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Motivated by the need for greater understanding of
systems that involve interfaces between a nematic
liquid crystal, a solid substrate and a passive
gas that include nematic–substrate–gas three-phase
contact lines, we analyse a two-dimensional static
ridge of nematic resting on a solid substrate in an
atmosphere of passive gas. Specifically, we obtain
the first complete theoretical description for this
system, including nematic Young and Young–Laplace
equations, and then, making the assumption that
anchoring breaking occurs in regions adjacent to the
contact lines, we use the nematic Young equations
to determine the continuous and discontinuous
transitions that occur between the equilibrium states
of complete wetting, partial wetting and complete
dewetting. In particular, in addition to continuous
transitions analogous to those that occur in the
classical case of an isotropic liquid, we find a variety
of discontinuous transitions, as well as contact-angle
hysteresis, and regions of parameter space in which
there exist multiple partial wetting states that do not
occur in the classical case.
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1. Introduction
For the past 50 years or so, technological interest in liquid crystals has largely been focused on the
visual display market, where liquid crystal displays (LCDs) are still the dominant technology [1].
In recent years, however, the push to exploit the optical, dielectric and viscoelastic anisotropies
of liquid crystals has led to the development of devices used in medicine, flow processing,
microelectronic production and adaptive-lens technologies [2–6]. These devices often involve
liquid crystal droplets or films, which are complicated multiphase systems that involve interfaces
between the liquid crystal, a solid substrate and a passive gas, and often include liquid crystal–
substrate–gas three-phase contact lines. Theoretical studies of liquid crystal droplets or films often
use theories of wetting and dewetting for isotropic droplets and films which do not account for
the full anisotropic nature of liquid crystals [7–14].

(a) Wetting and dewetting phenomena
Simply stated, wetting and dewetting are the phenomena in which a liquid advances and retreats,
respectively, over a substrate [15]. When a finite volume of liquid advances or retreats over a
flat horizontal substrate, it will eventually reach an equilibrium state. This equilibrium state is
known as: the complete wetting state (sometimes also called the perfectly wetting state), which we
denote by W, when the liquid completely coats the substrate; the complete dewetting state, which
we denote by D, when the substrate completely repels the liquid; and the partial wetting state,
which we denote by P, when the liquid partially coats the substrate. Transitions between these
equilibrium states can occur as a result of changes in the liquid or substrate material properties
(owing to, for example, changes in temperature) that cause the liquid to advance or retreat over
the substrate and/or change its contact angle. The classification of the equilibrium states and the
transitions between them is well known for an isotropic liquid [15,16].

Wetting and dewetting phenomena have been of scientific interest for centuries, and are now
of considerable technological importance [17]. For systems in which creating a uniform liquid
film (i.e. complete wetting) is required, wetting is essential and dewetting is undesirable [15].
However, in other situations, dewetting can be desirable, and can be initiated in a variety of ways,
such as amplification of thermal fluctuations on the liquid free surface, nucleation at impurities,
chemical treatment of the substrate and non-uniform evaporation [18]. In recent years, there has
been considerable research in the area of tailored dewetting of liquid films to produce patterned
films [2,6,19]. The thermal, mechanical and chemical stability of liquid films is therefore an area of
considerable research effort, and understanding and controlling the onset of dewetting is crucial
for creating and maintaining both uniform and patterned films.

(b) Wetting and dewetting phenomena for liquid crystals
For liquid crystals, which are anisotropic liquids that typically consist of either rod-like or disc-
like molecules that tend to align locally to minimize molecular interaction energies, wetting
and dewetting phenomena can be more complicated than they are for isotropic liquids. The
local orientational order of liquid crystal molecules allows for a mathematical description of the
average molecular orientation of the liquid crystal in terms of a unit vector called the director n
[20]. As well as an orientational order, many liquid crystal phases also possess positional order;
for example, smectic liquid crystals (smectics) self-organize into two-dimensional layers, and this
positional ordering may affect the wetting and dewetting behaviour [21]. However, in the present
work we consider only thermotropic nematic liquid crystals (nematics), which possess orientational
but not positional ordering.

A variety of effects, including spinodal dewetting and nucleation at impurities [9,12,22], can
cause the dewetting of nematic films. In particular, such dewetting can involve competition
between many effects, including internal elastic forces, alignment forces on the interfaces,
gravity, van der Waals forces and, in cases in which an external electromagnetic field is applied,

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

31
 M

ar
ch

 2
02

2 



3

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210849

..........................................................

electromagnetic forces [23]. Many experimental studies have considered delicate balances
between a number of these effects in different situations; for instance, close to the isotropic–
nematic phase transition [13,24,25], near to a contact line [26–28] or in the presence of an external
electromagnetic field [29–31]. There has also been recent interest in nematic films on substrates
with patterned anchoring [8,32] and systems with an isotropic liquid–nematic interface, such
as nematic tactoids [33]. Since in the present work we consider length scales greater than a
nanometre scale, it is appropriate to neglect van der Waals forces [15], and we consider only
uniform anchoring and the competition between elastic forces, alignment forces on the interfaces
and gravity.

(c) Liquid crystal anchoring
As mentioned above, the alignment forces on the interfaces between the gas and the nematic (the
gas–nematic interface) and the nematic and the substrate (the nematic–substrate interface) can
play an important role in wetting and dewetting behaviour [34]. The physical mechanisms for
such alignment forces derive from intermolecular electromagnetic forces between, for example,
the molecules of the nematic and the molecules of the substrate [7]. The dependence of these
interactions on the orientational anisotropy typically results in an anisotropic component of
surface tension that creates an energetic preference for the director to align either normally
or tangentially to the interfaces, which leads to interfacial energies that are anisotropic; this
is known as weak anchoring. An energetic preference for the director to align normally to an
interface is known as weak homeotropic anchoring, and an energetic preference for the director to
align tangentially to an interface is known as weak planar anchoring. The strength of the energetic
preference for a homeotropic or planar alignment of the director on an interface is measured by a
parameter called the anchoring strength. Infinite anchoring strength represents a situation where
the director on an interface is fixed at the preferred alignment. This situation is known as infinite
anchoring (sometimes also called strong anchoring). Zero anchoring strength corresponds to a
situation where the director on an interface has no preferred alignment. This situation is known
as zero anchoring.

Perhaps the most important effect of weak anchoring in a nematic film occurs when there
is weak homeotropic anchoring on the gas–nematic interface and weak planar anchoring on
the nematic–substrate interface, or vice versa. In this situation, which is known as antagonistic
anchoring, competition between the different preferred alignments on the interfaces can introduce
elastic distortion in the bulk of the nematic, leading to a spatially varying director field [27,35,36],
with an associated non-zero elastic energy, which can have a destabilizing effect on the film
[10,14]. For situations with antagonistic anchoring, it has long been known that there exists
a critical film thickness, which we term the Jenkins–Barratt–Barbero–Barberi critical thickness
[37,38] (often just called the Barbero–Barberi critical thickness), below which the energetically
favourable state has a uniform director field in which the director aligns parallel to the preferred
director alignment of the interface with the stronger anchoring. For film thicknesses above this
critical thickness, the energetically favourable state has a director field that varies continuously
across the film; this state is known as a hybrid aligned nematic (HAN) state [1].

The theoretical study of nematic systems that include contact lines often avoids the
consideration of antagonistic anchoring at the contact lines, by, for example, imposing infinite
anchoring on the nematic–substrate interface, which overrides the weak anchoring on the gas–
nematic interface at the contact line (e.g. [8,9]), or assuming the existence of a thin precursor film
on the substrate to remove the contact line entirely (e.g. [11]). While there have been relatively
few studies of nematic contact lines, Rey [39,40] considered two rather specific two-dimensional
scenarios, namely either infinite planar anchoring or equal weak planar anchoring, on both
interfaces. Although neither infinite anchoring nor equal weak anchoring is likely to occur in
practice, these studies highlight the possibility that anchoring breaking, i.e. the process by which
the preferred orientation of the nematic molecules on one of the interfaces is overridden by
that on the other, occurs in a region adjacent to the contact line. Rey [39,40] also discusses the
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possibility of the formation of a defect, or a disclination line in his two-dimensional scenarios,
located at the contact line. At such disclination lines, a description of the nematic only in terms
of the director is no longer valid and there is a high degree of elastic distortion associated with
increased elastic energy [41]. In the present work, we will assume that the energy associated with
anchoring breaking in a region adjacent to the contact line is lower than the energy associated
with the formation of a disclination line [42] and, therefore, that such disclination lines do not
occur.

(d) A static ridge of liquid crystal
Motivated by a need for increased understanding of situations involving the wetting and
dewetting of nematics, in the present work we consider a two-dimensional static ridge of
nematic resting on an ideal (i.e. flat, rigid, perfectly smooth and chemically homogeneous) solid
substrate surrounded by a passive fluid. In order to make comparisons with the most commonly
studied experimental situation, we consider the case in which the passive fluid surrounding the
nematic is an atmosphere of passive gas, although the subsequent theory and results may be
readily generalized to a ridge of nematic surrounded by a static isotropic liquid. There are many
applications of liquid crystals that may benefit from an increased understanding of this situation.
For instance, the patterning of discotic liquid crystals (discotics) into precise and controllable
ridges has been demonstrated [6,19], and this technology, together with the excellent charge-
transport properties of discotics, has led to them being used as printable nanometre-scale wires
for applications in electronics [43]. The controlled formation of static ridges of liquid crystal also
has applications in optics, particularly for creating self-organized diffraction gratings [44,45].

The nematic ridge is bounded by a gas–nematic interface and a nematic–substrate interface.
The theoretical description of a nematic bounded by such interfaces has previously been
considered by Jenkins & Barratt [37], who obtained general forms of the interfacial conditions and
the force per unit length on a contact line, and Rey [46,47], who obtained a general form of the
nematic Young and Young–Laplace equations. In the present work, we combine aspects of these
two approaches to derive the first complete theoretical description for a static ridge of nematic,
which includes the bulk elastic equation, the nematic Young equations, the nematic Young–
Laplace equation, the weak-anchoring conditions and the other relevant boundary conditions.
We provide full details of a readily accessible derivation of the governing equations in §§2–4,
which may, in principle, be generalized to include electromagnetic forces, additional contact-line
effects, non-ideal substrates or more detailed models for the nematic molecular order, such as Q-
tensor theory [48], or specialized to describe the case of a thin ridge and/or a ridge with pinned
contact lines (for more details of the last two, see [49]).

We proceed by constructing the free energy of the system as a function of both the shape of the
gas–nematic interface (i.e. the nematic free surface) and the director field, and then minimize the
free energy using the calculus of variations. In order to determine the free energy of the system,
we use a well-established continuum theory to consider contributions from elastic deformations
of the director n, the gravitational potential energy and interface energies associated with the
three interfaces (for a full account of this continuum theory of nematics, see [20]). We use
the standard Oseen–Frank bulk elastic energy density Wbulk (energy per unit volume), which
depends on n and its spatial gradients [20]. The interface energies associated with the gas–nematic
and nematic–substrate interfaces will be described using the standard Rapini–Papoular interface
energy density (energy per unit area) ω, which depends on n and the interface normal ν [50].

Although we proceed in §§2–4 by deriving the governing equations of the most commonly
occurring experimental situation of the partial wetting state, P, the same governing equations
also describe the complete wetting state, W, and the complete dewetting state, D. In the W state,
in which the nematic forms a film that completely coats the substrate, there is no gas–substrate
interface and hence no contact lines. In the D state, in which the gas–nematic interface forms a
cylinder (which, because of anisotropic effects, is not necessarily circular), there is no nematic–
substrate interface, and the gas–nematic interface meets the gas–substrate interface at a single
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Figure 1. A schematic of a static ridge of nematic (N) resting on an ideal solid substrate (S) at z = 0, L− ≤ x ≤ L+, in an
atmosphere of passive gas (G), with the gas–nematic interface at z = h and contact lines at x = d±. The Cartesian coordinates
x, y and z (where the y-direction is into the page), the region of nematic in the (x, z)-planeΩ bounded by the interfaceΓ , the
outward unit normals ν and the contact anglesβ± are also indicated.

contact line. For an isotropic ridge, described briefly in §5, the classification of the equilibrium
states and the transitions that occur between them are well known and can be obtained by
solving the classical isotropic Young–Laplace equation and comparing the free energies of the
possible equilibrium states [15,16]. For a nematic ridge, the free energy of the equilibrium states
cannot be determined analytically; however, by comparison with the classical results for the
isotropic ridge, the classification of the equilibrium states and the transitions between them can
still be obtained. In particular, in §§6 and 7, we use the nematic Young equations obtained in
§4 to determine the continuous and discontinuous transitions between the equilibrium states
of complete wetting, partial wetting and complete dewetting. Previously, Rey [47] found that a
general form of the nematic Young equations allows for discontinuous transitions between partial
wetting and complete wetting and between partial wetting and complete dewetting. However,
without the assumption made in the present work that anchoring breaking occurs in regions
adjacent to the contact lines, an explicit description of these transitions was not possible. Making
this assumption, in §§6 and 7 we find not only continuous transitions analogous to those that
occur in the classical case of an isotropic liquid, but also a variety of discontinuous transitions,
as well as contact-angle hysteresis and regions of parameter space in which there exist multiple
partial wetting states that do not occur in the classical case.

2. Model formulation
As described in the previous section, we consider a static ridge of nematic (N) resting on an
ideal solid substrate (S) in an atmosphere of passive gas (G), as shown in figure 1, which also
indicates the Cartesian coordinates x, y and z that we use. The region of nematic in the (x, z)-plane
Ω is bounded by the interface Γ , which consists of the gas–nematic interface at z= h(x), denoted
by ΓGN, and the nematic–substrate interface at z= 0, denoted by ΓNS, and has two nematic–
substrate–gas three-phase contact lines at x= d− and x= d+. We assume that the ridge height
h and the positions of the contact lines do not vary in the y-direction, so that the contact lines
form two infinitely long parallel lines in the y-direction and the ridge height h is subject to the
boundary conditions h(d±) = 0. We also assume that the director n is confined to the (x, z)-plane,
and hence takes the form

n= cos θ x̂ + sin θ ẑ, (2.1)

where x̂ and ẑ are the Cartesian coordinate unit vectors in the x- and z-directions, respectively,
and θ = θ (x, z) is the director angle, which also does not vary in the y-direction.
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The outward unit normals of the interfaces ΓGN and ΓNS, which we denote by νGN and νNS,
are given by

νGN = − hx√
1 + h2

x

x̂ + 1√
1 + h2

x

ẑ (2.2)

and νNS = −ẑ, (2.3)

respectively, where the subscript x denotes differentiation with respect to x. These two interfaces
meet the gas–substrate interface, denoted by ΓGS, at the two contact lines x= d±. The left-hand
and right-hand edges of the substrate are at x= L−(<d−) and x= L+(>d+), respectively, as shown
in figure 1. The contact angles formed between ΓGN and ΓNS at x= d− and x= d+ are denoted by
β− and β+, respectively, and satisfy

tan β± = ∓hx at x= d±. (2.4)

We note that there is, in general, no requirement for h to be symmetric about its midpoint and, in
particular, no requirement for the contact angles to be the same.

In general, we do not fix either the contact line positions or the contact angles, and allow d±
and β± to be unknowns. However, if the substrate has been treated in such a way as to either
pin the contact lines or fix the contact angles, then either d± or β±, respectively, are prescribed
and the nematic Young equations, which will be derived shortly, are not relevant. The ridge has a
prescribed constant cross-sectional area A in the (x, z)-plane, so that

∫∫
dΩ =A. (2.5)

As mentioned in §1, we include the effects of gravity. Specifically, we assume that gravity acts
in the (x, z)-plane but, in order to keep the set-up as general as possible, do not specify its direction.

In §3, we obtain the complete theoretical description for this system using the calculus of
variations assuming that the ridge height h is a single-valued function of x. A necessary, but not
sufficient, condition for this to be valid is that the contact angles are acute (i.e. that 0 ≤ β± ≤ π/2).
We have also performed the corresponding derivation when the ridge height h is a double-valued
function of x. However, since this derivation involves either splitting the gas–nematic interface
into three parts, in each of which h is a single-valued function of x, or using a different coordinate
system, for simplicity of presentation, and because many of the situations described in §1 involve
small contact angles, in the present work we describe the details of the derivation only when h is a
single-valued function of x. The details of the corresponding derivation when h is a double-valued
function of x are given by Cousins [49].

3. Constrained minimization of the free energy
Using the calculus of variations, we minimize the free energy of the system E (per unit length in
the y-direction) subject to the area constraint (2.5) and the boundary conditions h(d±) = 0 to obtain
the governing equations for a ridge of nematic in terms of the four unknowns, θ (x, z), h(x), d− and
d+, and a Lagrange multiplier associated with the area constraint (2.5); we denote the last by p0.
The unknown contact angles β± are obtained from the slope of the ridge height hx using (2.4).
The free energy of the system E is the sum of the bulk elastic energy of the nematic, denoted by
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Ebulk, and the interface energies, denoted by EGN, ENS and EGS, for the interfaces ΓGN, ΓNS and
ΓGS, respectively, where

Ebulk =
∫ d+

d−

∫ h

0

(
Wbulk(θ , θx, θz) + ψg

)
dzdx, (3.1)

EGN =
∫ d+

d−

√
1 + h2

x
[
ωGN(θ , hx)

]z=h dx, (3.2)

ENS =
∫ d+

d−

[
ωNS(θ )

]z=0 dx (3.3)

and EGS =
∫ d−

L−

[
ωGS

]z=0 dx +
∫ L+

d+

[
ωGS

]z=0 dx. (3.4)

In (3.1) the bulk elastic energy density Wbulk(θ , θx, θz) is assumed to depend on the director angle
θ and on elastic distortions of the director via the spatial derivatives of θ [20]. Also in (3.1), the
gravitational potential energy density ψg(x, z) is allowed to depend on one or both of the Cartesian
coordinates x and z. In (3.2) and (3.3), the interface energy densities ωGN(θ , hx) and ωNS(θ ) are
assumed to be in the form of the Rapini–Papoular energy density [50], which depends on the
angle between the director (2.1) and the outward unit normal of the interfaces, namely (2.2) and
(2.3), respectively. In (3.4), the interface energy density ωGS takes a constant value.

We define the functional F= F(θ , θx, θz, h, hx, d−, d+) = E + Carea as the sum of the free energy of
the system E and a term Carea, corresponding to the area constraint (2.5), given by

Carea = p0 ×
(
A −

∫ d+

d−

∫ h

0
dzdx

)
, (3.5)

so that the functional F is given by

F= Ebulk + EGN + ENS + EGS + Carea. (3.6)

We now consider the variation of F, given by (3.6) with (3.1)–(3.5), with respect to small variations
of the variables θ , h, d− and d+ of the form

θ → θ + δθ , h→ h + δh, d− → d− + δd− and d+ → d+ + δd+ . (3.7)

There are no constraints on the director angle θ , and therefore there are no constraints on its
variation δθ . There is, however, a constraint on the ridge height h because of the boundary
conditions h(d±) = 0, so that the variation of the ridge height δh at the contact lines satisfies

δh = −hxδd± = ± tan β± δd± at x= d±. (3.8)

The variation of the functional F, denoted by δF, is given by

δF= F(θ + δθ , (θ + δθ )x, (θ + δθ )z, h + δh, (h + δh)x, d− + δd− , d+ + δd+ )

− F(θ , θx, θz, h, hx, d−, d+). (3.9)

We now consider the variation of each term in (3.6) in turn, and neglect terms in (3.9) that are
quadratic in the variations δθ , δh, δd− and δd+ .

For the bulk elastic energy Ebulk, given by (3.1), δEbulk is given by

δEbulk =
∫ d+

d−

∫ h

0
δθ

∂Wbulk

∂θ
+ δθ x

∂Wbulk

∂θx
+ δθ z

∂Wbulk

∂θz
dzdx +

∫ d+

d−
δh[Wbulk + ψg]z=h dx

− δd−

[ ∫ h

0
(Wbulk + ψg) dz

]x=d−

+ δd+

[ ∫ h

0
(Wbulk + ψg) dz

]x=d+

. (3.10)

Since h(d±) = 0, the last two terms in (3.10) are identically zero. The terms in (3.10) containing
derivatives of δθ , namely δθ x and δθ z, are transformed into terms involving δθ by using the
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divergence theorem, namely

∫ ∫
δθ α

∂Wbulk

∂θα
dΩ =

∮
Γ

δθ
∂Wbulk

∂θα
α̂ · ν dΓ −

∫ ∫
δθ

∂

∂α

(
∂Wbulk

∂θα

)
dΩ , (3.11)

where α = x or α = z. The line integral along Γ in (3.11) is composed of a component along ΓGN

from x= d+ to x= d− on z= h with dΓ = −
√

1 + h2
x dx and outward unit normal (2.2), and a

component along ΓNS at z= 0 from x= d− to x= d+ with dΓ = dx and outward unit normal (2.3),
and is given explicitly by

∮
Γ

δθ
∂Wbulk

∂θα
α̂ · ν dΓ =

∫ d−

d+

[
δθ

∂Wbulk

∂θα

]z=h

α̂ · (hxx̂ − ẑ) dx

−
∫ d+

d−

[
δθ

∂Wbulk

∂θα

]z=0

α̂ · ẑdx. (3.12)

Equations (3.10)–(3.12) can be combined and rearranged to express the variation δEbulk as

δEbulk =
∫ d+

d−

∫ h

0
δθ

(
∂Wbulk

∂θ
− ∂

∂x

(
∂Wbulk

∂θx

)
− ∂

∂z

(
∂Wbulk

∂θz

))
dzdx

+
∫ d+

d−
δh[Wbulk + ψg]z=h dx −

∫ d+

d−

[
δθhx

∂Wbulk

∂θx

]z=h
dx

+
∫ d+

d−

[
δθ

∂Wbulk

∂θz

]z=h
dx −

∫ d+

d−

[
δθ

∂Wbulk

∂θz

]z=0
dx. (3.13)

For the gas–nematic interface energy EGN, given by (3.2), carrying out integration by parts on
the terms involving δhx shows that δEGN is given by

δEGN =
∫ d+

d−

[
δθ

√
1 + h2

x
∂ωGN

∂θ
+ δh

(√
1 + h2

x
∂ωGN

∂θ

∂θ

∂z
− ∂

∂x

[
∂

∂hx

(√
1 + h2

x ωGN

) ])]z=h

dx

− δd−

[√
1 + h2

x ωGN

]x=d−

+ δd+

[√
1 + h2

x ωGN

]x=d+

−
[
δh

∂

∂hx

(√
1 + h2

x ωGN

)]x=d−

+
[
δh

∂

∂hx

(√
1 + h2

x ωGN

)]x=d+

. (3.14)

Substituting for the variation of the ridge height δh at the contact lines, given by (3.8), then yields

δEGN =
∫ d+

d−

[
δθ

√
1 + h2

x
∂ωGN

∂θ
+ δh

(√
1 + h2

x
∂ωGN

∂θ

∂θ

∂z
− ∂

∂x

[
∂

∂hx

(√
1 + h2

x ωGN

) ]) ]z=h

dx

− δd−

[√
1 + h2

x ωGN − hx
∂

∂hx

(√
1 + h2

x ωGN

)]x=d−

+ δd+

[√
1 + h2

x ωGN − hx
∂

∂hx

(√
1 + h2

x ωGN

)]x=d+

. (3.15)

For the nematic–substrate interface energy ENS, given by (3.3), δENS is given by

δENS =
∫ d+

d−

[
δθ

∂ωNS

∂θ

]z=0
dx − δd− [ωNS]x=d− + δd+ [ωNS]x=d+

. (3.16)

For the gas–substrate interface energy EGS, given by (3.4), δEGS is given by

δEGS = δd− [ωGS]x=d− − δd+ [ωGS]x=d+
. (3.17)
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Finally, for the area constraint term Carea, given by (3.5), using the boundary conditions
h(d±) = 0 shows that δCarea is given by

δCarea = −
∫ d+

d−
δh p0 dx. (3.18)

The variation of F is obtained by adding the terms from each of the individual variations, given
by (3.13) and (3.15)–(3.18), so that

δF= δEbulk + δEGN + δENS + δEGS + δCarea. (3.19)

Since we seek extrema of the free energy E for which δF= 0, and the variations δθ , [δθ ]z=0, [δθ ]z=h,
δh, δd− and δd+ are independent and arbitrary, their coefficients in δF, given by (3.19), must be zero.
Together with the area constraint (2.5) and the boundary conditions h(d±) = 0, the coefficients of
each variation yield the governing equations for a nematic ridge, as described in the next section.

4. Governing equations for a nematic ridge
Each of the six governing equations derived from setting the coefficients of δθ , [δθ ]z=0, [δθ ]z=h, δh,
δd− and δd+ in (3.19) to zero has a distinct physical interpretation, namely the balance of elastic
torque within the bulk of the nematic, the balance-of-couple conditions on the gas–nematic and
nematic–substrate interfaces, the balance-of-stress condition on the gas–nematic interface and the
balance-of-stress conditions at the contact lines, respectively. These equations are summarized
below.

The balance of elastic torque within the bulk of the nematic, i.e. the Euler–Lagrange equation,
for the elastic free energy density Wbulk is

∂Wbulk

∂θ
− ∂

∂x

(
∂Wbulk

∂θx

)
− ∂

∂z

(
∂Wbulk

∂θz

)
= 0. (4.1)

The balance-of-couple conditions on the gas–nematic interface and the nematic–substrate
interface, namely the weak-anchoring conditions [20,51], are given by

∂Wbulk

∂θz
− hx

∂Wbulk

∂θx
+

√
1 + h2

x
∂ωGN

∂θ
= 0 on z= h (4.2)

and − ∂Wbulk

∂θz
+ ∂ωNS

∂θ
= 0 on z= 0, (4.3)

respectively.
The balance-of-stress condition on the gas–nematic interface is given by

Wbulk + ψg − p0 +
√

1 + h2
x

∂ωGN

∂θ

∂θ

∂z
− ∂

∂x

(
∂

∂hx

(√
1 + h2

x ωGN

))
= 0 on z= h. (4.4)

To distinguish equation (4.4) from the classical isotropic Young–Laplace equation [15], henceforth
it is referred to as the nematic Young–Laplace equation.

The balance-of-stress conditions at the contact lines are given by

ωNS − ωGS +
√

1 + h2
x ωGN − hx

∂

∂hx

(√
1 + h2

x ωGN

)
= 0 at x= d±. (4.5)

To distinguish equations (4.5) from the classical isotropic Young equations [15], henceforth they
are referred to as the nematic Young equations.

Once explicit forms of the energy densities Wbulk, ψg, ωGN, ωNS and ωGS have been prescribed,
the balance of elastic torque within the bulk of the nematic (4.1), the three interface conditions
(4.2)–(4.4), the two nematic Young equations (4.5), the area constraint (2.5) and the two boundary
conditions h(d±) = 0 provide the complete theoretical description for a static ridge of nematic in
terms of the five unknowns, θ (x, z), h(x), d−, d+ and p0.
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(a) The bulk elastic energy density and the interface energy densities
As mentioned in §1, for the bulk elastic energy density Wbulk we use the standard Oseen–Frank
bulk elastic energy density [20], for which

Wbulk = 1
2
K1(∇ · n)2 + 1

2
K2(n · ∇ × n)2 + 1

2
K3(n × ∇ × n)2

+ 1
2

(K2 + K4)∇ · [
(n · ∇)n − (∇ · n)n

]
, (4.6)

where K1, K2, K3 and the combination K2 + K4 are called the splay, twist, bend and saddle-splay
elastic constants, respectively, and ∇ = (∂/∂x, ∂/∂y, ∂/∂z). Substituting (2.1) into (4.6) yields

Wbulk(θ , θx, θz) = K1

2
(θz cos θ − θx sin θ )2 + K3

2
(θx cos θ + θz sin θ )2, (4.7)

which depends only on the splay and bend elastic deformations. Although in the present work
we use the full Oseen–Frank energy density (4.7), we note that a simpler version of (4.7) can be
obtained by making the commonly used one-constant approximation to the elastic constants [20]
by setting K =K1 =K3, leading to Wbulk(θx, θz) =K(θ2

x + θ2
z )/2.

As also mentioned in §1, for ωGN and ωNS we use the standard Rapini–Papoular form [50], for
which

ωGN = γGN + CGN

4

(
1 − 2(νGN · n)2

)
(4.8)

and ωNS = γNS + CNS

4

(
1 − 2(νNS · n)2

)
, (4.9)

where CGN and γGN are the anchoring strength and isotropic interfacial tension, respectively,
for the gas–nematic (GN) interface, and CNS and γNS are the anchoring strength and isotropic
interfacial tension, respectively, for the nematic–substrate (NS) interface. The Rapini–Papoular
form ensures that the interface energy densities ωGN and ωNS are at a minimum when n and ν are
parallel for CGN > 0 and CNS > 0, respectively, and at a minimum when n and ν are perpendicular
for CGN < 0 and CNS < 0, respectively. Therefore, weak homeotropic anchoring occurs on the gas–
nematic interface when CGN > 0 and on the nematic–substrate interface when CNS > 0, and weak
planar anchoring occurs on the gas–nematic interface when CGN < 0 and on the nematic–substrate
interface when CNS < 0. Substituting (2.1)–(2.3) into (4.8) and (4.9) yields

ωGN(θ , hx) = γGN + CGN

4

[
1 − h2

x

1 + h2
x

cos 2θ + 2hx
1 + h2

x
sin 2θ

]
(4.10)

and ωNS(θ ) = γNS + CNS

4
cos 2θ . (4.11)

Experimental techniques for the measurement of CNS are well established [52–54], and values
in the range |CNS| = 10−6 − 10−3 N m−1 have been reported for a variety of nematic materials
and substrates with planar or homeotropic anchoring [7,52,53]. Measurements of CGN are less
common [7]; however, the reported values of CGN > 10−5 N m−1 between air and the nematic
mixture ZLI 2860 [55] and of CGN > 10−4 N m−1 between air and the nematic p-methoxy-
benzylidene-p-n-butyl aniline (MBBA) [56] suggest that CGN and CNS can be of comparable
magnitude. In standard low-molecular-mass nematics, the isotropic interfacial tensions (i.e. γGN
and γNS) are typically much larger than the magnitudes of the anchoring strengths (i.e. |CGN|
and |CNS|) [7]. For example, the isotropic interfacial tension of an interface between air and the
nematic 4-cyano-4’-pentylbiphenyl (5CB) has been measured as γGN = 4.0 × 10−2 N m−1, and
the isotropic interfacial tension of an interface between the substrate poly(methyl methacrylate)
(PMMA) and 5CB has been measured as γNS = 4.051 × 10−2 N m−1 [57].

The gas–substrate interface has constant energy density

ωGS = γGS, (4.12)

where γGS is the isotropic interfacial tension of the gas–substrate interface.
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(b) Governing equations using the Oseen–Frank bulk elastic energy density and the
Rapini–Papoular interface energy densities

Using (4.7) in (4.1) yields the balance of elastic torque within the bulk of the nematic,

(K1 sin2 θ + K3 cos2 θ )θxx + (K1 cos2 θ + K3 sin2 θ )θzz

+ (K3 − K1)
[
(θz cos θ − θx sin θ )(θx cos θ + θz sin θ ) + θxz sin 2θ

]
= 0. (4.13)

Using (4.7) and (4.10) in (4.2) yields the balance-of-couple condition on the gas–nematic interface,

(K1 cos2 θ + K3 sin2 θ )θz + 1
2

(K3 − K1)(θx − hxθz) sin 2θ − (K1 sin2 θ + K3 cos2 θ )hxθx

+ CGN

2
√

1 + h2
x

[(h2
x − 1) sin 2θ + 2hx cos 2θ ] = 0 on z= h, (4.14)

while using (4.7) and (4.11) in (4.3) yields the balance-of-couple condition on the nematic–
substrate interface,

− (K1 cos2 θ + K3 sin2 θ )θz − 1
2

(K3 − K1)θx sin 2θ − CNS

2
sin 2θ = 0 on z= 0. (4.15)

Using (4.7) and (4.10) in (4.4) yields the nematic Young–Laplace equation

p0 − Wbulk − ψg + γGN
hxx

(1 + h2
x)3/2

+ CGN

4(1 + h2
x)5/2

[
3hxx

[
(h2

x − 1) cos 2θ − 2hx sin 2θ
]

+ (1 + h2
x)

(
4 cos 2θ

[
θx − hx(1 + h2

x)θz
]

+ 2 sin 2θ
[
(1 − h4

x)θz + hx(3 + h2
x)θx

])]
= 0 on z= h.

(4.16)

In order to express the nematic Young equations (4.5) in terms of the contact angles β±, we use
the relations (2.4). Then, using (4.10)–(4.12) in (4.5) yields

γGS − γNS − γGN cos β− = CNS

4
cos 2θ + CGN

4
[cos 2(θ − β−) cos β− − 2 sin 2(θ − β−) sin β−]

at x= d− (4.17)

and

γGS − γNS − γGN cos β+ = CNS

4
cos 2θ + CGN

4
[cos 2(θ + β+) cos β+ − 2 sin 2(θ + β+) sin β+]

at x= d+. (4.18)

The terms on the left-hand sides of (4.17) and (4.18) appear in the classical isotropic Young
equations, while the terms on the right-hand sides are due to the anisotropic nature of the nematic
and arise from the weak anchoring on the nematic–substrate interface and on the gas–nematic
interface, respectively. In particular, the classical isotropic Young equations are recovered from
the nematic Young equations (4.17) and (4.18) by setting CNS =CGN = 0.

We note that although, as previously mentioned, the nematic Young equations (4.17) and (4.18)
were derived assuming the ridge height h is a single-valued function of x, they also hold when
the ridge height h is a double-valued function of x [49].

(c) The equilibrium states of complete wetting and complete dewetting
The governing equations derived thus far in the present work describe the partial wetting state,
P. As mentioned in §1, these equations can also be used to describe the equilibrium states of
complete wetting, W, and of complete dewetting, D. In the W state, in which the nematic forms
a film that completely coats the substrate, the nematic Young equations (4.17) and (4.18) and the
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boundary conditions h(d±) = 0 are not relevant. The behaviour of the director and gas–nematic
interface for nematic films has been studied previously (e.g. [7,14]). Similarly, for the D state,
in which the gas–nematic interface forms a cylinder, the nematic Young equations (4.17) and
(4.18), the boundary conditions h(d±) = 0 and the balance-of-couple condition on the nematic–
solid interface (4.15) are not relevant. In the special case in which the gas–nematic interface is a
circular cylinder, the possible director configurations are the same as those in the case of a nematic
confined within a circular capillary and have been extensively studied (e.g. [58]). The limiting
cases β± = 0 and β± = π correspond to the W and D states, respectively.

As we will show in what follows, using just the nematic Young equations (4.17) and (4.18) and
making the assumption that anchoring breaking occurs in regions adjacent to the contact lines, we
can determine the continuous and discontinuous transitions that occur between the equilibrium
states of complete wetting, partial wetting and complete dewetting. We first briefly review the
behaviour of an isotropic ridge in §5, before analysing the corresponding behaviour of a nematic
ridge in §§6 and 7.

5. The equilibrium states and transitions of an isotropic ridge
For a static ridge of isotropic liquid resting on an ideal solid substrate in an atmosphere of passive
gas, a much simpler version of the derivation presented in §§2–4 shows that the classical isotropic
Young–Laplace equation and isotropic Young equations [15] are given by

p0 − ψg + γGI
hxx(

1 + h2
x
)3/2 = 0 on z= h (5.1)

and γGS − γIS − γGI cos β± = 0 at x= d±, (5.2)

where γGI and γIS denote the isotropic interfacial tensions of the gas–isotropic liquid and isotropic
liquid–substrate interfaces, respectively. Equations (5.1) and (5.2) correspond to (4.16)–(4.18) with
Wbulk ≡ 0 and CGN =CNS = 0, and with γGN and γNS replaced with γGI and γIS, respectively.
In particular, (5.2) shows that in the isotropic case the left-hand and right-hand contact angles
are always the same, i.e. β− = β+ = β, say. The classical isotropic Young equations (5.2) can be
written in terms of a single non-dimensional parameter, namely the classical isotropic spreading
parameter SI, which is defined by

SI = γGS − γIS

γGI
− 1, (5.3)

as SI + 1 − cos β = 0. (5.4)

Specifically, (5.4) shows that the P state exists only when −2 ≤ SI ≤ 0 and that the contact angle is
then given by β = cos−1(SI + 1).

As mentioned in §1 and §4c, the equilibrium state can also be the W state, which corresponds to
β = 0, or the D state, which corresponds to β = π , for both of which equation (5.4) is not relevant.
The classification of the W, P and D states can be obtained by solving the classical isotropic
Young–Laplace equation (5.1) and expressing the minimum energy state in terms of SI [15,16].
In particular, the minimum energy state is the W state for SI > 0, the P state for −2 ≤ SI ≤ 0 and
the D state for SI < −2. The contact angle β of the minimum energy state of an isotropic ridge is
plotted as a function of SI in figure 2.

We denote the values of SI at which there is a change in the number of possible equilibrium
states as transition points. At these points, a transition occurs as SI increases or decreases if the
previous minimum energy state ceases to exist or a new minimum energy state comes into
existence. In particular, as figure 2 shows, for an isotropic ridge there is a change in the number of
equilibrium states at the transition points SI = −2 and SI = 0 which leads to continuous transitions
to a new minimum energy state as SI increases or decreases. For consistency with the notation
used in §7, we denote a continuous transition between two equilibrium states for both increasing
and decreasing SI with a double arrow (⇔). At SI = −2 there is a continuous transition from
complete dewetting to partial wetting or vice versa, which is denoted by D⇔ P. Similarly, at
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–2

p/2

p
b

0

0

SI

D

D

P

P

P

P W

W

Figure 2. Summary of the solution for the contact angleβ as a function of the isotropic spreading parameter SI according to the
isotropic Young equation (5.4). The transition points are denoted by asterisks. The solid line denotes the local minimum energy
state and the dashed lines denote the local maximum energy states. Sketches of the minimum energy state are also shown.

SI = 0 there is a continuous transition from complete wetting to partial wetting or vice versa,
which is denoted by P⇔W.

We also note that the behaviour of the contact angle for an isotropic ridge is non-hysteretic. The
well-known phenomenon of isotropic contact-angle hysteresis occurs only in isotropic systems
with non-ideal substrates [15], and therefore does not occur for the isotropic ridge on an ideal
substrate discussed in this section.

6. The nematic Young equations
As for the isotropic ridge discussed in the previous section, for the nematic ridge considered
in the present work we can use the nematic Young equations (4.17) and (4.18) to determine the
continuous and discontinuous transitions that occur between the equilibrium states of complete
wetting, partial wetting and complete dewetting. At first sight, determining these transitions
would appear to involve solving the governing equations for θ in the bulk of the nematic ridge,
which would, in turn, involve solving for the ridge height h, the contact line positions x= d± and
the Lagrange multiplier p0. However, making the assumption that anchoring breaking occurs
in regions adjacent to the contact lines, we can determine these continuous and discontinuous
transitions from just the nematic Young equations (4.17) and (4.18).

(a) The director orientation at the contact lines
At the contact lines the preferred director orientations on the gas–nematic and the nematic–
substrate interfaces are, in general, different. Even when the anchoring is non-antagonistic (i.e.
when either planar or homeotropic anchoring is preferred on both interfaces), since the preferred
director orientation of both interfaces is measured relative to that interface, and the two interfaces
meet at the non-zero contact angles β±, the orientations are, in general, not the same. Hence
the director cannot, in general, align with the preferred orientations of both interfaces. In such a
situation there are three possibilities for the director orientation at the contact lines: (i) the contact
angles are such that the preferred orientations on the two interfaces coincide exactly; (ii) there may
be defects (disclination lines in this two-dimensional case) at one or both of the contact lines; (iii)
the weak anchoring on both interfaces allows anchoring breaking to occur in regions adjacent to
the contact lines and the director(s) on one or both of the interfaces deviate(s) from the preferred
alignment(s) and attain(s) the same orientation on both interfaces.
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Case (i) is a very special situation in which the contact angles are such that the preferred
director orientations on the two interfaces coincide exactly at the contact lines. For instance,
when the preferred orientations on the two interfaces are antagonistic, the contact angles must
be exactly β± = π/2 to allow the director to be tangent to one interface and perpendicular to the
other. Since this special case is highly unlikely to occur in practice, we do not consider it any
further in the present work.

As discussed in §1, case (ii) has been considered in [39], in which infinite planar anchoring was
assumed on the gas–nematic and nematic–substrate interfaces. In this case, since the infinitely
strong anchoring cannot be broken, the director must adopt a splayed configuration (for a full
account of splayed director configurations, see [20]) in a region adjacent to the contact line, with
a disclination line located at the contact line [39]. For the finite anchoring strengths considered in
the present work, we assume that the energy associated with anchoring breaking is less than the
energy associated with the formation of a disclination line, and therefore that such disclination
lines do not occur.

Having ruled out cases (i) and (ii), we are left with case (iii). In this case, the weak anchoring
on the interfaces allows anchoring breaking to occur in regions adjacent to the contact lines so
that the director(s) on one or both of the interfaces deviate(s) from the preferred alignment(s) and
attain(s) the same orientation on both interfaces.

As discussed in §1, for nematic films with antagonistic anchoring, when the film thickness
is less than the Jenkins–Barratt–Barbero–Barberi critical thickness the energetically favourable
state has a uniform director field in which the director aligns parallel to the preferred director
alignment of the interface with the stronger anchoring. For a nematic ridge, close to the contact
lines, where the ridge height approaches zero and hence the separation between the gas–
nematic and nematic–substrate interfaces is always less than the critical thickness, anchoring
breaking occurs and the director aligns parallel to the preferred alignment of the interface
with the stronger anchoring. Specifically, if the nematic–substrate interface has the stronger
anchoring (i.e. if |CNS| > |CGN|), then the director at the contact lines aligns parallel to the
nematic–substrate interface with θ = 0 at x= d± in the case of planar anchoring corresponding
to CNS < 0 or perpendicular to the nematic–substrate interface with θ = π/2 at x= d± in the
case of homeotropic anchoring corresponding to CNS > 0; we term both of these situations
‘nematic–substrate (NS) dominant anchoring’. Correspondingly, if the gas–nematic interface has
the stronger anchoring (i.e. if |CGN| > |CNS|) then the director at the contact lines aligns parallel to
the gas–nematic interface with θ = β± at x= d± in the case of planar anchoring corresponding to
CGN < 0 or perpendicular to the gas–nematic interface with θ = β± + π/2 at x= d± in the case of
homeotropic anchoring corresponding to CGN > 0; we term both of these situations ‘gas–nematic
(GN) dominant anchoring’.

There are two special situations in which anchoring breaking cannot occur as described above
because the interfaces have either equal anchoring strengths (CNS =CGN) or equal and opposite
anchoring strengths (CNS = −CGN). In both of these situations, anchoring breaking occurs on both
interfaces and the director orientation adopts the average of the preferred orientations [39,49].
In particular, when the anchoring strengths of the interfaces are equal and planar anchoring
is preferred, the director angles are θ = β±/2 at x= d±, as discussed by Rey [39], and when
the anchoring strengths of the interfaces are equal and homeotropic anchoring is preferred, the
director angles are θ = β±/2 + π/2 at x= d±. When the anchoring strengths of the interfaces are
equal and opposite, the director angles are θ = β±/2 + π/4 or θ = β±/2 − π/4 at x= d±.

Since for an ideal substrate the material properties of the substrate are the same at both contact
lines, anchoring breaking must occur in the same way, and hence the director angles at the two
contact lines must be the same. However, as we will show below, in some situations the nematic
Young equations (4.17) and (4.18) allow for more than one possible contact angle for the same
parameter values, and so the contact angles β± do not, in general, have to be the same and so
the ridge can be asymmetric. Moreover, the contact angles β± could be different if the substrate
is non-ideal and the material properties of the substrate are different at the two contact lines (for
example, if the substrate was manufactured so that the values of CNS at x= d± were different, or if
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gradients in the temperature of the gas or adsorption of a surfactant from the gas lead to different
values of CGN at x= d± [59]). Without loss of generality, for the remainder of the present work,
we consider only the left-hand contact line, which is described by the nematic Young equation
(4.17), and write β− = β for simplicity. The corresponding results for the right-hand contact line
can be obtained in the same way.

(b) Nematic spreading parameters
For NS-dominant anchoring (for which either θ = 0 or θ = π/2), the nematic Young equation (4.17)
reduces to a cubic equation for cos β, namely either

γGS − (γNS + 1
4CNS) − (γGN + 1

4CGN) cos β = − 1
2CGN cos β(cos2 β − 1) (6.1)

when θ = 0 or

γGS − (γNS − 1
4CNS) − (γGN − 1

4CGN) cos β = 1
2CGN cos β(cos2 β − 1) (6.2)

when θ = π/2. On the other hand, for GN-dominant anchoring (for which either θ = β or θ =
β + π/2) the nematic Young equation (4.17) reduces to a quadratic equation for cos β, namely
either

γGS − (γNS + 1
4CNS) − (γGN + 1

4CGN) cos β = 1
2CNS(cos2 β − 1) (6.3)

when θ = β or

γGS − (γNS − 1
4CNS) − (γGN − 1

4CGN) cos β = − 1
2CNS(cos2 β − 1) (6.4)

when θ = β + π/2. Each of the equations (6.1)–(6.4) may be written in terms of just two parameters
as follows: (6.1) and (6.2) may be written as

SN + 1 − cos β = −GN cos β(cos2 β − 1), (6.5)

while (6.3) and (6.4) may be written as

SN + 1 − cos β = NS(cos2 β − 1), (6.6)

where SN, NS and GN are defined by

SN = 4γGS − (4γNS − |CNS|)
4γGN − |CGN| − 1, (6.7)

NS = 2CNS

4γGN − |CGN| (6.8)

and GN = 2CGN

4γGN − |CGN| , (6.9)

respectively. Note that whereas the nematic spreading parameter SN is the appropriate
generalization of the isotropic spreading parameter SI defined in (5.3), the scaled anchoring
coefficients NS and GN have no isotropic counterparts. We also note that when NS = GN = 0
(i.e. when CGN =CNS = 0) then both of the nematic Young equations (6.5) and (6.6) reduce to the
classical isotropic Young equation (5.4).

Each of the right-hand sides of the nematic Young equations (6.5) and (6.6) involve only
one parameter, namely the scaled anchoring coefficients GN and NS, respectively. At first
sight, it may seem counterintuitive that NS appears in the case of GN-dominant anchoring and
GN appears in the case of NS-dominant anchoring. However, for GN-dominant anchoring the
director is aligned with the preferred director orientation of the gas–nematic interface, and so the
corresponding anchoring energy, and therefore the couple on the director, is zero. The non-zero
contribution to the anchoring energy therefore derives from the breaking of the nematic–substrate
interface anchoring. The corresponding explanation applies to the NS-dominant case. The right-
hand sides of equations (6.5) and (6.6) may therefore be interpreted physically as the contribution
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to the balance of stress at the contact line associated with the breaking of the anchoring on the
interface with the weaker anchoring.

7. The equilibrium states and transitions of a nematic ridge
With the director angle determined in regions adjacent to the contact lines, we can now use
the nematic Young equations (6.5) and (6.6) to determine the continuous and discontinuous
transitions between the W, P and D states. As (6.5) and (6.6) are cubic and quadratic equations
for cos β, respectively, they can have up to three real solutions for β and up to two real
solutions for β, respectively. Each of these solutions for β corresponds to a different P state,
and therefore, unlike for the isotropic ridge described in §5, a nematic ridge can have multiple
P states.

Following the same approach as for the isotropic ridge in §5, the values of SN and NS (for GN-
dominant anchoring) or SN and GN (for NS-dominant anchoring) at which there is a change
in the number of possible equilibrium states are again called transition points. Specifically, a
transition occurs as SN, NS or GN increases or decreases if the previous minimum energy state
ceases to exist or a new minimum energy state comes into existence. In an analogous manner
to that in the isotropic case, at SN = −2 and SN = 0 the number of equilibrium states changes,
which leads to transitions to a new equilibrium state as SN increases or decreases through these
values. However, unlike in the isotropic case, in which only continuous transitions occur, in the
nematic case discontinuous transitions can also now occur, i.e. the contact angle can transition
discontinuously.

In both NS-dominant and GN-dominant anchoring, the nature of the different transitions,
the contact-angle transitions and the transition points can be obtained from just the nematic
Young equations (6.5) and (6.6). In NS-dominant anchoring, the transition behaviour depends
on whether GN < −4, −4 ≤ GN < −1, −1 ≤ GN ≤ 1/2 or GN > 1/2, whereas in GN-dominant
anchoring the transition behaviour depends on whether NS < −1/2, −1/2 ≤ NS ≤ 1/2 or NS >

1/2. Figures 3 and 4 show summaries of the solutions of (6.5) and (6.6) for the contact angle β as
a function of the nematic spreading parameter SN for these four ranges of GN for NS-dominant
anchoring and for these three ranges of NS for GN-dominant anchoring, respectively. In figures 3
and 4, and what follows, a rightward arrow (⇒) denotes a discontinuous transition for increasing
SN, and a leftward arrow (⇐) denotes a discontinuous transition for decreasing SN. Thus, for
example, a discontinuous transition from complete wetting to partial wetting for increasing SN
is denoted by W⇒ P, and a discontinuous transition from partial wetting to complete wetting
for decreasing SN is denoted by W⇐ P. In addition, we denote a discontinuous transition in the
contact angle using the same notation, so that, for example, the contact-angle transition for a
W⇒ P transition, for which the contact angle transitions discontinuously from β = 0 to β = β∗, is
denoted by 0 ⇒ β∗. Summaries of all of the possible transitions shown in figures 3 and 4 are given
in tables 1 and 2 for NS-dominant and GN-dominant anchoring, respectively.

Although for a nematic ridge, unlike for an isotropic ridge, the free energy of each equilibrium
state cannot be determined analytically, we can hypothesize the local minimum energy states for
the nematic ridge by comparison with those for the isotropic ridge described in §5. (Numerical
validation of this hypothesis is a possible direction for future work.) Hence we hypothesize that
the D state is a local minimum energy state for SN < −2 and a local maximum energy state for
SN ≥ −2. Similarly, we hypothesize that the W state is a local minimum energy state for SN > 0
and a local maximum energy state for SN ≤ 0. Assuming that there will always be at least one
local minimum energy state, within the range −2 ≤ SN ≤ 0, where the W and the D states are local
maximum energy states, the local minimum energy state must be a P state. The local minimum
and maximum energy states are shown in figures 3 and 4 by solid lines and dashed lines,
respectively. In the absence of a full dynamical theory, we also hypothesize that the continuous
and discontinuous transitions shown in figures 3 and 4 each correspond to classical pitchfork
or fold bifurcations [60]. In particular, the transitions at SN = −2 and SN = 0 are pitchfork
bifurcations, where a change in SN, GN or NS leads to a local minimum energy state becoming
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Figure 3. Summaries of the solutions for the contact angle β as a function of the nematic spreading parameter SN
for NS-dominant anchoring according to the nematic Young equation (6.5) for the four ranges of GN: (a) GN <

−4, (b) −4≤ GN ≤ −1, (c) −1≤ GN ≤ 1/2 and (d) GN > 1/2. The transition points are labelled and shown by
asterisks for a continuous transition and by dots for a discontinuous transition, where s1 =

√
4(1 + GN)3/(27GN), b1 =√

(1 + GN)/(3GN) and b2 = −1/2 + √
GN(GN + 4)/(2GN). The arrows show the directions of the associated

transitions in β . The solid lines denote the hypothesized local minimum energy states and the dashed lines denote the
hypothesized local maximum energy states.

a local maximum energy state, forcing the system to transition continuously (through a super-
critical pitchfork bifurcation) or discontinuously (through a sub-critical pitchfork bifurcation) to a
new local minimum energy state. Furthermore, the discontinuous transitions at SN = −1 ± s1 and
SN = s2, where

s1 =
√

4(1 + GN)3

27GN
and s2 = −1 − NS − 1

4NS
, (7.1)

are associated with fold bifurcations, where a change in SN, GN or NS leads to a local minimum
energy state combining with a local maximum energy state, forcing the system to transition
discontinuously to a different local minimum energy state.

Figures 3a,b and 4a,c also show that there are ranges of SN values for which there are two
local minimum energy states (shown by solid lines). Perhaps most interestingly, we see from
figure 3a that when −2 ≤ SN ≤ 0 and from figure 3b that when −1 − s1 ≤ SN ≤ −2 there are two
local minimum energy P states. This implies that the effects of anchoring breaking can give rise
to two local minimum energy P states, a situation that does not occur in the isotropic case.

From the results summarized in tables 1 and 2, the asymptotic behaviour of the contact-
angle transitions in the limits of large anchoring coefficients relative to the isotropic interfacial
tension, namely the limits GN → ±∞ and NS → ±∞, may be determined. For example, for
NS-dominant anchoring, as GN → ∞ the contact-angle transition for the P⇐W transition
approaches a discontinuous transition in the contact angle from β = 0 to β = π/2, and the
contact-angle transition for the D⇒ P transition approaches a discontinuous transition in the
contact angle from β = π to β = π/2. This limiting behaviour shows that for GN-dominant
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Figure 4. Summaries of the solutions for the contact angle β as a function of the nematic spreading parameter SN for GN-
dominant anchoring according to thenematic Youngequation (6.6) for the three ranges ofNS: (a)NS < −1/2, (b)−1/2≤
NS ≤ 1/2 and (c)NS > 1/2. The transitionpoints are labelled and shownby asterisks for a continuous transition andbydots
for a discontinuous transition, where s2 = −1 − NS − 1/(4NS) and b3 = −1/(2NS). The arrows show the directions
of the associated transitions in β . The solid lines denote the hypothesized local minimum energy states, and the dashed lines
denote the hypothesized local maximum energy states.

anchoring in the limit NS → ∞ the contact-angle transition for the P⇐W transition approaches
a discontinuous transition in the contact angle from β = 0 to β = π , i.e. it approaches a
discontinuous transition from the W state directly to the D state, which bypasses the P

state. Similarly, in the limit NS → −∞ the contact-angle transition for the D⇒ P transition
approaches a discontinuous transition in the contact angle from β = π to β = 0, i.e. it approaches
a discontinuous transition from the D state directly to the W state.

The discontinuous transitions shown in figures 3a,b, 3d and 4a,c show that the behaviour of
the contact angle is hysteretic. This nematic contact-angle hysteresis, which occurs for an ideal
substrate, is fundamentally different from the well-known phenomenon of isotropic contact-
angle hysteresis which, as we have previously mentioned, occurs only for a non-ideal substrate.
However, we note that when −1 ≤ GN ≤ 1/2 for NS-dominant anchoring, as shown in figure 3c,
and when −1/2 ≤ NS ≤ 1/2 for GN-dominant anchoring, as shown in figure 4b, the behaviour is
similar to the isotropic case and no contact-angle hysteresis occurs.

8. Conclusion
In the present work, we analysed a two-dimensional static ridge of nematic resting on an ideal
solid substrate in an atmosphere of passive gas. In §§2 and 3, we obtained the first complete
theoretical description for this system by minimizing the free energy, which is given by the sum
of the bulk elastic energy, gravitational potential energy and the interface energies, subject to a
prescribed constant cross-sectional area. In §4, we chose explicit forms of the bulk elastic energy
density and the interface energy densities, namely the standard Oseen–Frank bulk elastic energy
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Table 1. Summary of all of the possible transitions for NS-dominant anchoring obtained from the nematic Young equation
(6.5). The four ranges of values ofGN, the SN value at which transitions occur, where s1 =

√
4(1 + GN)3/(27GN), and the

nature of the different transitions and the contact-angle transitions, where b1 =
√
(1 + GN)/(3GN) and b2 = −1/2 +√

GN(GN + 4)/(2GN), are shown.

range ofGN SN value at transition nature of the transition contact-angle transition

GN < −4 −1 − s1 (<−2) D⇐ P π ⇐ cos−1 b1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−2 D⇔ P continuous withβ = π
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 P⇔W continuous withβ = 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(0<) − 1 + s1 P⇒W π − cos−1 b1 ⇒ 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−4≤ GN < −1 −2 D⇔ P continuous withβ = π
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(−2≤) − 1 − s1 (<−1) P⇐ P π − cos−1 2b1 ⇐ cos−1 b1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(−1<) − 1 + s1 (≤0) P⇒ P π − cos−1 b1 ⇒ cos−1 2b1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 P⇔W continuous withβ = 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−1≤ GN ≤ 1/2 −2 D⇔ P continuous withβ = π
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 P⇔W continuous withβ = 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GN > 1/2 −1 − s1 (<−2) D⇐ P π ⇐ π − cos−1 b1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−2 D⇒ P π ⇒ π − cos−1 b2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 P⇐W cos−1 b2 ⇐ 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(0<) − 1 + s1 P⇒W cos−1 b1 ⇒ 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2. Summary of all of the possible transitions for GN-dominant anchoring obtained from the nematic Young equation
(6.6). The three ranges of values ofNS, the SN value at which transitions occur, where s2 = −1 − NS − 1/(4NS), and
the nature of the different transitions and the contact-angle transitions, where b3 = −1/(2NS), are shown.

range ofNS SN value at transition nature of the transition contact-angle transition

NS < −1/2 −2 D⇔ P continuous withβ = π
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 P⇐W cos−1(−1 + 2b3)⇐ 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(0<) s2 P⇒W cos−1 b3 ⇒ 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−1/2≤ NS ≤ 1/2 −2 D⇔ P continuous withβ = π
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 P⇔W continuous withβ = 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NS > 1/2 s2 (<−2) D⇐ P π ⇐ cos−1 b3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−2 D⇒ P π ⇒ cos−1(1 + 2b3)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 P⇔W continuous withβ = 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

density and the standard Rapini–Papoular interface energy densities, and obtained the governing
equations (4.13)–(4.18). Specifically, these equations determine the director angle θ (x, z), the ridge
height h(x), the contact line positions x= d± and the Lagrange multiplier p0, in terms of the
physical parameters, namely the splay and bend elastic constants K1 and K3, the corresponding
isotropic interfacial tensions γGN, γNS and γGS and the anchoring strengths CGN and CNS.
These governing equations may, in principle, be generalized to include electromagnetic forces,
additional contact-line effects, non-ideal substrates or more detailed models for the nematic
molecular order, or specialized to describe the case of a thin ridge and/or a ridge with pinned
contact lines (for more details of the last two, see [49]).
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After briefly reviewing the behaviour of an isotropic ridge in §5 and discussing the nematic
Young equations (4.17) and (4.18) in §6, in §7, making the assumption that anchoring breaking
occurs in regions adjacent to the contact lines, we used the nematic Young equations (4.17) and
(4.18) to determine the continuous and discontinuous transitions that occur between the W, P
and D states. In particular, it was shown that the nematic Young equations in the cases of NS-
dominant and GN-dominant anchoring, which are given by (6.5) and (6.6), respectively, can each
be written in terms of two parameters, namely the nematic spreading parameter SN and one of the
scaled anchoring coefficients GN and NS. In both situations, we found continuous transitions
analogous to those that occur in the classical case of an isotropic liquid, but also a variety of
discontinuous transitions, as well as contact-angle hysteresis, and regions of parameter space
in which there exist multiple partial wetting states that do not occur in the classical case of an
isotropic liquid. Summaries of all the transitions for NS-dominant and GN-dominant anchoring
are given in figures 3 and 4, respectively, and in tables 1 and 2, respectively.

For simplicity, in §7 we considered only the left-hand contact line, which is described by the
nematic Young equation (4.17). Corresponding results can be obtained for the right-hand contact
line, and, since we have shown that there is more than one possible contact-angle value for the
same parameter values, β± do not, in general, have to be the same and so the ridge can be
asymmetric. This is consistent with observations by Vanzo et al. [61], who found that anisotropic
effects can lead to multiple contact-angle values and asymmetry of elongated sessile nematic
droplets.

Concerning potential future comparisons with the results of physical experiments of the
situation modelled in the present work, we have shown that discontinuous transitions and
contact-angle hysteresis will occur if the parameters are such that GN > 1/2 or GN < −1, or
|NS| > 1/2. Inspection of (6.9) and (6.8) shows that one of these inequalities may be satisfied
when the isotropic interfacial tension and the anchoring strength are of similar magnitude at
one of the interfaces, i.e. when γGN � |CGN| or γNS � |CNS|. For standard nematics, for which
the isotropic interfacial tension is typically larger than the anchoring strength [7], this may be
difficult to achieve. For example, for the typical parameter values given in §4, |GN| � 1 and
|NS| � 1. Therefore, the present analysis indicates that, as many previous authors have implicitly
or explicitly assumed, for standard low-molecular-mass nematics the classical isotropic Young
equations (5.2) are a good approximation for the nematic Young equations (4.17) and (4.18) and
discontinuous transitions and contact-angle hysteresis will not be observed. However, for high-
molecular-mass nematics, e.g. nematic polymers, or systems with particularly strong anchoring,
the anchoring strengths would be considerably higher, and the discontinuous transitions could
potentially be observed experimentally. For example, the use of polymeric compounds to produce
tailored anchoring [34] leads to a strong preference for polymers to align at interfaces [62,63] and
may result in large anchoring strengths, which could lead to |GN| =O(1) and |NS| =O(1) and
hence the transitions predicted in the present work could potentially be observed. Alternatively,
the situation in which the surrounding fluid is the isotropic melt of the nematic could lower the
isotropic interfacial tension γGN. In this situation, the isotropic interfacial tension for the isotropic–
nematic interface γIN would be much smaller than the gas–nematic interfacial tension γGN and
may become comparable to the anchoring strength CGN. For instance, γIN was measured for
the nematic MBBA as γIN = 10−5 N m−1 [64], which is three orders of magnitude smaller than a
typical isotropic interfacial tension for a gas–nematic interface γGN [57]. Such a situation could be
realized experimentally by using controlled heating and cooling of regions of a substrate coated
in a nematic film [34,65].

The range of anisotropic wetting and dewetting phenomena occurring in this nematic system
may also be useful from a technological perspective; for instance, for tailored dewetting of
liquid films, as discussed in §1 [2,6,19,44,45]. The variety of possible transitions between two-
dimensional equilibrium states will have similar forms in three dimensions, which may be
relevant to applications such as the one-drop-filling method of LCD manufacturing [66–68] and
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adaptive-lens technologies [4,5]. In order to explore such applications, further theoretical and
experimental investigations, particularly into the dynamics of transitions, would be needed.
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