; 5;…:

(21)

Since the contributions from the higher modes (n � 2) are non-
negligible only for small times, we may replace A1nðt1Þ and B1nðt1Þ
with A1nð0Þ and B1nð0Þ for n � 2 (but not for n¼ 1). Thus, (20)
becomes, with the subscripts omitted from A11 and B11 for clarity,

w1 ¼ Aðt1Þc1;1 þ Bðt1Þs1;1 þ ð1þ 2KFÞc1;0

� 2F2

1þ 36a2
ðs2;0 þ 6ac2;0Þ � ðs2;2 þ 6ac2;2Þ exp ð�12at0Þ
� �

;

(22)

where, from (21), Aðt1Þ and Bðt1Þ satisfy Að0Þ ¼ �ð1þ 2KFÞ and
Bð0Þ ¼ 0. In Subsection IIIC, we shall determineA and B by consider-
ing secular terms at Oðc3Þ.
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Note that the solution for w1 given by (22) is in agreement with the solution for w1 given by Eqs. (9) and (10) of Newell and Viljoen;21 also in
the absence of the airflow, F ¼ K ¼ 0, it reduces to the solution for w1 given by Eq. (3.3) of Hinch and Kelmanson.7

Since modes with n � 2 decay exponentially quickly on the timescale t0, henceforth we follow Hinch and Kelmanson7 and Newell and
Viljoen21 in dropping them when we consider higher-order terms in c.

B. Solution for w2

At Oðc2Þ, Eq. (8) gives

Lw2 ¼ � 3F2f Aðt1Þ � 6aBðt1Þ½ �c1;�1 � 6aAðt1Þ þ Bðt1Þ½ �s1;�1g
1þ 36a2

� 6F2ð1þ 2KFÞðc1;0 � 6as1;0Þ
1þ 36a2

� 3ð1þ 2KFÞ2s2;0

þ 3ð1þ 2KFÞ Bðt1Þc2;1 � Aðt1Þs2;1
� �

� 18F2ð1þ 2KFÞ c3;0 � 6as3;0½ �
1þ 36a2

� 9F2f Aðt1Þ þ 6aBðt1Þ½ �c3;1 � 6aAðt1Þ � Bðt1Þ½ �s3;1g
1þ 36a2

þ
24F4 12ac4;0 þ ð1� 36a2Þs4;0

� �
ð1þ 36a2Þ2

: (23)

The solution of (23) may be written as a sum w2 ¼ w2s þ w2u of a steady part w2s and an unsteady part w2u, where

w2s ¼ � 6F2ð1þ 2KFÞð6ac1;0 þ s1;0Þ
1þ 36a2

þ 3ð1þ 2KFÞ2ðc2;0 � 6as2;0Þ
2ð1þ 36a2Þ �

6F2ð1þ 2KFÞ 30ac3;0 þ ð1� 144a2Þs3;0
� �

ð1þ 36a2Þð1þ 576a2Þ

�
6F4 ð1� 756a2Þc4;0 � 72að1� 30a2Þs4;0
� �

ð1þ 36a2Þ2ð1þ 3600a2Þ
(24)

and

w2u ¼ � 3F2f 6aAðt1Þ þ Bðt1Þ½ �c1;�1 þ Aðt1Þ � 6aBðt1Þ½ �s1;�1g
2ð1þ 36a2Þ þ 3ð1þ 2KFÞf Aðt1Þ þ 12aBðt1Þ½ �c2;1 � 12aAðt1Þ � Bðt1Þ½ �s2;1g

1þ 144a2

� 9F2f 42aAðt1Þ � ð1� 216a2ÞBðt1Þ
� �

c3;1 þ ð1� 216a2ÞAðt1Þ þ 42aBðt1Þ
� �

s3;1g
2ð1þ 36a2Þð1þ 1296a2Þ : (25)

Note that the solution for w2 given by Eqs. (24) and (25) does not
agree with that given by Eqs. (11) and (12) of Newell and Viljoen,21

and moreover that, as previously pointed out, obtaining the correct
solution for w2 is not simply a matter of reversing the sign of the term
due to the airflow in their solution. However, in the absence of the air-
flow, F ¼ K ¼ 0, both of these solutions reduce to that given by Eq.
(3.5) of Hinch and Kelmanson,7 as they should.

C. Solution for s1
At Oðc3Þ, Eq. (8) gives

Lw3 ¼ �3
@

@h

�
w2
1 þ w2

	 
�
a
@w1

@h
þ a

@3w1

@h3

þ 2F2 sin 2h� ð1þ 2FKÞ cos h
��

�3a
@

@h
w1

@w2

@h
þ @3w2

@h3

� �� �
� @w1

@t1
; (26)

with w1 and w2 given by (22), (24), and (25).
The expanded form of (26), omitted for brevity, involves secular

terms s1;1 and c1;1; setting the coefficients of these terms to zero leads

to a pair of ordinary differential equations for Aðt1Þ and Bðt1Þ,
namely,

dA
dt1

¼ s1Aþ s2B; (27)

dB
dt1

¼ �s2Aþ s1B; (28)

where the real constants s1 and s2 are given by

s1 ¼ �81a
10F4

ð1þ 36a2Þð1þ 1296a2Þ þ
ð1þ 2KFÞ2

1þ 144a2

 !
� 0 (29)

and

s2 ¼
30ð1þ 324a2ÞF4

ð1þ 36a2Þð1þ 1296a2Þ þ
3ð5þ 72a2Þð1þ 2KFÞ2

2ð1þ 144a2Þ � 0: (30)

Note that these expressions for s1 and s2 are invariant under the trans-
formation of K given in (10), which provides a check on their validity.
The solution of (27) and (28) subject to the initial conditions Að0Þ
¼ �ð1þ 2KFÞ and Bð0Þ ¼ 0 is simply
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Aðt1Þ ¼ �ð1þ 2KFÞ exp ðs1t1Þ cos ðs2t1Þ; (31)

Bðt1Þ ¼ ð1þ 2KFÞ exp ðs1t1Þ sin ðs2t1Þ: (32)

Equation (29) shows that for a > 0 the growth rate of the solution, s1,
is always negative, and so we arrive at our main result, namely, that
the solution (15) for h to Oðc3Þ is unconditionally stable, decaying
exponentially quickly like exp ðs1t1Þ to a steady state at very large
times. In particular, in the limit of a slow airflow, F ! 0,

s1 ¼ � 81a
1þ 144a2

� 324KaF
1þ 144a2

þ OðF2Þ ! � 81a
1þ 144a2

� 0;

(33)

in the limit of a fast airflow, F ! 1,

s1 ¼ � 810aF4

ð1þ 36a2Þð1þ 1296a2Þ þ OðF2Þ ! �1; (34)

in the case of no circulation, K¼ 0,

s1 ¼ �81a
10F4

ð1þ 36a2Þð1þ 1296a2Þ þ
1

1þ 144a2

 !
� 0; (35)

and in the limit of strong circulation, K ! 61,

s1 ¼ � 324aF2

1þ 144a2
K2 þ OðKÞ ! �1: (36)

Furthermore, in the limit of weak capillarity, a ! 0,

s1 ¼ �81 ð1þ 2KFÞ2 þ 10F4
� �

aþ Oða3Þ ! 0�; (37)

which is consistent with the conclusion of the limited stability analysis
of Mitchell et al.22 that in the absence of capillarity, a¼ 0, the solution
is neutrally stable (i.e., s1 ¼ 0).

Figure 2 shows plots of s1 as a function of F for several values of
K for the values of a considered by Hinch and Kelmanson7 and
Newell and Viljoen,21 namely, a ¼ 0:0048 and a ¼ 0:058. As Fig. 2
illustrates, s1 decreases monotonically with F when K � 0, but first
increases to a negative maximum before decreasing monotonically
when K< 0; in particular, the behavior of s1 is consistent with the
asymptotic results (33)–(37). The dashed curves in Fig. 2 show
the locus of the maximum of s1 as K varies from �1 [corresponding
to the point ðF; s1Þ ¼ ð0; 0Þ] to 0 [corresponding to the point
ðF; s1Þ ¼ ð0;�81a=ð1þ 144a2ÞÞ], confirming that s1 � 0, and
hence that the solution is unconditionally stable, for all values of
F (� 0) and K.

Equations (29) and (30) show that s1 and s2 depend on all three
of the parameters a, F, and K; however, the behavior of s1 and s2 can
be seen more clearly if (29) and (30) are instead written as equations
for the scaled quantities s1=F4 and s2=F4, which depend on just the
two parameters a and b,

s1
F4

¼ �162a
5

ð1þ 36a2Þð1þ 1296a2Þ þ
8b2

1þ 144a2

 !
� 0 (38)

and

s2
F4

¼ 30ð1þ 324a2Þ
ð1þ 36a2Þð1þ 1296a2Þ þ

24ð5þ 72a2Þb2

1þ 144a2
� 0: (39)

Figure 3 shows the scaled growth rate s1=F4 as a function of a for a
range of values of b, the collapse of the results onto curves of constant
b being a consequence of the reduction from three parameters to two.
In all cases, s1=F4 decreases with a from 0 to a minimum value before
increasing monotonically to 0.

Note that the expression for s1 given by Eq. (29) does not agree with
that given by Eq. (13) of Newell and Viljoen,21 and moreover that, as pre-
viously pointed out, obtaining the correct solution for s1 is not simply a
matter of reversing the sign of the term due to the airflow in their solu-
tion. However, in the absence of the airflow, F ¼ K ¼ 0, it reduces to
(16), that is, to Eq. (3.10) of Hinch and Kelmanson,7 as it should.
Confirmation that the result of Newell and Viljoen21 is erroneous comes
from the fact that their expression for s1 does not agree with Eq. (3.10) of
Hinch and Kelmanson7 when u ¼ 0 (due, we believe, to a double-
counting of terms of the types c1;1c2n;0 þ c1;1s2n;0 ¼ c1;1 and s1;1c2n;0
þs1;1s2n;0 ¼ s1;1), and so is in error even in the absence of the airflow.

D. Evolution of the free surface of the film

To OðcÞ, we have h ¼ 1þ cw1, and so to Oð�cÞ, where
� ¼ �h=a � 1 is the small aspect ratio of the film, the free surface has
the form r ¼ 1þ �ð1þ cw1Þ, that is,

FIG. 2. Plot of the growth rate s1 given by (29) as a function of F for K¼ – 5, –4, –3,…,
5 for the values of a considered by Hinch and Kelmanson7 and Newell and Viljoen,21

namely, (a) a ¼ 0:0048 and (b) a ¼ 0:058. The dashed curves show the locus of the
maximum of s1 as K varies from �1 [corresponding to the point ðF; s1Þ ¼ ð0; 0Þ] to
0 [corresponding to the point ðF; s1Þ ¼ ð0;�81a=ð1þ 144a2ÞÞ].
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r ¼ 1þ �þ �c
n
ð1þ 2KFÞ

	
c1;0 � c1;1 cos ðs2t1Þ

�
�s1;1 sin ðs2t1Þ

�
exp ðs1t1Þ



� 2F2

1þ 36a2
ðs2;0 þ 6ac2;0Þ
�

�ðs2;2 þ 6ac2;2Þ exp ð�12at0Þ
�o

; (40)

where r has been scaled with a. The free surface (40) oscillates tempo-
rally; for a¼ 0, the amplitude of the oscillation is finite for all t,
whereas for a > 0 the amplitude decays to zero in the limit t ! 1,
and the free surface approaches the steady profile

r ¼ 1þ �þ �c ð1þ 2KFÞc1;0 �
2F2

1þ 36a2
ðs2;0 þ 6ac2;0Þ

� �
: (41)

As Fig. 3 shows, for each b there is a unique value of a corresponding
to the minimum of s1 (i.e., a special value of the surface tension) such
that (40) approaches (41) quickest: if a is larger or smaller than this
(i.e., if surface tension is stronger or weaker than this special value)
then the approach is slower.

As Hinch and Kelmanson7 pointed out, in the absence of the air-
flow, F ¼ K ¼ 0, the free surface (40) is a circular cylinder of radius
1þ � whose center is offset from the axis of the solid cylinder by
�cð1þ Â cos t0 � B̂ sin t0; Â sin t0 þ B̂ cos t0Þ at any instant, where
Â ¼ Âðt1Þ and B̂ ¼ B̂ðt1Þ are given by A and B in (31) and (32) with
F¼ 0; thus, for a > 0 the center of the circular free surface spirals
around the point ð�c; 0Þ, approaching it in the limit t ! 1.
Moreover, rewriting the term c1;1 cos ðs2t1Þ � s1;1 sin ðs2t1Þ in (40)
with F¼ 0 in the form cos ½h� ðt0 � s2t1Þ� shows that the free surface
lags the solid cylinder by the amount s2t1.

In the presence of the airflow, the occurrence of the terms involv-
ing c2;0 and s2;0 (i.e., cos 2h and sin 2h) in (40) and (41) means that the
free surface, while still, of course, a cylinder, is no longer simply circu-
lar, and that it is no longer possible to identify a uniquely defined lag
of the free surface relative to the solid cylinder.

Figure 4 shows examples of snapshots of free surfaces given by
(40) at various times, comparing a case in the absence of the airflow,
F ¼ K ¼ 0, with cases with far-field airflow F¼ 1 and positive, nega-
tive, or zero air circulation K, all plotted for a¼ 0 and c ¼ 1=15 (the
latter value being chosen for illustrative purposes). Figure 4 illustrates
the effect of the airflow in both distorting the film and modifying its
offset from the center of the solid cylinder. Figure 5 shows correspond-
ing plots for a ¼ 1=15 (and again with c ¼ 1=15), illustrating the ten-
dency of capillarity to suppress the distortion of the film. The largest
time shown in Figs. 4 and 5, namely, t0 ¼ 5, was chosen simply
because the free surfaces in Fig. 5 (but not those in Fig. 4) are close to
their large-time asymptotic state (41) by this time and change little
thereafter.

The successive parts of both Figs. 4 and 5 correspond to the
values b ¼ 1;�3=4;�1=4, 1/4, 3/4, and 5/4, respectively, and
therefore, parts (b) and (e) and parts (c) and (d) provide examples
of the phase shift of p under the transformation (10), mentioned in
Sec. II; for example, the value of r given by (40) at any position h at
time t in Fig. 4(b) is the same as the value of r at position hþ p at
time t in Fig. 4(e).

FIG. 4. Snapshots of free surfaces to
Oð�cÞ in the cases (a) F ¼ K ¼ 0, (b)
F¼ 1, K¼�2, (c) F¼ 1, K¼�1, (d)
F¼ 1, K¼ 0, (e) F¼ 1, K¼ 1, (f) F¼ 1,
K¼ 2, with a¼ 0 and c ¼ 1=15 in each
case, at times t0 ¼ 0 (dotted curves),
t0 ¼ 2:5 (dashed curves), and t0 ¼ 5 (full
curves). The film thickness is exaggerated
for clarity.

FIG. 3. Plot of the scaled growth rate s1=F4 given by (38) as a function of a for
b¼ 0, 1/4, 1/2, 3/4, and 1, where b ¼ ð1þ 2KFÞ=ð4F2Þ.
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IV. CONCLUSIONS

We revisited the analysis of Newell and Viljoen21 of unsteady
two-dimensional coating flow of a thin film of a viscous fluid on
the outside of a uniformly rotating solid horizontal circular cylin-
der in the presence of a steady two-dimensional irrotational airflow
with circulation, in the case in which the effects of gravity and of
capillarity are weak compared with those of viscous shear. In con-
trast with the claim of Newell and Viljoen21 that the solution is
unstable for certain values of the physical parameters, we found
that the growth rate s1, given by (29) in terms of the parameters F,
K, and a, representing the speed of the far-field airflow, the circula-
tion of the airflow, and surface tension, respectively, is always non-
positive, and so the solution for h to Oðc3Þ is unconditionally
stable.

From their study, Newell and Viljoen21 drew five conclusions
concerning the operation of the novel rotary pesticide applicator for
crops described in Sec. I. Unfortunately, their erroneous prediction of
instability renders their first conclusion incorrect and their third,
fourth, and fifth conclusions moot; their second conclusion is correct
but concerns only the case of no airflow and so provides no new infor-
mation about the use of the applicator. On a more positive note, how-
ever, the successful use of the pesticide applicator depends on the film
being stable—and our results show that this is always the case in the
regime considered.
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