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Abstract – The background of this paper discusses the design 
of a digital PID (Proportional-integral derivative) controller 
for controlling the blood glucose level of a diabetic patient. 
The objective is to design a digital PID controller for 
external insulin injection, which can inject insulin to the 
patient accurately to sustain the blood glucose level of a 
diabetic patient. The patient's blood sugar level is considered 
as input variable & injected insulin level is considered as 
output variable, which is to be controlled. A dynamic model 
is constructed & a transfer function is defined for this 
system. The Proportional, Integral & Derivatives coefficients 
are found using various tuning rules. The conventional 
Ziegler Nicholas method produces a very high overshoot that 
can endanger a patient's life. Therefore, other efficient 
tuning techniques like Chien-Hrones-Reswick (set-point 
regulation) and Chien-Hrones-Reswick (distribution 
regulation) methods are used to find the Proportional, 
Integral & Derivative coefficient. The tuning responses are 
studied & parameters are compared. The best response given 
by the PID is converted into Digital PID. Different 
transformation methods are studied to convert the 
conventional PID into the digital PID controller. 
 
Keywords - Digital PID controller, Diabetic Patients, Blood 
Glucose, Chien-Hrones-Reswick (set-point regulation), 
Chien-Hrones-Reswick (distribution regulation), MATLAB 
simulation. 
 

I. INTRODUCTION 
In 2014, the Centers for Disease Control and Prevention 

(CDC) National diabetes report says 29.1 million US 
children and adults are afflictions from diabetes. Diabetes is 
a long-term disease that can happen because the body does 
not respond or properly produce insulin. Insulin is a hormone 
that needs to absorb the body cell and use glucose to fuel 
body cells. Due to diabetes, many problems occur, such as 
coronary heart disease, weakness, kidney problems, non-
traumatic amputations, blindness, secondary infection, etc. 
There are 3 types of diabetes: Type-I diabetes, Type-II 
diabetes, and Gestational diabetes. 

Type-II diabetes occurs when our body cells have 
become resistant to the sway of insulin. Due to this increase 
in blood glucose level, it mostly occurs over the age of 45 
years and overweight person. It can also take place family 
history of diabetes, so it is called non-insulin-dependent 
diabetes or adult-onset.  
 

Gestational diabetes generally arises in pregnant women 
during pregnancy. Aspects include pregnancy over the age of 
25, being overweight at the time of pregnancy, and Excessive 
intrauterine growth during pregnancy. During pregnancy, 
hyperglycemia increases, so it affects the offspring. 
Hyperglycemia occurs due to high blood glucose levels 
above 120 mg/dl, while hypoglycemia occurs less than 60 
mg/dl. 
 

Type-I diabetes is caused by the death of a beta cell in 
the pancreas, so due to the absence of beta cells pancreas 
does not produce insulin as a body requirement (healthy 
blood glucose level is between 60mg/dl to 120mg/dl). This 
type of diabetes mostly occurs in childhood or adolescence, 
also called childhood diabetes or insulin-dependent diabetes. 
Insulin-dependent diabetes shows it can be easily diagnosed 
by inject-insulin to control the blood glucose level.  
Here we are using an automatic digital proportional integral 
derivative (PID) controller to control the appropriate amount 
of healthy blood glucose level of a diabetic patient. If a 
diabetic patient has a blood glucose level above or below the 
set point so that this digital PID controller first senses the 
blood glucose level if it is above or below blood glucose, 
then it automatically controls the blood glucose level in the 
normal range by giving the appropriate amount of external 
insulin. 

II. MATHEMATICAL MODELING OF BLOOD 
GLUCOSE LEVEL FROM DIFFERENTIAL 

EQUATION 
Consider the blood glucose equation by obtaining a 

differential equation. The differential equation of blood 
glucose equation as given below [4, 12]- 

http://www.internationaljournalssrg.org/IJEEE/paper-details?Id=362
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                           r(t)=

𝑑3𝑐

𝑑𝑡3 + 6
𝑑2𝑐

𝑑𝑡2 + 5
𝑑𝑐

𝑑𝑡
                           (1)   

 
We convert this differential equation into the Laplace domain 
using the forward Laplace transform. This transform can be 
applied as- 

                              𝐶(𝑠) → 𝐿{𝑐(𝑡); 𝑡 → 𝑠}                          (2) 
 

                              𝑅(𝑠) → 𝐿{𝑟(𝑡); 𝑡 → 𝑠}                          (3) 
 

By applying this substitution, we get 
 
         𝑅(𝑠) = 𝑠3𝐶(𝑠) + 6𝑠2𝐶(𝑠) + 5𝑠𝐶(𝑠)                         (4) 
 
Simplifying this above equation in transfer function form, we 
get- 
 
                𝐺𝑐(𝑠) =

𝑅(𝑆)

𝐶(𝑆)
=

1

𝑆3+6𝑆2+5S
                                     (5)      

 
This equation (5) shows the transfer function of the blood 

glucose level of a diabetic patient. Simulating this equation 
in Matlab, we get step response of blood glucose level of the 
diabetic patient as shown in figure 1. This figure shows the 
blood glucose-insulin system has taken more settling time to 
settle down to steady-state, which means that the system 
takes more time to reach a steady-state. The steady-state 
error value is also high, so we can use a digital PID 
controller to overcome the steady-state error, and we can also 
get an accurate step response with less rise time. 

 
Fig. 1 Input step response of blood glucose level of the 

diabetic patient. 
 

We also see the stability plot in figure (2) and bode plot 
in figure (3) of the blood glucose level of a diabetic patient. 
The stability plot shows the system is stable, so we can 
improvise the system performance to apply PID controller 
with various tunning methods like Ziegler-Nichols and 
cohen-coon method. 

III. DESIGNING OF CONTROLLER 
To design the digital PID controller for determining the 

error where the error is the difference between the glucose 
sensor's measured value and the desired glucose value. The 
equation for PID controller is [5, 11-15], 
 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) +  𝐾𝑖 ∫ 𝑒(𝜏)𝑑𝜏
𝑡

0

+  𝐾𝑑

𝑑

𝑑𝑡
  𝑒(𝑡)       (4) 

 
Where u(t) is output response, t is instantaneous time,𝜏 

is the integration variable vary from 0 to t, and e is the SP-
MV error where SP is the set point of glucose and MV is the 
measured value of glucose. 
Kp is proportional gain and depends on the system's present 
value. Ki is an integral gain, and it depends on the past 
accumulate value of the system. Kd is derivative gain, and it 
depends on future or expected value. 
For equation (4), the transfer function of the PID controller 
is- 

            𝐺𝑐(𝑠) = 𝑘𝑝 (1 +
1

𝑠𝑇𝑖
+ 𝑠𝑇𝑑)                        (6) 

Where Ti is integral time and Td is derivative time. 
The approximate modelling blood glucose-insulin system 
using the PID controller equation (6) is shown in figure 4. 

 
Fig. 2. Block diagram of blood glucose-insulin system 

with Digital PID controller 
 

For finding the gain parameters like Kp, Ki, and Kd, the 
tuning methods like Ziegler –Nichols and Cohen-coon 
method are used then the best response parameter 
performance between them is compared. 

IV. CHIEN-HRONES-RESWICK TUNING 
TECHNIQUE 

The modified version of the Ziegler-Nichols method is 
Chien-Hrones-Reswick (CHR) method [8]. In 1952, this 
method was developed by Chien-Hrones-Reswick, which 
gives a better way to select a compensator for control 
applications. There are two forms of CHR: Chien- Hrone-
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Reswick (setpoint regulation), also known as CHR-1 and 
Chien-Hrone-Reswick (disturbance rejection). According to 
Chien-Hrones-Reswick suggestion, controller parameters are 
tuned in the industrial process. The setpoint response method 
is summarized in Table 1 and Table 2, showing the controller 
parameters. These controller parameters have 0% and 20% 
overshoot, summarized in Table 1 and Table 2 [8-10].  
 
Table 1. CHR-1 method of calculating Kp, Ki and Kd [8] 

 
Table 2. CHR-2 method of calculating Kp, Ki and Kd [8] 

 
A. Tuning of PID controller by using Chien-Hrones-
Reswik (Distribution Rejection) method 

By using the above blood glucose equation (5), we apply 
in the equation of PID controller by using the Chien-Hrones-
Reswik (Distribution Rejection) method we get the value of 
controller parameters as given below 
 
Kp=3.25316, Ki=0.882044, Kd=2.51964 
Now we solve the equation (5) and equation (6), we get the 
expression is- 

𝐺𝑐(𝑠) =
𝑘𝑑s2 + kps + ki

𝑠4 + 6𝑠3 + (5 + 𝑘𝑑)𝑠2 + kps + ki
      (12) 

 
Putting the value of Kp, Ki, Kd, we obtain the Chien-Hrones-
Reswik (Distribution Rejection) transfer function blood 
glucose level is – 
 

H(S) =
2.52s2 + 3.257s + 0.884

s4 + 6s3 + 7.52s2 + 3.257s + 0.884
          (13) 

  
B. Tuning of PID controller by using Chien-Hrones-
Reswik (set-point regulation) method 

By using the above blood glucose equation (3), we apply 
in the equation of PID controller by using the Chien-Hrones-
Reswik (set-point regulation) method we get the value of 
controller parameters as given below 
 
Kp=2.57541, Ki=2.00374e-008, Kd=2.23218 

Now we solve the equation (3) and equation (5), we get the 
expression is- 

𝐺𝑐(𝑠) =
𝑘𝑑s2 + kps + ki

𝑠4 + 6𝑠3 + (5 + 𝑘𝑑)𝑠2 + kps + ki
      (14) 

 
Putting the value of Kp, Ki, Kd, we obtain the Chien-Hrones-
Reswik (Set-point regulation) transfer function for blood 
glucose level, H(s) is - 

 
2.232s2 + 2.575s + 2.004𝑒−008

s4 + 6s3 + 7.2322s2 + 2.5754s + 2.0037e−008
     (15) 

 
V. ZERO-ORDER HOLD CONVERSION METHOD 

We need to accurately discretise the system for staircase 
inputs in the time domain. The process of discretization of 
the continuous-time system being applied with the zero-order 
holds method is shown below, 

 
Fig. 3 Block diagram of discretized the continuous-time 

system with the zero-order hold method 

By applying the constant value of U[k] over the zero-
order hold (ZOH) block and this ZOH block produce the 
continuous-time input U(t), which can be seen in figure 3. 

                      U(t)=u[k], kTs   ≤ t ≤ (k+1)Ts                       (16) 

U(t) is the input signal to the continuous system H(s) 
and generates the output y(t), and the sampling of y(t) every 
Ts seconds generate the output y[k]. 
 

On the other hand, the discrete system Hd(z) is also 
converted into continuous system H(s). The following 
limitation of ZOH discrete-to-continuous conversion: 
Discrete to continuous (d2c) cannot be converted into LTI 
systems with poles at z = 0. 
 

ZOH discrete to continuous(d2c) conversion produces a 
higher-order continuous-time system while discrete-time LTI 
systems have negative real poles. 
 

This ZOH method can be used to discretize MIMO or 
SISO continuous-time systems with time delays. This 
method shows an accurate discretization for systems with 
output and input delays with no internal delays. 
 

 

Overshoot             
0% 

                  
20% 

Controller Kp Ki Kd Kp Ki Kd 

PID 0.6/a T 0.5L 0.95/a 1.4T 0.47L 

PI 0.35/a 1.2T - 0.6/a T - 
P 0.3/a - - 0.7/a - - 

Overshoot             0%                
20% Controller Kp Ki Kd Kp Ki Kd 

PID 0.95/a 2.4L 0.42L 1.2/a 2L 0.42L 
PI 0.6/a 4L - 0.7/a 2.3L - 
P 0.3/a - - 0.7/a - - 
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After that, we convert the Chien-Hrones-Reswick 
(distribution rejection) equation (13) and Chien-Hrones-
Reswick (set-point regulation) equation (15) into discrete 
domain by using Zero-order hold with sampling time is 0.1 
sec, we get Gz(z) for equation (13) is– 

0.01082z3 − 0.01105z2 − 0.007844z + 0.008132

z4 − 3.491z3 + 4.534z2 − 2.591z + 0.5488
         (17) 

And for equation (15), Gz(z) is- 

0.009544z3 − 0.009926z2 − 0.0068552z + 0.007237

z4 − 3.494z3 + 4.538z2 − 2.5932z + 0.5488
 (18) 

 

VI. FIRST-ORDER HOLD (FOH) METHOD 
We can desire the accurately discretised system for 

piecewise linear inputs in the time domain. The first-order 
hold method is slightly different from zero-order hold by the 
principle of hold mechanism. In first-order hold method uses 
linear interpolation to convert the sample u[k] into 
continuous input u(t). 

u(𝑡) = u[𝑘] +
t−kTs

Ts
  (u[k+1]-u[k]), kTs ≤ t ≤ (k+1)Ts   (19) 

The First-order hold method is a more suitable and 
accurate system driven by smooth inputs than the zero-order 
hold method. It differs from the standard causal first-order 
hold method called triangle approximations, also known as a 
ramp-invariant approximation. 
This FOH method for system time delay is the same as the 
zero-order hold method. This method can also be used to 
discretize MIMO or SISO continuous-time systems with time 
delays. 
 

After that, we convert the Chien-Hrones-Reswick 
(distribution rejection) equation (13) and Chien-Hrones 
Reswick (set-point regulation) equation (15) into discrete 
domain by using First-order hold with sampling time is 0.1 
sec, we get Gz(z) for equation (13) is– 

0.003746z4 + 0.006345z3 − 0.01882z2 + 0.006196z + 0.002602

z4 − 3.491z3 + 4.534z2 − 2.591z + 0.5488
      (20) 

And for equation (15), Gz(z) is- 

0.003307z4 + 0.005509z3 − 0.0167z2 + 0.005572z + 0.002313

z4 − 3.494z3 + 4.538z2 − 2.593z + 0.5488
       (21) 

 
VII. IMPULSE-INVARIANT MAPPING 

This impulse-invariant mapping conversion accurately 
gives discretised systems for impulse train inputs in the time 
domain. Impulse-invariant mapping introduces a phase 
mismatch at higher frequencies and a shift in DC gain of the 
discretized system. This phase mismatch occurs due to 
aliasing effects, and this effect becomes more precise to 
increase the sampling time. 

The aliasing effects become more prominent when the 
shift in DC gain of the system decreases with decreasing the 
sampling time. Due to this aliasing, impulse-invariant 
mapping is not good for matching the frequency response in 
a continuous-time system. We choose the bilinear transform 
for frequency response matching, such as the Tustin 
approximation.  
 

This Impulse-invariant mapping with time delays can be 
used to discretize MIMO or SISO continuous-time system. 
This method shows an accurate discretization for continuous-
time systems. 
 

After that, we convert the Chien-Hrones-Reswick 
(distribution rejection) equation (13) and Chien-Hrones 
Reswick (set-point regulation) equation (15) into discrete 
domain by using Impulse-invariant mapping with sampling 
time is 0.1 sec, we get Gz(z) for equation (13) is– 
 

0.2006z3 − 0.3762z2 + 0.1763z − 9.786e−017

z4 − 3.491z3 + 4.534z2 − 2.591z + 0.5488
      (22) 

 

And for equation (15), Gz(z) is- 

0.1764z3 − 0.3336z2 + 0.1572z + 6.981e−017

z4 − 3.494z3 + 4.538z2 − 2.5932z + 0.5488
         (23) 

 

VIII. TUSTIN APPROXIMATION 
The bilinear approximation or Tustin approximation 

uses the following equation as shown below:  

              𝑍 = 𝑒𝑠𝑇𝑧 =  1+𝑠𝑇𝑠/2

1−𝑠𝑇𝑠/2
                                           (24) 

This above equation is related to z-domain and s-domain 
functions. By using c2d conversion, we use discretization 
Hd(z) of continuous transfer function H(s) is given below: 

         Hd(z) = Hd(s’), s’= 2

𝑇𝑠

𝑧−1

𝑧+1
                                          (25) 

Similarly, by using d2c conversion depends on the 
inverse transfer function, we use continuous H(s) of discrete 
transfer function Hd(z) is given below:  

          H(s) = Hd (z’), z’= 1+𝑠𝑇𝑠/2

1−𝑠𝑇𝑠/2
                                       (26) 

We use the Tustin approximation method for implicit 
matching of frequency domain between the continuous-time 
system and the discretized system. Tustin approximation can 
be used to approximate discretize MIMO or SISO 
continuous-time systems with time delays tau and k*Ts is the 
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time delay of integer portion which maps to delay the kth 
sampling periods in the discretized system. 
After that, we convert the Chien-Hrones-Reswick 
(distribution rejection) equation (13) and Chien-Hrones-
Reswick (set-point regulation) equation (15) into discrete 
domain by using with Tustin approximation with sampling 
time is 0.1 sec, we get Gz(z) for equation (13) is– 

0.005088z4 + 0.0006339z3 − 0.009525z2 − 0.0006004z + 0.00447

z4 − 3.486z3 + 4.52z2 − 2.578z + 0.5446
    (27) 

And for equation (15), Gz(z) is- 

0.004477z4 + 0.0004884z3 − 0.008466z2 − 0.0004884z + 0.003989

z4 − 3.489z3 + 4.524z2 − 2.579z + 0.5444
 (28) 

IX. ZERO-POLE MATCHING EQUIVALENTS 
Zero-pole matching equivalents have matched dc gain in 

discretized systems and continuous-time systems, it is only 
applied in SISO systems, and their pole and zeros 
transformation is shown below, 
                                          𝑍𝑖 = 𝑒𝑆𝑖𝑇𝑠                                         (29) 

Zi, Si is the ith zero or pole in the discrete-time and 
continuous-time systems, and the sampling time is Ts. This 
zero-pole matching with a time delay can be used to 
discretize SISO continuous-time system. This zero-pole 
matching is similar to the Tustin approximation in time 
delay.  

 
After that, we convert the Chien-Hrones-Reswick 

(distribution rejection) equation (13) and Chien-Hrones-
Reswick (set-point regulation) equation (15) into discrete 
domain by using Zero-pole matching equivalent with 
sampling time is 0.1 sec, we get Gz(z) for equation (13) is– 
 
0.01004z3 − 0.008789z2 − 0.01001z + 0.008822

z4 − 3.491z3 + 4.534z2 − 2.591z + 0.5488
      (30) 

And for equation (15), Gz(z) is- 

0.008838z3 − 0.007875z2 − 0.008838z + 0.007875

z4 − 3.494z3 + 4.538z2 − 2.5932z + 0.5488
 (31) 

X. RESULT 
 

Table 3. Table showing the comparison between the 
outputs of Chien-Hrones-Reswick(distribution rejection) 

and Chien-Hrones-Reswick (setpoint regulation) 
techniques parameters. 

Parameters Chien-
Hrones-
Reswick(Dis
tribution 
Rejection) 

Chien-
Hrones-
Reswick(Set-
Point 
Regulation) 

Rise time (in seconds) 2.2858 4.8152 
Overshoot (in percent) 29.41 0 
Settling time (in seconds) 17.0751 6.3362 

The step response for the blood glucose-insulin system 
using Chien-Hrones-Reswik (Distribution Rejection) method 
is shown in figure 4. From the step response graph, the 
overshoot is 29.41%, the rise time is 2.28 seconds (approx.), 
and the settling time is 17.07 seconds (approx.). 
The step response for the blood glucose-insulin system using 
Chien-Hrones-Reswik (setpoint regulation) method is shown 
in figure 5. From the step response graph, the overshoot is 
0%, the rise time is 4.81 seconds (approx.), and the settling 
time is 6.33 seconds (approx.). The output parameters are 
also listed in Table 3.  
Apart from the rise and settling time, overshoot is the 
parameter that makes the blood glucose-insulin system the 
ideal Chien-Hrones-Reswik (setpoint regulation) method. 

 
Fig. 4 Step response of blood glucose-insulin system by 
using Chien-Hrones-Reswik (Distribution Rejection) 

method 

 Fig. 5  Step response of blood glucose-insulin system by 
using Chien-Hrones-Reswik (setpoint regulation) method. 
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XI. CONCLUSION 
Thus, we have successfully designed the Digital PID 

controllers for the blood glucose level of a diabetic patient, 
i.e., PID controller using various efficient tuning algorithms. 
Using traditional tuning methods, the integer order model of 
blood glucose level gave a very terrible response. From the 
results, it is obvious that Chien-Hrones-Reswick 
(Distribution Rejection) method yields a very high 
Overshoot, whereas Chien-Hrones-Reswick (Set-point 
regulation) method exhibits a zero overshoot and Chien-
Hrones-Reswick (Set-point Regulation) method illustrate low 
settling time as compared to Chien-Hrones-Reswick 
(Distribution Rejection). The overshoot in the blood glucose 
level controller may create sudden high insulin levels and 
endanger a patient's life. Similarly, due to the high settling 
time in the Chien-Hrones-Reswick (Distribution Rejection) 
method, the blood glucose level takes a very long time to 
maintain the steady state, resulting in changes in life danger. 
Finally, these PIDs are converted into digital PIDs using 
various conversion methods. After tuning the PID, it is 
essential to convert the analogue PID to digital PID as we 
know hardware implementation of digital PID is very easy in 
the minimized area. Further tuning of PID after 
implementation becomes very easy, and the system becomes 
very accurate.  
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