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Abstract— To date immunity to disruptions of multi-scale 
urban road networks (URNs) has not been effectively quantified. 
This study uses robustness as a meaningful - if partial - 
representation of immunity. We propose a novel Relative Area 
Index (RAI) based on traffic assignment theory to quantitatively 
measure the robustness of URNs under global capacity 
degradation due to three different types of disruptions, which 
takes into account many realistic characteristics. We also compare 
the RAI with weighted betweenness centrality, a traditional 
topological metric of robustness. We employ six realistic URNs as 
case studies for this comparison. Our analysis shows that RAI is a 
more effective measure of the robustness of URNs when multi-
scale URNs suffer from global disruptions. This improved 
effectiveness is achieved because of RAI's ability to capture the 
effects of realistic network characteristics such as network 
topology, flow patterns, link capacity, and travel demand. Also, the 
results highlight the importance of central management when 
URNs suffer from disruptions. Our novel method may provide a 
benchmark tool for comparing robustness of multi-scale URNs, 
which facilitates the understanding and improvement of network 
robustness for the planning and management of URNs. 

Index Terms—Benchmark analysis, Global disruptions, 
Immunity, Robustness, Urban road networks. 

I. INTRODUCTION

ealth examination (HE) of urban transportation is a
relatively new concept along with the establishment of 

urban physical examination, which is first proposed in Beijing 
urban master plan (2016-2035) [1]. As an important aspect of 
HE, the ability of URNs to maintain normal operation when 
suffering from disruptions, that is, immunity of urban 
transportation to disruptions is receiving more attention. 
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Urban road networks (URN) are crucial infrastructure 
components of urban transportation and constitute an essential 
backbone underpinning most social and economic activities 
[2,3]. Road traffic networks and infrastructure are vulnerable to 
disasters [4-6], however, some of which, like extreme weather 
events or earthquakes, can be so disruptive as to lead to a 
complete system failure [7, 8]. In such circumstances the direct 
loss of life and economic loss arising from the disaster event 
itself are supplemented by indirect losses resulting from delays 
caused by the inability of emergency services and humanitarian 
agencies to use the road network effectively [4, 9]. 

Against this background, it is important to assess the level of 
immunity of URNs to major or global disruptions. Robustness 
of URNs is the traditional concept that the transportation 
planning community adopts to indicate the level of immunity. 
However, to the best of our knowledge, quantitative indices that 
assess and compare the ability of URNs to withstand global 
disruptions are deficient because they fail to account for all the 
attributes (road capacity, drivers’ behavior and flow patterns) 
that enable a realistic representation of URNs and do not allow 
the comparison between multi-scale URNs under global 
disruptions. In this study, multi-scale URNs refer to the road 
networks with significant differences in the number of nodes 
and links. 

The differences in types of network, the infrastructure they 
use and in the constraints and objectives applied to those 
networks have meant that it has been difficult for scholars to 
agree on a definition of what “robustness” actually means in the 
context of networked systems. In the context of electrical 
networks, robustness has been defined, variously, as “the 
degree to which a system or component can function correctly 
in the presence of invalid inputs or stressful environmental 
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conditions” [10] and “the ability to keep the network structure 
(function) intact when exposed to perturbations” [7]. In [11], 
Immers et al. consider robustness to be “the degree to which a 
system is capable of functioning according to its design 
specifications in the case of serious disruptions”. In [12], 
Boccaletti et al. define it a network’s ability to continue to 
operate when a proportion of its constituent elements are 
damaged. In [13], Schillo et al., meanwhile, define robustness 
as the ability to maintain “safety responsibilities”, although they 
also see this as being related in a broad sense to system 
performance. In the context of URNs, robustness is defined in 
this study as the ability of a system to maintain its original 
performance when experiencing disruptions. It is also 
noteworthy that there are similarities between robustness and 
resilience. They both do not have unified definitions due to the 
diversity of network systems, and are both related to the ability 
of a system withstanding internal/external disturbances. 
However, they have significant differences. Robustness focuses 
on the ability of a system to maintain its original performance, 
which is inherent and static, while resilience emphasizes on the 
ability to ‘bounce back’ to the normal state of the system [14, 
15]. 

There are many measures of robustness related to road 
networks, and the number of studies related to robustness of 
road networks is considerable relatively, which mainly focuses 
on either topology-based or traffic-based models. So far, 
however, no quantitative assessments of the robustness of 
URNs with different sizes have been able to capture the realistic 
features of networks experiencing global disruptions. Based on 
this, a relative area index (RAI) is proposed to conduct such 
benchmark analysis of multi-scale URNs, in order to examine 
the ability, namely, immunity of URNs against global 
disruptions. 

The contribution of this paper is to propose a benchmark 
index, the relative area index (RAI), that can be used to measure 
the robustness of multi-scale URNs against different types of 
global capacity degradation. The RAI quantitatively captures 
the networks’ ability to withstand internal or external global 
disruptions, and to keep performing at a satisfactory level. 
Based on this, the benchmark analysis of the robustness is 
conducted for six selected realistic urban road networks. Three 
types of weight parameters are utilized to model the nature of 
different global disruptions, and, in common with other 
network topological assessments of robustness, Spearman’s 
ranking correlation test is applied to reveal potential 
correlations between proposed indices and weighted 
betweenness centrality. The aim of this study provides an 
effective tool for benchmark management of robustness 
planning on urban infrastructure against global disruptions, so 
as to facilitate the understanding to health state and immunity 
of URNs. 

The paper is structured such that section 2 reviews previous 
work on the measurement of robustness, encompassing both the 
topological and operational sides of that question, and 
classifications of disruptions. Following this, section 3 explains 
the concepts and methodological approaches applied in this 
research, including weighted betweenness centrality and the 

relative area index based on User Equilibrium (UE) and System 
Optimum (SO) principles. Section 4 then presents a case study 
analysis to benchmark six urban road networks. Section 5 
concludes the study, and discusses future works.  

II. LITERATURE REVIEW 
Until recently there was relatively little research into the 

robustness of transport networks to disruptions [16]. 
Nonetheless, the number of studies related to robustness of 
transport networks is now considerable. These mainly explore 
robust characteristics of networks based on either the topology 
of networks or traffic-based models. We review the literature 
on robustness in transport networks within these two classes. In 
addition, we also review the disruptions which may cause the 
negative impacts on URNs, so as to understand how they affect 
URNs. 

A. Robustness based on topology 
 
Topological indices of the robustness of networked systems 

focus on the network topology of networks without taking into 
account the distribution of any quantity transported by the 
network. Topological indices are based on complex network 
theory and include measures such as degree centrality, 
clustering coefficient, betweenness centrality, and the size of 
the largest connected component [17]. In essence these 
measures aim to reflect how efficiently the underlying network 
functions [18-22], and in that sense they are intrinsically also 
measures of robustness. In [23, 24], Shang et al. and Callaway 
et al. explain these indices more fully. 

In [22], Albert et al. consider measures such as the change of 
diameter, the size of the largest cluster and the average size of 
isolated clusters as means of assessing the tolerance of networks 
to disruptions, whether deliberate or random. In [18], Holme et 
al. find that removing nodes from complex networks in a 
descending order of recalculated degree and betweenness has a 
more adverse effect on robustness than when nodes are 
removed in a descending order of initial degree and 
betweenness. Similarly, in [19], Crucitti et al. focus on shortest 
paths as a measure of the efficiency of simulated networks, in 
[25], Crucitti et al. examine the consequences for the global 
efficiency of electric networks when nodes are either removed 
randomly or in descending order from the largest load. In the 
context of road networks, meanwhile, in [26], Sakakibara et al. 
propose a topological index based on network 
dispersiveness/concentration to evaluate robustness in disaster 
situations, aiming to minimize the isolation of districts in such 
circumstances. In [27], Sun et al., meanwhile, focus on 
betweenness: i.e. the measure of how often a given node is on 
the shortest route between any pair of nodes. They show how 
the robustness of an air traffic control network can be measured 
using a statistical distribution of the betweenness of all the 
nodes in that network. Specifically, they argue that networks 
with a higher number of nodes with small betweenness will be 
more robust against individual failures than a network with 
fewer such nodes.  

To identify the critical factors, in [28], Wang et al. utilize the 
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area of radar diagrams for ten topological metrics to assess 
overall robustness of 33 realistic metro networks, as a result, 
transfer stations and long link sections are identified as two 
important factors of robustness of metro networks. In [29], 
Clark et al. have developed an approach to assess robustness 
and resilience of National Airspace System (NAS), the relative 
size of largest connected cluster in the NAS is used to quantify 
the tolerance to loss of critical functions, and they demonstrate 
that centrality measures are a good platform for supporting 
restoration. In addition, in [30], Zhang et al. explore the 
robustness and vulnerability of Shanghai metro network by 
calculating its network efficiency from topological perspective 
when removing nodes.   

Although many studies into network robustness, such as 
those above, adopt topological approaches to the problem, 
topological indices are unable to capture realistic capacity, 
traveler behaviors and flow patterns in urban road networks 
(URNs).  

B. Robustness based on traffic-based models 
In the context of URNs, therefore, operational indices are also 

often used to measure robustness. These take into account travel 
demand, driver behaviors [31] and link capacity. In this strand 
of the studies, in [32], Scott et al. proposed a new Network 
Robust Index (NRI), encompassing network flows, link 
capacity and network topology. This seeks to locate the links 
that have the most impact on the efficiency of a network by 
estimating the overall impact on travel time as individual links 
are removed from the network. This study then compares the 
results from the NRI calculation to those of the traditional 
measure of critical links, the volume/capacity (V/C) ratio, 
revealing that NRI provides better planning solutions for 
congested networks than V/C. In [33], Sullivan et al. extend the 
earlier work by proposing the Network Trip Robustness (NTR) 
as a measure of the system-wide robustness of transportation 
networks in circumstances where links experience reductions in 
capacity. In [34], Nagurney and Qiang, meanwhile, propose a 
network efficiency measure by capturing demand, flows, costs 
and user behaviors from a traffic user equilibrium model, and 
then use the measure to access the robustness of transport 
networks and rank the impact of individual links on the 
efficiency of the whole network. In their subsequent work [35], 
Nagurney and Qiang then use the relative change in the 
proposed measure as a proxy for the robustness of the network 
to a gradual reduction in the capacity of all its links. Indeed, this 
study focuses on degrading link capacity rather than removing 
links, which distinguishes Nagurney and Qiang’s work from 
that other previous studies. Thereafter, in [36], Nagurney and 
Qiang develop another measure of robustness to degraded 
network links, which they dub the “relative total cost index”. 
That approach picks up the travel behaviors associated with 
User Optimization (UO) and System Optimization (SO) to 
derive the overall cost of a given journey. In [37], Zhao et al. 
utilize this relative total cost index based on stochastic user 
equilibrium to investigate the robustness and Braess paradox of 
networks. 

Although there are not many measures of robustness based on 

operational indices, they are able to apprehend features such as 
travel demand, link capacity and driver behavior more 
realistically. In addition, the quantitative measures of 
robustness of road networks with different sizes against global 
capacity degradation are highly insufficient. 

C. Classification of disruptions 
There have been many studies into disruptions of URNs, 

such as transit strikes [38-40], bridge closure/collapse [41-43], 
special events [44, 45] and earthquakes [46-48]. Broadly, these 
disruptions can be categorized as expected or unexpected in 
nature [49,50], and as occurring in a regular, predictable way, 
or not [11]. TABLE Ⅰ that categorizes potential disruptions is 
shown below. 

While all these disruptions have the potential to result in the 
poor functioning of URNs, and some may even result in a risk 
of system collapse[51], this study focuses on those that have the 
potential for more serious effects on the road infrastructure, i.e. 
those that could negatively affect an URN at global level. These 
disruptions include extreme weather conditions and other 
natural calamities [52]. Furthermore, these disruptions affect 
transport networks in different ways: some, such as torrential 
rain, lead to reduce capacity, while others, such as an 
earthquake, may remove nodes/links[53]. 

Based on above review, this study mainly concentrates on the 
disruptions which impact the URNs by means that may cause a 
global capacity degradation. The study specifically seeks to 
examine the inherent robustness of URNs against global 
disruptions caused by extreme weather condition or natural 
calamities that have the potential to cause high levels of 
destruction to the road infrastructure. 

III. METHODOLOGY AND DATABASE 
The methodology applied in this study is (1) to use the 

proposed relative area index (RAI), derived from user 
equilibrium (UE) and system optimum (SO), to quantify the 
robustness of URNs; and (2) to use weighted betweenness 
centrality (WBC) as a baseline.  

In order to show the calculation process of RAI in full, the 
UE and SO is quickly recapped, although the discussions of 
them are standard. More detailed information is referred to [54] 
and [55]. 

TABLE I 
CATEGORIES OF ROAD DISRUPTIONS 

 Frequent Unusual 

Predicted   Predictable changes in 
supply and demand, 
planned or regular 
maintenance 

Major public events, bad 
weather, strikes 

Unpredicted  Minor road traffic 
accidents, facility 
failures 

Natural disasters, deliberate 
damage or hostile acts (e.g. 
terrorist, military or cyber 
attacks) 
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A. The relative area index under distinct principles 
Assuming in a directed network 𝐺(𝑁, 𝐴), 𝑁 is a set of nodes, 

𝐴 is a set of links, 𝑊 is a set of origin-destination (OD) pairs, 
(𝑖, 𝑗)  ∈ 𝑊 indicates a specific OD pair and 𝑇𝑖𝑗 is fixed travel 
demand. In addition, the paths for OD pair (𝑖, 𝑗)  ∈ 𝑊 is the set 
𝑃𝑖𝑗, the unit travel cost to complete path 𝑝 ∈ 𝑃𝑖𝑗 is  𝑐𝑝, and the 
flow on path 𝑝 is represented as  ℎ𝑝. 

The link flows, 𝑓𝑎, are associated with the path flows and are 
represented in the equation: 

 𝑓𝑎 = ∑ 𝛿𝑎𝑝ℎ𝑝

𝑝∈𝑃

  ∀𝑎 ∈ 𝐴   (1) 

where 𝛿𝑎𝑝 is a link-path incident matrix: 

𝛿𝑎𝑝 = {
1                     𝑖𝑓 𝑎 belongs to 𝑝 
0     𝑖𝑓 𝑎  does not belong to 𝑝

 

 

The cost of travelling on a given path in the network is 
articulated in (2): 

 𝑐𝑝 = ∑ 𝛿𝑎𝑝𝑐𝑎(𝑓)

𝑎∈𝐴

  ∀𝑝 ∈ 𝑃 (2) 

In the above, 𝑐𝑎 is a unit cost function that is intrinsically 
dependent on the flow along the link—represented as 𝑓 =
(𝑓𝑎: 𝑎 ∈ 𝐴). This is then combined with the well-known US 
Bureau of Public Roads [56] (BPR) link performance function 
to create the link function shown in (3):  

 𝑡(𝑓𝑎) = 𝑡𝑎 (1 + 𝛼 (
𝑓𝑎

𝐾𝑎
)

𝛽

)   ∀𝑎𝜖𝐴   
   

(3) 

where 𝑓𝑎 denotes flows on each link 𝑎 ∈ 𝐴,  𝑡𝑎 and 𝐾𝑎 are, 
respectively, the free flow travel time and capacity of link 𝑎; 
and  𝛼, 𝛽 are positive constants. 

The following flow conservation must hold: 

 𝑇𝑖𝑗 − ∑ ℎ𝑝 

𝑝∈𝑃𝑖𝑗

= 0       ∀(𝑖, 𝑗) ∈ 𝑊      

(4) 

Then the set of feasible flows is shown below: 

 𝛾 = {ℎ ≥ 0: 𝑇𝑖𝑗 − ∑ ℎ𝑝 

𝑝∈𝑃𝑖𝑗

= 0  ∀(𝑖, 𝑗) ∈ 𝑊 }  (5) 

As (5) describes, the sum of the flows across all the 
individual paths of the O-D pair (𝑜, 𝑑) equates to the overall 
travel demand for the (𝑜, 𝑑). 

1) Total cost under User Equilibrium (UE)  

The Wardrop [57] proposed a principle that a certain 
equilibrium is reached when individual drivers selfishly pursue 
the maximization of their personal interests. This concept, often 
referred to as “User Equilibrium” (UE) can be expressed 
mathematically using the optimization below [58]. 

 𝑀𝑖𝑛 𝑍 = ∑ ∫ 𝑐𝑎(𝑓𝑎)𝑑𝑓
𝑓𝑎

0𝑎

 (6) 

Subject to 

 ∑ ℎ𝑝 

𝑝∈𝑃𝑖𝑗

= 𝑇𝑖𝑗             ∀(𝑖, 𝑗) ∈ 𝑊                      
(7)       

 
 𝑓𝑎 = ∑ ∑ ∑ 𝛿𝑎𝑝

𝑖𝑗
ℎ𝑝

𝑖𝑗

𝑝𝑗𝑖

   ∀𝑎 ∈ 𝐴               
(8) 

     

 
    ℎ𝑝

𝑖𝑗
≥ 0        ∀𝑝 ∈ 𝑃𝑖𝑗 , ∀(𝑖, 𝑗) ∈ 𝑊 

𝑓𝑎 ≥ 0                               ∀𝑎 ∈ 𝐴 
 (9) 

The total cost (𝑇𝐶𝑈𝐸) of travel in a network that is at its user 
equilibrium is given by: 

 𝑇𝐶𝑈𝐸 = ∑ 𝑓𝑎
∗𝑐𝑎(𝑓𝑎

∗)

𝑎∈𝐴

 (10) 

 

The equations above include the objective (6), and a series of 
constraints, respectively, for conservation  (7) and (8), and non-
negative flows (9). The link cost function increases 
monotonically such that the link flow pattern of UE is unique 
[59] and the objective of the program is convex. A fixed point 
algorithm (FPA) is applied to the calculation of UE solutions 
𝑓𝑎

∗. For the detailed procedure for this refer to [55]. 

2) Total cost under System Optimum (SO)  

Another significant contribution by Wardrop [57] lies in his 
second principle of traffic assignment: System Optimum (SO). 
This is the process whereby centralized controllers assign 
drivers to routes in such a way as to minimize the total travel 
costs incurred by all drivers [60]. The System Optimum can be 
expressed mathematically using the nonlinear optimization 
below: 

 𝑀𝑖𝑛 𝑍 = ∑ 𝑓𝑎𝑐𝑎(𝑓𝑎)

𝑎

 (11) 

Subject to 
 ∑ ℎ𝑝 

𝑝∈𝑃𝑖𝑗

= 𝑇𝑖𝑗             ∀(𝑖, 𝑗) ∈ 𝑊     
(12) 
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 𝑓𝑎 = ∑ ∑ ∑ 𝛿𝑎𝑝
𝑖𝑗

ℎ𝑝
𝑖𝑗

𝑝𝑗𝑖

   ∀𝑎 ∈ 𝐴     
(13) 

 
    ℎ𝑝

𝑖𝑗
≥ 0        ∀𝑝 ∈ 𝑃𝑖𝑗 , ∀(𝑖, 𝑗) ∈ 𝑊  

 𝑓𝑎 ≥ 0                               ∀𝑎 ∈ 𝐴  

Here, the total cost (𝑇𝐶𝑆𝑂) of travel in a network that is at its 
system optimum is given by: 

 𝑇𝐶𝑆𝑂 = ∑ 𝑓𝑎
∗𝑐𝑎(𝑓𝑎

∗)

𝑎∈𝐴

   
(14) 

 

In this study, FPA is used to calculate the SO solutions 𝑓𝑎
∗.  

3) Robustness key performance indicator (KPI): Relative 
Area Index (RAI) 

We use the above principles of UE and SO as the basis for 
our proposed Relative Area Index (RAI) to explore the 
robustness of multi-scale URNs. 

Various levels of capacity degradation for global URNs are 
taken into account. Let u be a capacity degradation parameter 
(CDP) between 𝑢0 and 𝑢𝑐. When u is equal to 𝑢0, URNs do not 
suffer from any disruptions and the capacity of URNs stays 
maximum. 𝑢𝑐  denotes URNs that are subject to a capacity 
degradation level which may cause a significant increase of 
total travel cost. Furthermore, 𝑇𝐶𝐸(𝑢) is denoted as the curve 
of total cost based on equilibrium state of URNs suffering from 
capacity reduction of u, which can be calculated by (6)-(10) and 
(11)-(14) according to different equilibrium principles: UE and 
SO. Some examples that depict the evolution of network 
performance under different levels of global disruptions are 
shown in Fig. 1 below.  

Total 
Equilibrium 

Cost

TCEA(u)

u

u0 uc

u

TCE(uc)

uTCE(u0)

Total 
Equilibrium 

Cost

Total 
Equilibrium 

Cost

u0 uc u0 uc

TCE(u0)

TCE(uc)

TCEA(u)
TCEB(u)

TCEB(u)

(a) (b) (c)

 
Fig. 1. (a): two examples of the function 𝑻𝑪𝑬(𝒖): the lower (blue) is a more robust network than the upper (red) one. (b): illustration of the relative area (the 
ratio of the shadowed area to the area within the box) as an indicator of by how much the network capacity is reduced. (c): illustration that some form of 
weighting is needed since two different curves can return the same relative area. 

In order to capture and quantify deterioration of global 
capacity of URNs, we consider the area formed by the 𝑇𝐶𝐸(𝑢) 
curve. The two line segments (Fig. 1. (a)) represent different 
evolution curves of total cost for different URNs suffering from 
global disruptions. Two functions, 𝑇𝐶𝐸𝐴(𝑢)  and 𝑇𝐶𝐸𝐵(𝑢) 
corresponding to URN A and URN B, show that URN B is more 
robust than URN A. The shadow area (Fig. 1. (b)) reflects how 
much the network-level cost deviates from the original 
performance (total cost without disruptions) as the network 
capacity is reduced. Therefore, the smaller the shadow area is, 
the more robust the URN is against global disruptions. Because 
two different 𝑇𝐶𝐸(𝑢) curves may yield the same area (Fig. 1. 
(c)), a weighting parameter 𝑤(𝑢) is introduced to distinguish 
such case. 𝑤(𝑢)  can be assigned different values which 
depends on the types and nature of disruptions. For example, 
if the global disruptions are caused by daily maintenance, the 
capacity degradation is mild, and the smaller weights will be 
assigned to 𝑤(𝑢) with larger 𝑢. Therefore, as shown in graph 
(c) of Fig. 1, the city A (red line) has a larger weighted area than 
city B (blue line) and thus is less robust. In this study, three 
types of weighting parameters are used. The first type assigns 
the equal values to 𝑤(𝑢), which corresponds to the disruptions 

that may impact URNs to the same extent as network capacity 
deteriorates, such as regular maintenance activities. The second 
type assumes that the larger weights correspond to the smaller 
values of 𝑢 , and this type of disruptions tend to cause the 
cascading failure, such as traffic accidents at the critical parts 
of URNs. The third type assumes that the larger values of 𝑢 use 
higher weights, which is related to the disruptions that have 
accumulative impacts on URNs, such as continuous rainfall or 
snowfall. These three types of weighting parameters can reflect 
the different ways that disruptions impact URNs, and will 
facilitate the exploration of robustness of URNs against global 
capacity degradation. Following this, Relative Area Index (RAI) 
for URNs is formulated as follows:  

The numerator of (15) is the weighted area with weights, 
which measures how much the curves deviate from the original 
performance of URNs at equilibrium state. The equation’s 
denominator, however, serves to normalize the area. This 
makes it possible to examine by how much the performance of 

 

𝑅𝐴𝐼 =
∫ 𝑤(𝑢)[𝑇𝐶𝐸(𝑢) − 𝑇𝐶𝐸(0)]𝑑𝑢

𝑢

0

∫ 𝑤(𝑢)
𝑢

0
𝑇𝐶𝐸(0)𝑑𝑢

 

    

(15) 
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a road network has reduced compared to its undisturbed 
performance. For a given URN, the larger the RAI is, the greater 
the increase in the cost associated with the URN when the 
network capacity drops, thus the URN is less robust for global 
disruptions. In the study, we utilize the total travel cost and 
relative area to measure the performance and robustness of 
URNs, respectively, and (15) is able to illustrate the relationship 
between network performance and the robustness of URNs well. 

Since the RAI used in this study is based on UE and SO 
principles, the proposed index can be divided into RAI-UE and 
RAI-SO respectively.  

This RAI index is very similar to an index proposed by [23]. 
The latter index is more focused on the capacity reduction at the 
nodal level and is based on the maximal flow model of 
European air traffic network, whereas this novel RAI is based 
on the UE and SO traffic model of URNs and more concentrates 
on the robustness of URNs suffering from global disruptions at 
network level. 

B. Weighted betweenness centrality 

Betweenness centrality (𝐵𝐶) is another important topological 
concept for exploring the robustness of urban road networks 
[61]. 𝐵𝐶𝑖 is defined at each node i, as: 

 
𝐵𝐶𝑖 = ∑

𝑁𝑗𝑘(𝑖)

𝑁𝑗𝑘
𝑗,𝑘∈𝑉

    
(16) 

 

where 𝑁𝑗𝑘(𝑖) is the number of shortest paths passing through 
the node i, and  𝑁𝑗𝑘 is the total number of shortest paths between 
any pair of nodes. 

The edge weight is the actual distance of the link so it is 
called weighted Betweenness centrality. Depending on the 
needs of each particular piece of research, however, the edge 
weight of betweenness centrality may use different types of 
values, such as flow on each link and physical distance. Since 
there is usually a lack of data on link flows, physical distance is 
generally used as the weight of links [62], and we follow this 
approach here. 

Betweenness measures how often a given node connects a 
network’s most critical paths; thus 𝐵𝐶𝑖 is the importance of that 
given node in those networks [63]. This helps to identify the 
key components and the robustness of networks subject to 
disruptions in specific localities. 

C. Database 

The novel RAI introduced above is used to assess the 
robustness of multi-scale URNs suffering from global capacity 
degradation. Data related to URNs are mainly obtained from a 
website1 frequently used for transportation problems. Since the 
available data sources are very limited, and since it is 
computationally expensive to calculate UE and SO solutions for 
large URNs, we selected networks from Anaheim, 
Friedrichshian centre, Prenzlauerberg centre, Tiergarten centre, 

 
1 http://www.bgu.ac.il/~bargera/tntp/ 

Mitte centre, and Mitte-Prenzlauerberg-Friedrichshain (MPF) 
centre for the benchmark analysis of the robustness. These 
URNs are appropriate for exhibiting how RAI effectively 
examines the robustness of multi-scale URNs. In this study, we 
mainly focus on single-mode (car) traffic, and the OD demand 
is assumed to be fixed. In reality, OD demand is probably 
uncertain and varies over time, but on the one hand, real-time 
OD demand data is not available from the dataset, on the other 
hand, the number of traffics in cities between origins and 
destinations tends to be stable for a relatively long term. 
Therefore, fixed OD demand is appropriate to be used to assess 
robustness here. 

IV. CASE STUDY 
This section applies the methodology described above to 

determine the robustness performance of the six selected urban 
road networks in the context of global capacity degradation. In 
the study, the size of the selected URNs is appropriate for 
frequently calculating total travel cost at equilibrium, and 
global disruptions can be defined as events that cause the 
capacity degradation of URNs at global level, such as extreme 
weather conditions. Although there are many ways to assess the 
robustness of a network, as explained in section 2, these are 
unable to quantitatively examine and compare the robustness 
performance of multi-scale urban road networks experiencing 
disruptions, taking into account travel demand, link capacity, 
driver behaviors and so on. Thus the relative area index (RAI) 
has been developed here to conduct benchmark analysis of 
robustness for URNs with different sizes, and then make 
comparisons to the results of WBC. 

A. Benchmark analysis of robustness based on RAI 

As can be seen from Fig. 2, it presents the relative TUE and 
TSO curves for the six selected networks when they are subject 
to global capacity deterioration. Here TUE and TSO refer to the 
total travel cost at UE and SO equilibrium under different levels 
of capacity degradation, respectively. The values of TUE and 
TSO are normalized by their values without any capacity 
reductions. 

In this section, three sets of RAI are calculated using three 
different weighting parameters (WP), which emphasize the 
impact of the different types of disruptions on the network 
performance. The first WP takes the equal values, and is 
denoted as ‘WP1’ in Fig. 3. As for the second and third WP, 
lower (higher) weight values are assigned to higher capacity 
degradation and higher (lower) values are assigned to lower 
capacity degradation, and are denoted as WP2 and WP3, 
respectively. The values of WP2 and WP3 vary from 12 to 0 and 
0 to 12 accordingly so as to distinguish the impact of different 
levels of capacity deterioration. In fact, range of values depends 
on the range of capacity reduction. Assigning values to these 
weights is an interesting research topic, but we are not going to 
discuss it due to the limitation of space and the scope of this 
study. In this study, we just simply use the percentage of 
network capacity reduction to indicate the impacts of global 
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disruptions on the URNs, which are all based on previous 
experience rather than precise calibration. As the advance of 
Information and Communication Technology (ICT), advanced 

sensors have potential to accurately estimate the global capacity 
degradation of URNs, which would be our focus in the future 
study. 

 
Fig. 2. Normalized TUE and TSO curves for six urban road networks subjected to a global reduction in capacity 

The figure shows global capacity reduction ranges from 0% 
to 65% (i.e. a 100%–35% capacity retention rate). The reason 
why the capacity reduction is only within the range 0% to 65% 
is that this range is appropriate for frequent calculation of UE 
and SO equilibrium, and examples here are just used for 
presenting how this novel RAI works. This figure shows the 
curves of normalized total cost of UE and SO for selected URNs 
at different levels of global capacity degradation. It is evident 
from the normalized TUE and TSO data in Fig. 2 that the 
network whose total cost varies the most when it experiences 
capacity reductions is that of Anaheim. On the other hand, the 
MPF network is relatively close to original total cost, and 
curves of other networks such as Friedrichshian and 

Prenzlauberg, cross each other. If the WPs at each level of 
capacity reductions are equal (WP1 case), we may say the 
robustness of Anaheim is the worst and WPF is the most robust 
among the six selected URNs suffering from global capacity 
degradation. However, it is difficult to tell which of the other 
URNs has better robustness since some of the curves overlap or 
cross. If we turn then to the WP2 and WP3 cases, it becomes 
still more difficult to distinguish the robustness. In these cases, 
the RAIs are calculated based on (16) so as to quantify the 
magnitude of deviations as accurately as possible, by taking 
into account the nature of different types of disruptions. All RAI 
values for the different types of WP are shown in Fig. 3.  

 
Fig. 3. RAIs of URNs based on TUE and TSO with three types of WP 

As can be seen from Fig. 3, three sets of RAI for selected 
URNs are presented based on UE and SO principles, and the 
ranking based on RAI-SO is approximately consistent with that 

based on RAI-UE. In the principle of UE, RAIs for three types 
of WP show that Anaheim has the worst robustness and MFT is 
assessed as the most robust against the global capacity 
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degradation from 0% to 65%. Overall, rankings of RAI in all 
three cases of WP are nearly identical, and in the cases of WP1 
and WP3, the following robust URN is Tiergarten, Mitte, 
Friedrichshian and Prenzlauerberg rank third, fourth and fifth 
robust. In the case of WP2, due to the fact that lower capacity 
degradation takes higher weight, the ranking of robustness 
based on RAI is slightly different from the cases of WP1 and 
WP3, and Friedrichshian is measured as the second worst robust, 
followed by Prienzlauerberg, Mitte and Tiergarte. 

In contrast to UE, the rankings of RAIs based on SO for all 
three types of WP are completely identical, MFT network 
shows the best robustness among all selected URNs, the 
following are Tiergarten, Mitte, Friedich and Prienzlauerberg, 
while Anaheim seems to have worst robustness against global 
disruptions. Due to the fact that RAI is calculated by 
considering many realistic characteristics, it is very difficult to 
distinguish which factors may impact the robustness of 
Anaheim most greatly, but network topology plays an important 
role in its robustness. The rankings between RAI-SO and RAI-
UE are approximately the same except the fourth and fifth 
places of RAI-UE with WP2. In addition, all values of RAIs 
based on UE and SO with three types of WP are summarized in 
TABLE Ⅱ, and it demonstrates that differences of robustness 
are not completely related to the size of URNs (number of nodes 
and links), that is, the immunity of URNs to global disruptions 
is not necessarily correlated with the scale of URNs. Intuition 
would suggest that the larger the scale of a URN the more robust 
it is likely to be, since larger URNs are likely to have more spare 
capacity [64]. Our finding goes against this intuition, however. 
The reason for this non-intuitive result depend on the complex 
nature of urban traffic and reflects realistic factors such as flow 
patterns, network topology and user behaviours.  

Overall, as can be seen in TABLE Ⅲ, different types of WPs 
appear to have little impacts on the ranking of robustness. Also, 
the rankings of RAIs under principles of UE and SO are nearly 
identical. However, it is worth noting that RAIs under the 

principle of SO are smaller than those under UE (as shown in 
Fig. 4), which implies that when the URNs suffer from global 
disruptions, global management from central entities may 
achieve better robustness than all individual users selfishly 
pursuing personal benefits maximum. In fact, the differences of 
RAI under UE and SO principles are very similar with Price of 
Anarchy [65], which is also used to measure the inefficiency of 
the systems caused by selfish behaviors. 

 
Fig. 4. Differences of RAIs between UE and SO 

B. Comparisons between RAI and WBC 

RAI-UE and RAI-SO are compared in TABLE Ⅱ with the 
WBC, which, as explained in section 3, has been used to 
measure the robustness of networks [27].  

As can be seen, TABLE Ⅲ shows how these networks rank 
in terms of their robustness. 

TABLE Ⅱ 
Summary of RAIs and WBC for six urban road networks (N denotes the number of nodes and L represents the number of links).

Networks N L 
RAI-UE RAI-SO 

WBC 

WP1 WP2 WP3 WP1 WP2 WP3 

Anaheim 416 914 0.6171 0.2590 0.9752 0.6100 0.2522 0.9678 0.0316 
Friedrichshian 224 523 0.2786 0.1625 0.3947 0.2211 0.1225 0.3198 0.0406 
MPF 975 2184 0.1196 0.0671 0.1721 0.0905 0.0487 0.1322 0.0124 
Mitte 398 871 0.2029 0.1021 0.3036 0.1686 0.0773 0.2600 0.0309 
Prenzlauerberg 352 749 0.3409 0.1538 0.5280 0.3305 0.1462 0.5147 0.0364 
Tiergarten 361 766 0.1266 0.0679 0.1854 0.1050 0.0525 0.1575 0.0352 

 

TABLE Ⅲ 
 Robustness rankings of urban road networks 

Rank 
RAI-UE RAI-SO 

WBC 

WP1 WP2 WP3 WP1 WP2 WP3 
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1 MPF  MPF  MPF  MPF MPF  MPF  MPF 
2 Tiergarten  Tiergarten  Tiergarten  Tiergarten Tiergarten  Tiergarten  Mitte 
3 Mitte Mitte Mitte Mitte Mitte Mitte Anaheim 
4 Friedrichshian Prenzlauerberg Friedrichshian Friedrichshian Friedrichshian Friedrichshian Tiergarten 
5 Prenzlauerberg Friedrichshian Prenzlauerberg Prenzlauerberg Prenzlauerberg Prenzlauerberg Prenzlauerberg 
6 Anaheim Anaheim Anaheim Anaheim Anaheim Anaheim Friedrichshian 

The WBC can measure how frequently a given node of URNs 
can be passed by the shortest paths of all OD pairs [3]. 
According to [27], a network is more robust if the proportion of 
nodes with high BC is lower, which means the WBC of a 
network can be related to the robustness of the network. 
TABLE Ⅲ shows a significant difference between the raking 
obtained using RAI-UE or RAI-SO and those obtained WBC. 
However, RAI-UE, RAI-SO and WBC all identify MPF the 
most robust URN. The Spearman correlation coefficients of 
rankings between them are not very high, and all below 0.55. 
Here Spearman correlation coefficient is used to measure how 
well the monotonic relationship between two variables exists 
[66]. Although betweenness centrality can measure the 
“importance” of a given node in a network, it does so from the 
perspective of network topology alone, and is thus not a 
sophisticated measure encompassing the characteristics that 
realistically inform URNs, such as capacity, flow propagation 
and driver behaviors. This weakness is addressed by RAI-SO 
and RAI-UE. The RAI also better quantifies the robustness of 
urban road networks experiencing global capacity degradation. 
Altogether, therefore, the proposed RAI offers a more complete 
and realistic assessment of the robustness of urban road 
networks. The differences of robustness among these six URNs 
root in distinctive network structure and spatial layout, different 
distributions of travel demand on different OD pairs, and non-
identical travelers’ behaviors. These heterogeneous 
characteristics jointly lead to different robustness of the URNs, 
and we may explore this in the future given that the current 
datasets are very limited. 

Through such comparisons, the robustness rankings of these 
multi-scale URNs against global disruptions are presented and 
analyzed, which may shed light on the planning and 
management of urban traffics. 

V. CONCLUSION 

In the context of Health Examination (HE) of urban 
transportation, in order to measure the immunity of urban road 
networks (URNs) against disruptions which may cause the 
global capacity degradation, this study proposed a novel index, 
the relative area index (RAI), that quantitatively measures 
robustness and allows to conduct, for the first time, robustness 
benchmarking amongst URNs with different sizes. This 
research sheds light on how to quantify the immunity of urban 
transportation against global disruptions. The proposed RAI 
provides different insights from distinct perspective to assess 
the robustness of multi-scale URNs, and compared to WBC, 
this RAI is more confident to provide more reliable and realistic 

suggestions regarding mitigation of disruptions to the planners 
and managers of urban transportation. 

In the future, this research could be further developed in a 
variety of ways. Firstly, due to the limitation of data sources, 
only six URNs are utilized as numerical examples. The 
robustness of many more URNs with different characteristics 
can be calculated with our RAI. Following this, other aspects of 
the immunity of urban transportation can be explored and 
quantified, such as the local disruptions which may cause 
node/link capacity reductions. Furthermore, although this study 
provides an effective tool for measuring the robustness and 
conducting benchmark analysis of multi-scale URNs, the 
reasons why some URNs show better robustness than others 
based on RAI are not deeply explored, and many factors are 
probably involved, such as travel demand, flow patterns and 
topology of URNs.  
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