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Abstract

Many time-dependent linear partial differential equations of mathematical physics and con-
tinuum mechanics can be phrased in the form of an abstract evolutionary system defined on a
Hilbert space. In this paper we discuss a general framework for homogenization (periodic and
stochastic) of such systems. The method combines a unified Hilbert space approach to evolution-
ary systems with an operator-theoretic reformulation of the well-established periodic unfolding
method in homogenization. Regarding the latter, we introduce a well-structured family of uni-
tary operators on a Hilbert space that allows to describe and analyze differential operators with
rapidly oscillating (possibly random) coefficients. We illustrate the approach by establishing pe-
riodic and stochastic homogenization results for elliptic partial differential equations, Maxwell’s
equations, and the wave equation.
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1 Introduction

In this work we propose an abstract strategy for homogenization of evolutionary equations. The
methods we present are based on a combination of three concepts: The abstract unified theory for
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evolutionary equations introduced in [26] (see also [19, 27]), their homogenization theory developed
in [40] (with plenty of applications, see references below), and the stochastic unfolding procedure
recently introduced in [23, 14].

According to [26] (see also [27, 29, 46] and the references therein) a large variety of linear
evolutionary equations of mathematical physics can be recast in the following form:

(M(∂t,ν) +A)u = F,

where z 7→M(z) denotes a family of linear bounded operators on a Hilbert spaceH and A is a skew-
selfadjoint densely defined operator on H; M(∂t,ν) is defined in the sense of an explicit functional
calculus for ∂t,ν , the time derivative, which is established as a boundedly-invertible operator. We
refer to [26] (see also [32, 46, 27, 36, 35]) for existence and other essential results regarding the
above equation. We briefly recall the most important ingredients of this framework in Section 4.1.

In many applications one is interested to describe physical properties of systems (e.g., compos-
ites, alloys, metamaterials) that feature material heterogeneities on a small length (or time) scale,
say ε ≪ 1. In the above described framework this may be described by equations of the form

(Mε(∂t,ν) +A) u = F, (1)

where Mε denotes a sequence of operators with “coefficients oscillating on scale ε”. The goal of
homogenization is to derive a simplified, effective equation, say an equation of the form

(M0(∂t,ν) +A)u = F, (2)

that captures the large scale properties of the original system. This is typically achieved by studying
the asymptotics ε → 0, and by proving that the solution of (1) converges in a suitable sense
to the solution of the effective problem (2) as ε → 0. In the context of abstract evolutionary
equations this has been studied in [40, 41, 42, 43, 44, 47, 46, 48, 49]. Apart from [41, 43, 49],
the results obtained in these works are typically H-compactness statements, that is, it is shown
that given a family of operators (Mε) (in a suitable class), it is possible to find (i) a subsequence
along which homogenization occurs and (ii) a “homogenized” operator M0 that appears in the
homogenized equation and that possibly belongs to a larger class. In applications (e.g., modelling of
microstructured materials) the operator Mε typically originates from a partial differential equation
with coefficients that rapidly oscillate on scale ε and that encode the specific form of the material’s
microstructure. In the references [41, 43, 49] for particular equations, some H-convergence results
have been obtained (using certain properties of the microstructure providing explicit formulas
for M0) rather than H-compactness, only. Anyhow, it is desirable to incorporate information
on the microstructure into the general abstract operator-theoretic approach, and to establish a
microstructure-properties relation that allows to uniquely characterize the homogenized operator
M0 based on the information on the microstructure.

In the classical field of homogenization of partial differential equations, the microstructure-
properties relation often comes in form of homogenization formulas based on correctors and cell-
problems. Moreover, various homogenization methods exist that explicitly exploit structural prop-
erties of the microstructure. In particular, two-scale convergence methods are convenient for prob-
lems involving periodic or random coefficients oscillating on a small (physical) scale. Periodic
two-scale convergence [24, 1, 18] and the method of periodic unfolding [8, 39, 9, 20] are well-suited
for problems involving periodic coefficients. For stochastic homogenization problems (e.g., for
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models describing random heterogeneous materials) the notion of stochastic two-scale convergence
[4, 2, 51, 13] and the stochastic unfolding method [14, 23] are available as convenient tools.

In this paper we join the idea of the stochastic/periodic unfolding procedure with the homoge-
nization approach for abstract evolutionary equations of the form (1) (that is we combine [25, 4, 23]
with the ideas rooted in [40, 41]). In particular, we introduce an abstract family of operators which
present a generalization of the stochastic unfolding operator (see Section 2). Upon assuming a set
of structural assumptions for the abstract unfolding operator, we derive a suitable homogenization
result for a system of form (1). A merit in this procedure (in contrast to earlier works on abstract
evolutionary equations) is that the structural conditions we assume allow us to incorporate informa-
tion on the microstructure and to obtain an explicit description of the effective model. The abstract
homogenization result we obtain covers a large variety of problems. To illustrate this, we specifically
reconsider periodic homogenization of elliptic partial differential equations, and obtain (as simple
corollaries of our abstract theorem) stochastic homogenization results for the Maxwell’s equations
and the wave equation. Additionally, we derive corrector type results for the considered examples
that are based on specific properties of the partial differential equation under consideration.

Structure of the paper. In order to motivate the theory, in Section 1.1 we recall the standard
setting for stochastic homogenization and provide the definition of stochastic unfolding. Section 2
provides the definitions of the unfolding operator and two-scale convergence from an abstract point
of view. In the rest of that section we present some important properties of the latter notions.
Section 3 is devoted to the derivation of a homogenization result for an abstract elliptic type
problem. In Section 4.1 we briefly recall the setting for abstract evolutionary equations. Section
4.2 provides a homogenization result for an abstract evolutionary equation. Section 5 treats some
particular examples of the previously discussed abstract theory.

1.1 Motivation: Two-scale homogenization

In this section we recall some classical results and concepts from periodic and stochastic homogeniza-
tion of second order, divergence-form operators with uniformly elliptic coefficients. Our intention
is to motivate some ideas and concepts of the operator-theoretic framework that we develop in the
present paper. To fix ideas, let Q ⊂ R

n denote an open, bounded domain, f ∈ L2(Q), and let
uε ∈ H1

0 (Q) denote the unique weak solution to

−∇ · (a( ·
ε
)∇uε) = f in Q, (3)

where a : Rn → R
n×n denotes a uniformly elliptic coefficient field, i.e., a : Rn → R

n×n
λ,Λ is measurable

and R
n×n
λ,Λ denotes (for some fixed constants of ellipticity 0 < λ 6 Λ) the set of matrices a0 ∈ R

n×n

satisfying a0ξ · ξ > λ|ξ|2 and |a0ξ| 6 Λ|ξ| (for all ξ ∈ R
n).

Periodic homogenization is concerned with the case that the coefficient field a in (3) is periodic,
say a(·+ k) = a(·) a.e. in R

n for all k ∈ Z
n. Under this condition a classical result (e.g., [21, 3, 10])

states that there exists a uniformly elliptic matrix ahom ∈ R
n×n such that (uε)ε>0 weakly converges

in H1
0 (Q) (as ε → 0) to the unique weak solution u ∈ H1

0 (Q) to the homogenized equation

−∇ · (ahom∇u) = f.

The homogenized coefficient matrix ahom is characterized by the formula

ahomei =

∫

�

a(∇ϕi + ei)dx (i ∈ {1, . . . , n}),
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where � := [0, 1)n represents the reference cell of periodicity, ei ∈ R
n denotes the i’th unit vector,

and ϕi ∈ H1
loc(R

n) denotes a periodic solution to the corrector equation

−∇ · (a(∇ϕi + ei)) = 0 in R
n. (4)

Thanks to the periodicity of a, (4) can be solved by lifting the equation to the Sobolev space
of periodic functions with zero mean (where Poincaré’s inequality and uniform ellipticity of a
implies coercivity of the elliptic operator −∇ · (a∇)). The corrector equation (4) is a key object
in homogenization theory for elliptic equations, since its solution – the corrector ϕi – captures
the spatial oscillations of uε induced by the heterogeneity of the coefficient field a. This can be
expressed in terms of the (formal) asymptotic expansions (using Einstein’s summation convention)

uε(x) ≈ u(x) + εϕi(
x
ε
)∂iu(x), ∇uε(x) ≈ ∇u(x) +∇ϕi(

x
ε
)∂iu(x)

or (more precisely) in form of the two-scale convergence statement

∇uε
2→ ∇u+∇ϕi∂iu,

where
2→ denotes the notion of (strong) two-scale convergence introduced in [24] and further inves-

tigated in [1] (see also [18]) and ∇u+∇ϕi∂iu denotes the function (x, y) 7→ ∇u(x)+∇ϕi(y)∂iu(x).
Also, another method closely related to two-scale convergence is the periodic unfolding method
[8, 39, 9], which is based on an unfolding operator that equivalently characterizes two-scale conver-
gence (see also [20]).

In the stochastic case the coefficient field a is assumed to be a random object, i.e., (a(x))x∈Rn is
viewed as a family of Rn×n

λ,Λ -valued random variables. Minimial requirements for stochastic homog-
enization (towards a deterministic limit) are stationarity and ergodicity. The former means that
for any x1, . . . , xN ∈ R

n and z ∈ R
n, the distribution of (a(x1+ z), . . . , a(xN + z)) is independent of

the shift z ∈ R
n. Ergodicity means that any shift-invariant (measurable) subset of the coefficients

has probability 1 or 0. In their seminal work [25], Papanicolaou and Varadhan rephrased these
conditions in an analytic framework that by now became a standard in stochastic homogenization.
In the following we recall their framework and some objects involved in their approach. We refer
to [25, 15] for details (see also the lecture notes [22] for a self-contained presentation). The idea is
to equip Ω := {a : Rn → R

n×n
λ,Λ : a measurable}, the set of all uniformly elliptic coefficient fields,

with a probability measure µ and to draw a randomly from Ω according to µ. The precise setup is
as follows:

Assumption 1. Let (Ω,Σ, µ) denote a probability space with a countably generated σ-algebra
(that implies separability of L2(Ω)), and let τ = {τx : x ∈ R

n} be a group of measurable bijections
τx : Ω → Ω such that:
(a) (Group property). τ0 = idΩ and τx+y = τx ◦ τy for all x, y ∈ R

n.
(b) (Measure preservation). µ(τxA) = µ(A) for all A ∈ Σ and x ∈ R

n.
(c) (Measurability). (ω, x) 7→ τxω is (Σ⊗L(Rn),Σ)-measurable (L(Rn) denotes the Lebesgue-σ-

algebra on R
n).

Let a0 : Ω → R
n×n
λ,Λ be measurable, then a(x, ω) := a0(τxω) defines a uniformly elliptic, random

coefficient field that is stationary (thanks to property (b)). Moreover, in this framework, the
assumption of ergodicity reads: any shift-invariant set A ∈ Σ (i.e., τxA ⊂ A for all x ∈ R

n) satisfies
µ(A) ∈ {0, 1}.
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Under the conditions of Assumption 1 and ergodicity, Papanicolaou and Varadhan proved the
following homogenization result: For f ∈ L2(Q) and ε > 0, let uε ∈ H1

0 (Q) ⊗ L2(Ω) denote the
unique (Lax-Milgram) solution to

−∇ · (a0(τx

ε
ω)∇uε(x, ω)) = f(x) in Q× Ω. (5)

Then there exists a uniformly elliptic coefficient matrix ahom ∈ R
n×n (only depending on µ and

a0) such that uε weakly converges in H1
0 (Q) ⊗ L2(Ω) to the unique solution u ∈ H1

0 (Q) of the
homogenized equation −∇ · (ahom∇u) = f in Q. The proof of Papanicolaou and Varadhan is based
on Tartar’s method of oscillating test functions and the main difficulty is to give sense to the
corrector equation (4) and the corrector ϕi in the stochastic case.

An alternative proof of the above homogenization result was introduced in [4], based on a
stochastic counterpart of two-scale convergence—the notion of stochastic two-scale convergence in
the mean (see also [2]). In particular, a bounded sequence (uε)ε in L2(Q) ⊗ L2(Ω) is said to two-
scale converge in the mean to a function u ∈ L2(Q) ⊗ L2(Ω), if for all test functions η ∈ C∞

c (Q)
and ϕ ∈ L2(Ω),

∫

Ω

∫

Q

uε(x, ω)η(x)ϕ(τx

ε
ω) dx dµ(ω) →

∫

Ω

∫

Q

u(x, ω)η(x)ϕ(ω) dx dµ(ω). (6)

Stochastic homogenization via unfolding. Recently, in [23, 14] Heida and the first two
authors reconsidered the notion of two-scale convergence in the mean from the perspective of an
unfolding operator (see also [38]). This approach is motivated by (and shares many similarities
with) the well-established notion of periodic unfolding [8]. In the following we briefly recall its
definition (for more detail, see [14]).

For η ∈ L2(Q) and ϕ ∈ L2(Ω), we define

Tε(η ⊗ ϕ)(x, ω) = η(x)ϕ(τ−x

ε
ω). (7)

Using the measure preserving property from Assumption 1 (b), it follows that

‖Tε(η ⊗ ϕ)‖L2(Q)⊗L2(Ω) = ‖η ⊗ ϕ‖L2(Q)⊗L2(Ω),

and by the density of the linear span of simple tensor products

L2(Q)
a
⊗ L2(Ω) := lin{(x, ω) 7→ ϕ(x)ψ(ω);ϕ ∈ L2(Q), ψ ∈ L2(Ω)} ⊂ L2(Q)⊗ L2(Ω) dense,

Tε extends to a linear isometry Tε : L2(Q) ⊗ L2(Ω) → L2(Q) ⊗ L2(Ω). Moreover, the equality
TεT−ε = 1 on simple tensors implies that Tε is in fact unitary. A simple consequence of this
definition is that for a bounded sequence uε ∈ L2(Q) ⊗ L2(Ω) the weak convergence Tεuε ⇀ u is
equivalent to stochastic two-scale convergence in the mean of uε to u (in sense of (6)). Also, note
that using the stochastic unfolding operator, we might rephrase equation (5) as

−∇ · (T−εa0Tε∇u) = f. (8)

In the present paper we go one step further and reconsider the idea of unfolding on an abstract
operator-theoretic level where

• L2(Q) and L2(Ω) are replaced by general Hilbert spaces Hd and Hs,
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• the stochastic unfolding operator is replaced by a family of well-structured unitary operators,

• −∇· and ∇ are replaced by densely defined closed (unbounded) linear operators C∗
d and Cd.

Our motivation is to develop a unified, operator-theoretic approach to homogenization (in the mean)
of linear evolutionary problems with periodic, quasiperiodic or random (stationary) coefficients.
The abstract unfolding strategy that we propose applies to a variety of linear PDEs and we present
some examples in Section 5. Here we briefly explain one of the examples—stochastic homogenization
of Maxwell’s equations, which we discuss in detail in Section 5.3. In particular, for Q ⊆ R

3 open,
we consider the following system of equations: Find (uε, qε) : R×Q → C

3 × C
3 such that

∂t(ηεuε) + σεuε − curl qε = f,

∂t(µεqε) + curluε = g,
(9)

where (f, g) : R → L2(Q)3 ⊕ L2(Q)3 is a datum and the random, oscillating coefficients are given
in the form ηε(x, ω) = η0(x, τx

ε
ω), σε(x, ω) = σ0(x, τx

ε
ω), µε(x, ω) = µ0(x, τx

ε
ω) with η0, σ0, µ0 ∈

L∞(Q×Ω)3×3 that satisfy suitable assumptions. Note that the solution depends on ω ∈ Ω, which
we see as a random configuration of the medium, and therefore we view the solution also as
a random field, i.e., we seek functions such that at (almost) each time instance t ∈ R satisfy

(uε(t), qε(t)) ∈
(
L2(Q)⊗ L2(Ω)

)3 ⊕
(
L2(Q)⊗ L2(Ω)

)3
. In fact, we phrase (9) in the form of the

operator equation (1) given on the functional space L2
ν(R;

(
L2(Q)⊗ L2(Ω)

)3 ⊕
(
L2(Q)⊗ L2(Ω)

)3
),

which is an exponentially weighted L2-space with a parameter ν ∈ R (see Section 4.1). In the limit
ε → 0, we derive a two-scale homogenized system, that in the case of ergodic coefficients reads:
Find (u0, χ1, q0, χ2) ∈ L2

ν(R;L
2(Q)3 ⊕ (L2(Q)⊗L2

pot(Ω))⊕L2(Q)3 ⊕ (L2(Q)⊗L2
pot(Ω))) such that

∂t(E[η0(u0 + χ1)]) + E[σ0 (u0 + χ1)]− curl q0 = f,

∂t(E[µ0(q0 + χ2)]) + curlu0 = g,

−divω (∂t(η0(u0 + χ1)) + σ0(u0 + χ1)) = 0,

−divω (∂t(µ0(q0 + χ2))) = 0,

where E[·] denotes the mathematical expectation in (Ω,Σ, µ) and divω is the stochastic divergence,
which is defined in Section 5.1. We may view the first two equations as the effective Maxwell
system for the deterministic variables (u0, q0) and the correctors (χ1, χ2), that account for the
microstructure evolution in the material, are determined by the last two corrector equations, cf.
Remark 5.12. In particular, we obtain that, as ε → 0,

Tε(uε, qε) ⇀ (u0 + χ1, q0 + χ2) weakly in L2
ν(R; (L

2(Q)⊗ L2(Ω))3 ⊕ (L2(Q)⊗ L2(Ω))3).

A similar result in a periodic-stochastic setting has been obtained in [33]. With our operator-
theoretic approach we are able to dispose of the continuity condition on the coefficients in the slow
variable. Next, we can treat highly oscillatory mixed type equations by only requiring the sum
of σ0 and η0 to be positive. Moreover, for suitably regular right-hand sides (f, g), we obtain the
following corrector result:

‖uε − T−εχ1 − u0‖2L2
ν(R;L

2(Q)⊗L2(Ω)3) + ‖qε − T−εχ2 − q0‖2L2
ν(R;L

2(Q)⊗L2(Ω)3) → 0 as ε → 0.

See Section 5.3 for details.
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2 The operator-theoretic setting for unfolding

In this section we introduce the setting for abstract two-scale convergence and provide some com-
pactness results which will be useful in the following sections. Throughout this section, we let Hd

and Hs be Hilbert spaces, m,n ∈ N; ‘d’ and ‘s’ are a reminder of ‘deterministic’ and ‘stochastic’.

Abstract “differential” operators. We consider densely defined closed linear operators

Cd : dom(Cd) ⊆ Hm
d → Hn

d , Cs : dom(Cs) ⊆ Hm
s → Hn

s .

Given a Hilbert space H the canonical extension of Cd to operators from the Hilbert space tensor
product Hm

d ⊗H to Hn
d ⊗H will be—as a rule—again denoted by Cd; and similarly for Cs. In the

applications, we have in mind, we extend Cd to the space Hm
d ⊗Hs attaining values in Hn

d ⊗ Hs

and Cs as closed, densely defined linear operator from Hd ⊗ Hm
s to Hd ⊗ Hn

s . Note that we will
further identify Hm

d ⊗Hs = (Hd ⊗Hs)
m = Hd ⊗Hm

s . Thus, the extended operators Cd and Cs are
both operators defined on (subsets of) (Hd ⊗Hs)

m with values in (Hd ⊗Hs)
n. With this in mind,

we require the following compatibility conditions for Cs and Cd:

∃D1 ⊆ Hd dense ∀x ∈ D1, y ∈ Hm
s : x⊗ y ∈ dom(Cd),

∃D2 ⊆ Hd dense ∀x ∈ D2, y ∈ Hn
s : x⊗ y ∈ dom(C∗

d),

∃E1 ⊆ Hs dense ∀y ∈ E1, x ∈ Hm
d : x⊗ y ∈ dom(Cs),

∃E2 ⊆ Hs dense ∀y ∈ E2, x ∈ Hn
d : x⊗ y ∈ dom(C∗

s ).

(10)

The first and third conditions are trivially satisfied, if m = 1, the second and fourth if n = 1. In
applications discussed later on, D1 = D2 = C∞

c (Q) for some open Q ⊆ R
n (a similar choice can be

made for E1, E2).

Remark 2.1. Note the following consequence of our notation convention. Given a bounded linear
operator T ∈ L(H,K) for H,K Hilbert spaces, we have TCd ⊆ CdT, and TCs ⊆ CsT , see also
Lemma 2.5 below.

Unfolding family. We call a strongly continuous map T : R \ {0} → L(Hd ⊗Hs) taking values
in the set of unitary operators an unfolding family, if the following structural hypotheses are sat-
isfied (where the action of Tε on powers of Hd ⊗Hs is understood “component-wise”, re-using the
notation):

Tε = T −1
−ε (ε ∈ R \ {0}), (11)

εCdT−εϕ = εT−εCdϕ+CsT−εϕ (ϕ ∈ dom(Cd) ∩ dom(Cs) ⊆ (Hd ⊗Hs)
m, ε ∈ R \ {0}), (12)

TεCs ⊆ CsTε (ε ∈ R \ {0}), (13)

Tεv = v (v ∈ ker(Cs), ε ∈ R \ {0}). (14)

We remark here that (12) (in conjunction with (10)) implies,

εC∗
dT−εϕ = εT−εC

∗
dϕ+ T−εC

∗
sϕ (ϕ ∈ dom(C∗

s ) ∩ dom(C∗
d ) ⊆ (Hd ⊗Hs)

n, ε ∈ R \ {0}). (15)

The latter will be particularly important, when we discuss time-dependent problems.
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Remark 2.2. The stochastic unfolding operator introduced in Section 1.1 together with Cd = ∇,
and Cs denoting the stochastic gradient, satisfies the above assumptions (see Section 5).

Within the above setting we define (stochastic) 2-scale convergence as follows.

Definition 2.3. Let (uε)ε>0 in Hd ⊗Hs. Then (uε)ε is said to strongly (weakly) 2-scale converge

to u ∈ Hd ⊗Hs (we also use the notation uε
2→ u (uε

2
⇀ u)), if

Tεuε → u (Tεuε ⇀ u)

strongly (weakly) as ε → 0.

Remark 2.4. Strictly speaking 2-scale convergence is only defined for families (uε)ε>0. In the fol-
lowing, we will however also say that “a subsequence of (uε)ε>0 (weakly/strongly) 2-scale converges
to some u”. By this, we mean that there exists a sequence (εk)k in (0,∞) converging to 0 such
that Tεkuεk → u weakly as k → ∞. As the particular subsequence will not be important in the
considerations we are aiming for, we shall however re-use ε and dispense with k.

In the following we establish various properties that we shall exploit in our abstract homogeniza-
tion scheme, and highlight analogies to stochastic two-scale convergence in the mean and periodic
unfolding, respectively. We begin with an abstract counter part of [4, Theorem 3.7]. In order to
avoid cluttered notation as much as possible, we often write Hd ⊗Hs regardless of the number of
components of the objects under consideration. We begin with an auxiliary result.

Unless explicitly stated otherwise, we shall not assume condition (14) in this section. The
conditions (10)–(13), however, are assumed to be in effect.

Lemma 2.5. Let P be the orthogonal projection onto ker(Cs) ⊆ (Hd⊗Hs)
m. Then PTε = TεP for

all ε ∈ R \ {0}.

Proof. Let ε ∈ R \ {0}. Then we have TεCs ⊆ CsTε by (13). Since T ∗
ε = T−ε by (11), we have

C∗
sT−ε = (TεCs)

∗ ⊇ (CsTε)∗ = T−εC
∗
s . Hence, we deduce for all ε ∈ R \ {0}

TεC∗
sCs ⊆ C∗

sTεCs ⊆ C∗
sCsTε.

Since C∗
sCs is self-adjoint and Tε continuous, we deduce that for all bounded, measurable functions

f : σ(C∗
sCs) → R, Tεf(C∗

sCs) = f(C∗
sCs)Tε. In particular, f = χ{0} is a possible choice. χ{0}(C

∗
sCs)

is the orthogonal projection onto ker(C∗
sCs). Note that ker(C∗

sCs) = ker(Cs). Indeed, ker(Cs) ⊆
ker(C∗

sCs) is trivial; for ϕ ∈ ker(C∗
sCs), we test the equation C∗

sCsϕ = 0 with ϕ ∈ ker(C∗
sCs) ⊆

dom(C∗
sCs) ∩ dom(Cs) to obtain 〈Csϕ,Csϕ〉 = 0, that is, ker(Cs) ⊇ ker(C∗

sCs). We infer P =
χ{0}(C

∗
sCs), which yields the assertion.

Lemma 2.6. Let K ⊆ Hs be a closed subspace and P the projection onto K. Then PCd ⊆ CdP .

Proof. We have identified Cd with Cd ⊗ 1Hs
and P with 1Hd

⊗ P . Thus, the assertion follows from
standard tensor-product theory of operators in Hilbert spaces, see, e.g., [40, Appendix].

Lemma 2.7. Let (uε)ε and (εCduε)ε be bounded in (Hd⊗Hs)
m and (Hd⊗Hs)

n, respectively. Then
there are subsequences of (uε)ε and (εCduε)ε as well as u ∈ dom(Cs) such that (uε)ε weakly 2-scale
converges to u and (εCduε)ε weakly 2-scale converges to Csu.
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Proof. There exist subsequences such that (Tεuε)ε weakly converges to u ∈ (Hd ⊗ Hs)
m and

(εTεCduε)ε weakly converges to v ∈ (Hd ⊗ Hs)
n, respectively. We will show that u ∈ dom(Cs)

and Csu = v. For this, we let g ∈ dom(C∗
s ) ∩ dom(C∗

d ) and compute (using (15))

〈εTεCduε, g〉 = 〈uε, εC∗
dT−εg〉

= 〈uε, εT−εC
∗
dg + T−εC

∗
s g〉

= 〈εTεuε, C∗
dg〉+ 〈Tεuε, C∗

s g〉
→ 〈u,C∗

s g〉.

Since dom(C∗
s ) ∩ dom(C∗

d) is an operator core for C∗
s by (10), we obtain u ∈ dom(Cs) and Csu =

(w-) limε→0 εTεCduε.

Theorem 2.8 (Compactness). Assume (10)–(13).
(a) Let (uε)ε be uniformly bounded in dom(Cd). Assume that (uε)ε and (Cduε)ε weakly 2-

scale converge. Then there exist u ∈ dom(Cd) ∩ ker(Cs) and v ∈ ran(Cs) such that uε
2
⇀ u and

Cduε
2
⇀ Cdu+ v.

(b) Let (qε)ε be uniformly bounded in dom(C∗
d). Assume that (qε)ε and (C∗

dqε)ε weakly 2-

scale converge. Then there exist q ∈ dom(C∗
d) ∩ ker(C∗

s ) and w ∈ ran(C∗
s ) such that qε

2
⇀ q and

C∗
dqε

2
⇀ C∗

dq + w.
(c) Assume, in addition, m= 1 and that (14) holds. Let (uε)ε be uniformly bounded in dom(Cd).

Then there exists u ∈ dom(Cd) ∩ ker(Cs) and v ∈ ran(Cs) ∩ ran(C∗
s )

n ⊆ (Hd ⊗ Hs)
n such that (a

subsequence of) (uε)ε weakly 2-scale converges to u and (Cduε)ε weakly 2-scale converges to Cdu+v.

Proof. (a) For suitable subsequences, denote by u and v the corresponding weak 2-scale-limits of
(uε)ε and (Cduε)ε. By Lemma 2.7, we deduce that u ∈ ker(Cs). By weak continuity of P , it is easy
to see that (PTεuε)ε weakly converges to Pu = u. By Lemma 2.5, we have PTε = TεP . Thus, since
PCd ⊆ CdP , we get Puε ∈ dom(Cd) ∩ ker(Cs) ⊆ dom(Cd) ∩ dom(Cs) and so, by (12),

CdPTεuε = TεCdPuε = TεPCduε.

Thus, since the right-hand side is uniformly bounded in ε > 0, so is the left-hand side. From the
closedness of CdP , it follows that u = Pu ∈ dom(Cd).

We define v := v −Cdu. Then we compute for suitable ε > 0 and all w ∈ ker(C∗
s ) ∩ dom(C∗

d ):

〈TεCduε, w〉 = 〈Tεuε, C∗
dw〉.

Letting ε → 0 on both sides, we obtain

〈Cdu+ v,w〉 = 〈Cdu,w〉,

which leads to
〈v,w〉 = 0 (w ∈ ker(C∗

s ) ∩ dom(C∗
d)).

Since ker(C∗
s ) ∩ dom(C∗

d) is dense in ker(C∗
s ) by (10), we infer v ∈ ker(C∗

s )
⊥ = ran(Cs).

(b) By symmetry of the conditions (10)–(13) in Cd and C∗
d , the proof follows analogously to

(a).
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(c) Choose subsequences of (Tεuε)ε and (TεCduε)ε that weakly converge to some u and v.
By Lemma 2.7, we deduce that Csu = (w-) limε→0 εTεCduε = 0 · v, which yields u ∈ ker(Cs).
Moreover, we may choose a weakly convergent subsequence of (uε)ε in dom(Cd). Denote the limit
by ũ. Let P be the orthogonal projection onto ker(Cs). As m = 1, ker(Cs) ⊆ Hs and Lemma
2.6 yields PCd ⊆ CdP . In particular, we obtain that (Puε)ε weakly converges to Pũ in dom(Cd).
Furthermore, by Tεv = v on ker(Cs) (see (14)), we infer TεP = P . Moreover, from Lemma 2.5, we
have TεP = PTε. Thus, we get that

u = Pw- lim
ε→0

Tεuε = w- lim
ε→0

PTεuε = w- lim
ε→0

TεPuε = w- lim
ε→0

Puε = Pũ ∈ dom(Cd).

We define v := v − Cdu. Then we compute for suitable ε > 0 and all w ∈ ker(C∗
s ) ∩ dom(C∗

d ):

〈TεCduε, w〉 = 〈uε,T−εC
∗
dw +

1

ε
T−εC

∗
sw〉 = 〈Tεuε, C∗

dw〉.

Letting ε → 0 on both sides, we obtain

〈Cdu+ v,w〉 = 〈Cdu,w〉,

which leads to
〈v,w〉 = 0 (w ∈ ker(C∗

s ) ∩ dom(C∗
d)).

Since ker(C∗
s ) ∩ dom(C∗

d) is dense in ker(C∗
s ) by (10), we infer v ∈ ker(C∗

s )
⊥ = ran(Cs).

Finally, we let w ∈ ker(Cs) ∩ dom(C∗
d). Then, using Tεv = v for all v ∈ ker(Cs), we have for

suitable ε > 0

〈TεCduε, w〉 = 〈Cduε, w〉 = 〈uε, C∗
dw〉 = 〈uε,T−εC

∗
dw〉 = 〈Tεuε, C∗

dw〉.

Letting ε → 0, we get
〈Cdu+ v,w〉 = 〈u,C∗

dw〉 = 〈Cdu,w〉.

Hence, since dom(C∗
d) ∩ ker(Cs) is dense in ker(Cs) as m = 1, we deduce

〈v,w〉 = 0 (w ∈ ker(Cs)),

which leads to v ∈ ran(C∗
s ).

3 Homogenization of (abstract) elliptic problems

In order to illustrate our so far findings, we shall treat an elliptic homogenization problem. Note
that this is the abstract variant of the classical result [4, Theorem 4.1.1] (see Section 5.2 for the
periodic case). We assume throughout that m = 1 and that (10)–(14).

Theorem 3.1. Let f ∈ ker(Cs) and assume that ran(Cd) is closed and Cd is injective. Let A ∈
L((Hd ⊗Hs)

n) satisfy ReA = 1
2(A+A∗) > c for some c > 0. For ε > 0 consider

C∗
dT−εATεCduε = f. (16)

10

Two-scale homogenization of abstract linear time-dependent PDEs



Then (uε)ε is well-defined and uniformly bounded in dom(Cd) and strongly 2-scale converges to
some u ∈ dom(Cd) ∩ ker(Cs). Moreover, (Cduε)ε weakly 2-scale converges to Cdu + v for some
v ∈ ran(Cs) ∩ ran(C∗

s )
n, where u, v are the unique solutions of the following system of equations

C∗
dPA(Cdu+ v) = f, (17)

C∗
sA(Cdu+ v) = 0. (18)

Here, P is the orthogonal projection onto ker(Cs).

Before we come to a proof of Theorem 3.1, we address well-posedness of (16). For this, we will
use the direct approach outlined in [37, Theorem 3.1]; see also [49, Theorem 2.9].

Theorem 3.2. Assume the conditions of Theorem 3.1 to be in effect. Then for all ε > 0 there
exists a unique uε ∈ dom(Cd) satisfying (16). Moreover, we have that (uε)ε is uniformly bounded
in dom(Cd).

Proof. Let ι : ran(Cd) →֒ (Hd ⊗Hs)
n denote the canonical embedding. Then ι∗ is the orthogonal

projection onto ran(Cd), see [28, Lemma 3.2]. Moreover, from ker(C∗
d) = ran(Cd)

⊥, it is easy to see
that

C∗
dT−εATεCd = C∗

d ιι
∗T−εATειι∗Cd.

By the closed graph theorem ι∗Cd is continuously invertible; by [37, Lemma 2.4 and Corollary 2.5]
(ι∗Cd)

∗ = C∗
d ι is also continuously invertible. Next, from ReA > c it follows that Re T−εATε > c.

In consequence, we obtain Re ι∗T−εATει > cι∗ι. Thus, using that ran(C∗
d) is closed and dense in

Hd ⊗Hs by the injectivity of Cd, we obtain

uε = (ι∗Cd)
−1 (ι∗T−εATει)−1 (C∗

d ι)
−1f, (19)

which yields uniqueness of solutions of (16). Multiplying this equality by ι∗Cd, we infer

ι∗Cduε = (ι∗T−εATει)−1 (C∗
d ι)

−1f. (20)

The equalities (19) and (20) together with

‖ (ι∗T−εATει)−1 ‖ 6
1

c

yield that (uε)ε is uniformly bounded in dom(Cd).

The next result settles uniqueness of the homogenized equations stated in Theorem 3.1. The
rationale is similar to the one in [4, Theorem 4.1.1]; however we do not need to impose the curl-
condition nor do we use any variant of ‘Kozlov’s identity’ (see [4, Lemma 2.4 and the subsequent
remark]).

Lemma 3.3. Let u ∈ dom(Cd) ∩ ker(Cs) and v ∈ ran(Cs) ∩ ran(C∗
s )

n satisfy (17) and (18) with
f = 0. Assume that Cd is injective. Then u = 0 and v = 0.

Proof. We define ζ := Cdu+ v. Since ζ −Cdu = v ∈ ran(Cs) and A(Cdu+ v) ∈ ker(C∗
s ), by (18),

0 = 〈Aζ, v〉 = 〈Aζ, ζ −Cdu〉.
Thus, we deduce from (17) with f = 0 using u ∈ dom(Cd) ∩ ker(Cs)

〈Aζ, ζ〉 = 〈Aζ,Cdu〉 = 〈Aζ,CdPu〉 = 〈PAζ,Cdu〉 = 〈C∗
dPAζ, u〉 = 0.

Thus, by ReA> c, we infer ζ = 0. Since ker(Cs)
n ∋ Cdu⊥v ∈ ran(C∗

s )
n, we obtain the assertion.
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The following simple lemma will be useful in the proof of Theorem 3.1. It provides a recovery
construction for the weak two-scale limit of the sequence Cduε.

Lemma 3.4. Let u ∈ dom(Cd)∩ ker(Cs) and v ∈ ran(Cs). For δ > 0, there exists ϕδ ∈ dom(Cd)∩
dom(Cs) such that

‖Csϕδ − v‖ 6 δ. (21)

Moreover, for ϕδ,ε := T−εu+ εT−εϕδ, we obtain

Tεϕδ,ε → u, TεCdϕδ,ε → Cdu+ Csϕδ (as ε → 0).

Proof. By the definition of ran(Cs) and using (10), we obtain that there exists ϕδ ∈ dom(Cd) ∩
dom(Cs) which satisfies (21). Also, since Tεϕδ,ε = u+ εϕδ, it follows that Tεϕδ,ε → u. Furthermore,
using (12)-(13) we compute

Cdϕδ,ε = T−εCdu+ εT−εCdϕδ + T−εCsϕδ.

This implies that TεCdϕδ,ε → Cdu+Csϕδ .

Proof of Theorem 3.1. The family (uε)ε>0 is well-defined and bounded in dom(Cd) by Theorem 3.2.
By Theorem 2.8 (c), we find a subsequence of (uε)ε>0, u ∈ dom(Cd)∩ker(Cs), v ∈ ran(C∗

s )
n∩ran(Cs)

such that (uε)ε and (Cduε)ε weakly 2-scale converge to u and Cdu+v, respectively. Let ϕ ∈ dom(Cd)
and ψ ∈ dom(Cs) ∩ dom(Cd). Then we compute for suitable ε > 0 using (16)

〈f, ϕ〉+ 〈εf,T−εψ〉 = 〈T−εATεCduε, CdPϕ+ εCdT−εψ〉
= 〈T−εATεCduε, CdPϕ+ εT−εCdψ + CsT−εψ〉
= 〈ATεCduε,TεCdPϕ〉+ 〈ATεCduε, εCdψ〉+ 〈ATεCduε, Csψ〉,

where we used εCdT−εψ = εT−εCdψ + CsT−εψ and T−εCsψ = CsT−εψ. Since CdPϕ ∈ ker(Cs), we
have TεCdPϕ = TεPCdϕ = PCdϕ. Thus, we obtain

〈f, ϕ〉+ 〈εf,T−εψ〉 = 〈ATεCduε, PCdϕ〉 + 〈ATεCduε, εCdψ〉+ 〈ATεCduε, Csψ〉.

In this equality we may let ε → 0 and obtain the asserted equalities (17) and (18). As the solutions
to (17) and (18) are unique by Lemma 3.3, we deduce that any subsequence of (uε)ε and (Cduε)ε
weakly 2-scale converges to u and Cdu+v, which implies that both (uε)ε and (Cduε)ε weakly 2-scale
converge without the choice of subsequences.

In order to show strong convergence of (Tεuε)ε, we consider ϕδ and ϕδ,ε defined as in Lemma
3.4 (for u, v the solution of (17)-(18)). Since Cd is injective and it has closed range, it follows (see,
e.g., [37, Remark 3.2(b)]) that there exists c0 > 0 such that ‖ϕ‖ 6 c0‖Cdϕ‖ for all ϕ ∈ dom(Cd).
As a result of this, we obtain

‖uε − ϕδ,ε‖ 6 c0‖Cd(uε − ϕδ,ε)‖ = c0‖TεCd(uε − ϕδ,ε)‖. (22)

Using the assumption ReA > c (in the inequality) and that uε solves (16) (in the equality), we
obtain

c‖TεCd(uε − ϕδ,ε)‖2 6 Re 〈ATεCd(uε − ϕδ,ε),TεCd(uε − ϕδ,ε)〉
= Re 〈f, uε − ϕδ,ε〉 −Re 〈ATεCdϕδ,ε,TεCd(uε − ϕδ,ε)〉 .
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Since f ∈ ker(Tε − 1) (for any ε 6= 0), we conclude that the first term on the right-hand side equals
Re 〈f,Tεuε − Tεϕδ,ε〉. As a result of this and using the properties of ϕδ,ε (Lemma 3.4), we obtain
that for fixed δ > 0,

lim sup
ε→0

‖TεCd(uε − ϕδ,ε)‖2 6 −Re 〈A (Cdu+ Csϕδ) , v − Csϕδ〉 .

Moreover, using the above and (22) we obtain (using that the second term vanishes in the limit
ε → 0 by Lemma 3.4) for some c1 > 0 and all δ > 0

lim sup
ε→0

(
‖uε − ϕδ,ε‖2 + ‖Tεϕδ,ε − u‖2 + ‖TεCd(uε − ϕδ,ε)‖2

)
6 c1‖Cdu+ Csϕδ‖‖v − Csϕδ‖.

By the choice of ϕδ (Lemma 3.4), in the limit δ → 0 the right-hand side vanishes. Consequently,
we find a diagonal sequence δ(ε) → 0 (as ε → 0) such that

‖uε − ϕδ(ε),ε‖+ ‖Tεϕδ(ε),ε − u‖+ ‖TεCd(uε − ϕδ(ε),ε)‖ → 0 as ε → 0. (23)

Finally, this yields

‖Tεuε − u‖ 6 ‖Tεuε − Tεϕδ(ε),ε‖+ ‖Tεϕδ(ε),ε − u‖ → 0 as ε → 0.

The above proof implies the following abstract corrector type result (see (23)).

Corollary 3.5. Assume the conditions of Theorem 3.1 to be in effect and let uε, u, v be given as
in Theorem 3.1. There exists a sequence ϕε ∈ dom(Cd) ∩ dom(Cs) such that

εϕε → 0, TεCd(uε − εT−εϕε) → Cdu strongly in Hd ⊗Hs.

4 Homogenization of abstract evolutionary equations

4.1 A Hilbert space framework for evolutionary equations

For the application to time-dependent problems in the subsequent sections, we shall specify the
particular framework, we are working in. For this, we recall some results from [26], where the
setting was introduced for the first time. We shall also refer to [16, Section 2] for more details,
when properties of the time-derivative to be introduced in the following are concerned.

To begin with, we define for ν ∈ R>0 the space L2
ν(R;H) of (equivalence classes of) Hilbert

space H-valued functions f being Bochner measurable and satisfy

‖f‖2ν :=

∫

R

‖f(t)‖2H exp(−2νt)dt < ∞.

L2
ν(R;H) is a Hilbert space under the norm ‖ · ‖ν . Denoting by H1

ν (R;H) the (first) Sobolev
space of weakly differentiable functions with distributional derivative representable as an element
in L2

ν(R;H), we define the time-derivative as the operator

∂t,ν : H
1
ν (R;H) ⊆ L2

ν(R;H) → L2
ν(R;H), f 7→ f ′.

It turns out that ∂t,ν is a normal operator. More particularly, ∂t,ν admits a spectral representation
as multiplication operator in L2(R;H). For this, we define the multiplication-by-the-argument
operator

m: dom(m) ⊆ L2(R;H) → L2(R;H), ϕ 7→ (ξ 7→ ξϕ(ξ)),
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where
dom(m) := {ϕ ∈ L2(R;H); (ξ 7→ ξϕ(ξ)) ∈ L2(R;H)}.

Define the (H-valued) Fourier transformation F : L2(R;H) → L2(R;H) as the unitary extension of

Ff :=
(
ξ 7→ 1√

2π

∫

R

exp(−ıtξ)f(t)dt
)

(f ∈ L1(R;H) ∩ L2(R;H)).

Moreover, we define for ν ∈ R>0 the (obviously) unitary operator

exp(−νm): L2
ν(R;H) → L2(R;H), f 7→ (t 7→ e−νtf(t)),

and we set
Lν := F exp(−νm),

the Fourier–Laplace transformation. With the latter transformation at hand the explicit spectral
theorem for ∂t,ν (see also [16, Corollary 2.5(c)]) reads

∂t,ν = L∗
ν

(
ım+ν

)
Lν .

The latter equation yields a functional calculus for ∂t,ν (or for ∂−1
t,ν .). In fact, let ν0 ∈ R>0 and

ν > ν0 and let M ∈ H(CRe>ν0 ;L(H,K)), where K is another Hilbert space and

H(CRe>ν0 ;L(H,K)) := {M : CRe>ν0 → L(H,K);M analytic}.

Then we define
M

(
∂t,ν

)
:= L∗

ν

(
M

(
ım+ν

))
Lν,

where (
M

(
ım+ν

)
ϕ
)
(ξ) := M

(
ıξ + ν

)
ϕ(ξ) (ξ ∈ R)

for all compactly supported, continuous functions ϕ : R → H.
The reason we focus on analytic functions M rather than continuous or even just measurable

functions is that analyticity of M and causality of M(∂t,ν) are strongly related, which is apparent
from the Paley–Wiener theorem, see e.g., [26, Section 2] or [29, Theorem 2.4], [46, Section 1.2].

We are now in the position to formulate the well-posedness theorem, which can be viewed as
underlying structure of many linear equations in mathematical physics and continuum mechanics.

Theorem 4.1 ([26, Solution Theory]). Let ν0 ∈ R>0, ν > ν0, H Hilbert space, A : dom(A) ⊆ H →
H a skew-self-adjoint operator, i.e., A = −A∗, and M ∈ H(CRe>ν0 ;L(H)). Assume there exists
c > 0 such that

Re〈M(z)ϕ,ϕ〉 > c〈ϕ,ϕ〉 (z ∈ CRe>ν0 , ϕ ∈ H).

Then the operator B := M(∂t,ν) + A is densely defined on L2
ν(R;H). Moreover, B is closable and

B is continuously invertible in L2
ν(R;H), ‖B−1‖ 6 1/c and B

−1
is causal, that is,

1R6a
B

−1
1R6a

= 1R6a
B

−1
(a ∈ R).

Proof. For z ∈ CRe>ν0 it follows from [34, Lemma 2.12] that M(z)+A is continuously invertible in
H with inverse satisfying ‖(M(z) +A)−1‖ 6 1/c. Thus, [36, Remark 2.3(a)] applies and we obtain
the assertion.
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We define

H∞(CRe>ν0 ;L(H,K)) := {M ∈ H(CRe>ν0 ;L(H,K));M bounded},

which turns into a Banach space if endowed with the supremum norm.

Proposition 4.2. Assume the hypotheses of Theorem 4.1. Then

[
CRe>ν0 ∋ z 7→

(
M(z) +A

)−1 ∈ L(H)
]
∈ H∞(CRe>ν ;L(H)).

Proof. The claim follows from [34, Lemma 2.12] and the fact that composition of analytic mappings
are analytic again.

It will be the next theorem, which forms the basic result for the convergence results to be
followed in the next section.

Theorem 4.3. Let ν0 ∈ R>0, H,K separable Hilbert spaces. Let (Sε)ε>0 be a bounded family in
H∞(CRe>ν0 ;L(H,K)) and let S0 ∈ H∞(CRe>ν0 ;L(H,K)). Assume that for all z ∈ CRe>ν0 we have

Sε(z) → S0(z) (ε → 0)

in the weak operator topology of L(H,K).
Then Sε(∂t,ν) → S0(∂t,ν) in the weak operator topology of L(L2

ν(R;H), L2
ν(R;K)).

For the proof of Theorem 4.3, we shall use the following result.

Theorem 4.4 ([44, Theorem 4.3] and [41, Lemma 3.5]). Let Ω ⊆ C open, H,K separable Hilbert
spaces. Let (Sε)ε be a bounded family in H∞(CRe>ν0 ;L(H,K)). Then there exists

T ∈ H∞(CRe>ν0 ;L(H,K))

and a nullsequence (εk)k∈N in (0,∞) satisfying for all K ⊆ Ω compact

Sεk(z) → T (z) (k → ∞, z ∈ K)

in the weak operator topology of L(H,K). Moreover, if Ω = CRe>ν0, then

Sεk(∂t,ν) → T (∂t,ν) (k → ∞)

in the weak operator topology of L(L2
ν(R;H), L2

ν(R;K)) for all ν > ν0.

Proof of Theorem 4.3. Choose (εk)k and T according to Theorem 4.4. Then, for z ∈ CRe>ν0 , we
obtain

S0(z) = (τw-) lim
k→∞

Sεk(z) = T (z).

Moreover, we get Sεk(∂t,ν) → S0(∂t,ν) in the weak operator topology of L(L2
ν(R;H), L2

ν(R;K)).
The subsequence principle concludes the proof.
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4.2 Applications to time-dependent-type problems

We shall treat a subclass of evolutionary equations discussed in the previous section. The particular
cases treated here cover the heat equation, the wave equation, the Maxwell’s equations and even
systems of mixed type formulated on possibly rough domains, which do not need to satisfy any
boundedness conditions, as we shall demonstrate in the subsequent sections by means of examples.

More specifically, in this section, we confine ourselves to the following class of problems. Define
H0 := (Hd ⊗ Hs)

m, H1 := (Hd ⊗Hs)
n and H = H0 ⊕ H1. Let ν0 > 0, Mk : CRe>ν0 → L(Hk) be

analytic and assume that ReMk(z) > c for all z ∈ CRe>ν0 , k ∈ {0, 1} and some c > 0. We need to
restrict ourselves to a certain class of right-hand sides. For this we set

H0 := ker(Cs) ∩
⋂

ε∈R\{0}

ker(Tε − 1) ⊆ H0, H1 := ker(C∗
s ) ∩

⋂

ε∈R\{0}

ker(Tε − 1) ⊆ H1.

We remark that in the applications, e.g., to stochastic homogenization (see Sections 5.3 and 5.4),
the above choice allows the consideration of deterministic right-hand sides (that is a standard
assumption in stochastic homogenization), i.e., L2(Q)⊗ C ⊆ Hi.

For (f, g) ∈ H := H0 ⊕H1, we consider for ε > 0

(
T−ε

(
M0(z) 0

0 M1(z)

)
Tε +

(
0 C∗

d

−Cd 0

))(
uε
qε

)
=

(
f
g

)
. (24)

Note that the operator

Bε :=

(
T−ε

(
M0(∂t,ν) 0

0 M1(∂t,ν)

)
Tε +

(
0 C∗

d

−Cd 0

))

is continuously invertible in L2
ν(R;H) by Theorem 4.1 applied to M = T−ε diag(M0,M1)Tε and

A =
(

0 C∗

d

−Cd 0

)
. We shall also introduce

Sε(z) :=

(
T−ε

(
M0(z) 0

0 M1(z)

)
Tε +

(
0 C∗

d

−Cd 0

))−1

(25)

for all ε > 0 and z ∈ CRe>ν0 . By Proposition 4.2, we have that (Sε)ε>0 is a bounded family in
H∞(CRe>ν0 ;L(H)).

Our aim in this section will be to construct an operator-valued function S0 : z 7→ S0(z) such
that

TεSε(z) → S0(z) (ε → 0)

in the weak operator topology (in an appropriate space). It will turn out that S0(z) can be written

as S0(z) =
(
M̃ (z) +

(
0 C∗

d

−Cd 0

))−1
for suitable M̃(z) to be described explicitly below. Finally, we

shall conclude with an application of Theorem 4.3 to obtain a homogenization result for the full
time-dependent problem.

We will suppress the dependence of uε and qε on z for the time being; at the end of this section
we come back to this.
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Remark 4.5. We refer to [27, 29, 46] and the references therein for an instance of the many
examples that are covered by this equation. We will consider some special cases in the next section.
The rather involved homogenization result for a suitable class of non-diagonal M is treated in
[47]. In that paper, however, a compactness assumption had to be introduced, which we do not
assume here. Moreover, in [47] the local problem is given implicitly and there is no criterion
ensuring convergence without the extraction of subsequences. However, in the framework of so-
called ‘nonlocal H-convergence’ a convergence result for Maxwell’s equations was shown in [49]. For
a setting strictly confined to periodic problems defined on the whole Euclidean space as underlying
domain, quantitative results can be found in [11].

First of all we establish existence and boundedness of (uε, qε)ε in dom(Cd) ⊕ dom(C∗
d). The

result is as plain as it is to establish the uniform bound in H. We provide some more details as
follows.

Proposition 4.6. For all ε > 0, (uε, qε) is well-defined as a solution of (24). Moreover, the family
(uε, qε)ε is uniformly bounded in dom(Cd)⊕ dom(C∗

d).

Proof. Note that

(
0 C∗

d

−Cd 0

)
is skew-self-adjoint and ReT−εM(z)Tε > c for all z ∈ CRe>ν , ε > 0

and some c > 0. Hence, the assertion follows from [34, Lemma 2.12] applied to M = T−εM(z)Tε
and A =

(
0 C∗

d

−Cd 0

)
.

The main result of this section is presented next, that is, we will now present the main step to
establish convergence of (TεSε(z))ε. We shall show convergence of a subsequence first. Then, we
will prove uniqueness of the limit, so that the following theorem actually also holds without the
choice of subsequences. Below, Pker (Cs) and Pker (C∗

s )
denote the orthogonal projections to ker (Cs)

and ker (C∗
s ).

Theorem 4.7. Assume (10)–(13). For ε > 0 let (uε, qε)ε be given by (24). Then (a subsequence
of) (uε)ε, (qε)ε weakly 2-scale converge to some u ∈ dom(Cd) ∩ ker(Cs), q ∈ dom(C∗

d) ∩ ker(C∗
s ).

(u, q) satisfies the following system of equations

Pker (Cs)M0(z)u+ Pker (Cs)C
∗
dq = f (26)

Pker (C∗

s )
M1(z)q − Pker (C∗

s )
Cdu = g. (27)

Proof. By Proposition 4.6, (uε)ε and (qε)ε are bounded in dom(Cd) and dom(C∗
d), respectively.

Hence, by Theorem 2.8 (a) and (b), we find subsequences of (uε)ε and (qε)ε as well as u ∈ dom(Cd)∩
ker(Cs), v ∈ ran(Cs), q ∈ dom(C∗

d) ∩ ker(C∗
s ) and w ∈ ran(C∗

s ) such that (uε)ε, (qε)ε, (Cduε)ε, and
(C∗

dqε)ε weakly 2-scale converge to u, q, Cdu+ v, and C∗
dq + w, respectively. Next, using (24), we

have for all ϕ ∈ (Hd ⊗Hs)
m and suitable ε > 0

〈f, ϕ〉 = 〈Tεf, ϕ〉
= 〈Pker (Cs)f,T−εϕ〉
= 〈T−εM0(z)Tεuε +C∗

dqε,T−εPker (Cs)ϕ〉
= 〈M0(z)Tεuε, Pker (Cs)ϕ〉 + 〈TεC∗

dqε, Pker (Cs)ϕ〉
→ 〈M0(z)u, Pker (Cs)ϕ〉+ 〈C∗

dq + w,Pker (Cs)ϕ〉
= 〈Pker (Cs)M0(z)u, ϕ〉 + 〈Pker (Cs)C

∗
dq, ϕ〉 (ε → 0).
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We obtain
Pker (Cs)M0(z)u+ Pker (Cs)C

∗
dq = f,

which yields (26). (27) follows analogously.

The next result is a reformulation of the system (26)-(27). For this, we introduce the canonical
embeddings

ιs : ker(Cs) →֒ (Hd ⊗Hs)
m,

ιs∗ : ker(C∗
s ) →֒ (Hd ⊗Hs)

n.

Since u = ιsι
∗
su and q = ιs∗ι

∗
s∗q, we obtain the following.

Corollary 4.8. Let (u, q) satisfy the system (26)-(27). Then

ι∗sM0(z)ιsι
∗
su+ ι∗sC

∗
d ιs∗ι

∗
s∗q = ι∗sf, (28)

ι∗s∗M1(z)ιs∗ι
∗
s∗q − ι∗s∗Cdιsι

∗
su = ι∗s∗g. (29)

Remark 4.9. The equations for u and q from Corollary 4.8 can be written in the following block
operator matrix form

((
M̃0(z) 0

0 M̃1(z)

)
+

(
0 ι∗sC

∗
d ιs∗

−ι∗s∗Cdιs 0

))(
ũ
q̃

)
=

(
f̃
g̃

)
,

where M̃0(z) = ι∗sM0(z)ιs, M̃1(z) = ι∗s∗M1(z)ιs∗ , ũ = ι∗su, q̃ = ι∗s∗q, f̃ = ι∗sf and g̃ = ι∗s∗g.

From this remark we obtain the homogenized problem as follows. Namely,
((

M̃0(z) 0

0 M̃1(z)

)
+

(
0 C̃d

∗

−C̃d 0

))(
w
r

)
=

(
h
j

)
,

where C̃d = ι∗s∗Cdιs and C̃d

∗
= ι∗sC

∗
d ιs∗ . In particular, we deduce that (ũ, q̃) is uniquely determined,

see [34, Lemma 2.12].
This observation combined with Corollary 4.8 yields that the claim of Theorem 4.7 is true even

without choosing subsequences. In any case, we can formulate the following homogenization result
for time-dependent homogenization problems, which is one of the main results of this article. We
define Sε(z) ∈ L(H,H) by

Sε(z)(f, g) := Sε(z)

(
f
g

)
,

where Sε(z) is given by (25). We shall also define S0(z) ∈ L(H,H) via

S0(z)(f, g) :=

(
ιs 0
0 ιs∗

)((
M̃0(z) 0

0 M̃1(z)

)
+

(
0 C̃d

∗

−C̃d 0

))−1(
ι∗s 0
0 ι∗s∗

)(
f
g

)
.

Theorem 4.10. Assume (10)–(13) and that H is separable. Then we have

TεSε(∂t,ν) → S0(∂t,ν) (ε → 0)

in the weak operator topology of L(L2
ν(R;H), L2

ν(R;H)).

Proof. For z ∈ CRe>ν0 we obtain with Theorem 4.7 (in the version without choosing subsequences,
which is justified by the subsequence principle in combination with Corollary 4.8 and the represen-
tation in Remark 4.9) that TεSε(z) → S0(z) in the weak operator topology of L(H,H). Thus, the
assertion follows from Theorem 4.3.
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5 Examples

In this section we present two specific examples of the unfolding operator—the stochastic and (a
variant of the) periodic unfolding operator. Moreover, we provide specific examples in which Theo-
rem 3.1 and Theorem 4.10 yield homogenization results. In particular, we consider homogenization
problems for elliptic, Maxwell’s and wave equations. Also, besides the essential homogenization
results obtained by Theorem 4.10 for the evolutionary equations, with little additional effort we
prove some corrector type results.

5.1 Examples of unfolding operators

Deterministic differential operators. First, we introduce the deterministic differential opera-
tors which we use in the description of the considered problems. In the following, we denote by ∂i,
∇ = (∂1, . . . , ∂n), and div · the partial derivative, the gradient and the divergence, respectively, and
use the notation

∇× u := (∂2u3 − ∂3u2, ∂3u1 − ∂1u3, ∂1u2 − ∂2u1)

for the curl of a smooth three-dimensional vector-field. Let Q ⊆ R
n be open.

Gradient and divergence operators. The operator closure of C∞
c (Q)⊆ L2(Q)→ L2(Q)n, ϕ 7→ ∇ϕ

and its adjoint are denoted by

o

gradx : dom(
o

gradx) = H1
0 (Q) ⊆ L2(Q) → L2(Q)n and − divx =

(
o

gradx

)∗

.

Curl operator. Let n = 3. The operator closure of C∞
c (Q)3 ⊆ L2(Q)3 → L2(Q)3, u 7→ ∇ × u

and its adjoint are denoted by

o

curlx : dom(
o

curlx) ⊆ L2(Q)3 → L2(Q)3 and curlx :=

(
o

curlx

)∗

.

Periodic unfolding (in the mean)

We present a periodic unfolding operator suited for homogenization problems involving periodic
coefficients. We consider the unit torus � := R

n/Zn equipped with the push-forward of the Lebesgue
measure L([0, 1)n) and let Q ⊆ R

n be open. We consider the following particular choice of the
abstract Hilbert spaces from Section 2: Hd = L2(Q), Hs = L2(�). For ε ∈ R \ {0}, we let

Tε : L2(Q)
a
⊗ L2(�) → L2(Q)⊗ L2(�) be given by

Tεu(x, y) = u
(
x, y −

{x

ε

}
�

)
, (30)

where {·}� : Rn →� is the canonical quotient map. Tε is a linear isometry and we call its continuous
extension Tε : L2(Q) ⊗ L2(�) → L2(Q) ⊗ L2(�) periodic unfolding operator. Thus, Tε is unitary
and we have T −1

ε = T−ε.

Remark 5.1. The above notion of periodic unfolding differs from the classical notion of unfolding
introduced in [8, 9]. In particular, in [8, 9] the unfolding operator is defined as

T̃ε : L2(Q) → L2(Q)⊗ L2(�), given by T̃εu(x, y) = u
([x

ε

]
εZn

+ εy
)
,
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where [·]εZn : Rn → εZn is defined as [x]εZn = x− ε
{
x
ε

}
�
. The operator T̃ε defined in this fashion

is not surjective and therefore it does not satisfy the assumptions of our abstract setting. On the
other hand, definition (30) involves an additional variable y for functions in the domain of Tε (in this
respect we might call the notion defined in (30) periodic unfolding in the mean) and consequently
it fulfills the requirements from Section 2.

The operator closure of C∞(�) ⊆ L2(�) → L2(�)n, ϕ 7→ ∇ϕ and its adjoint are denoted by

grad#y : dom(grad#y ) = H1
#(�) ⊆ L2(�) → L2(�)n and − div#y = (grad#y )

∗.

Note that we may identify C∞(�) with the space of Zn-periodic functions in C∞(Rn), and L2(�)
with L2((0, 1)n).

If we set Cd =
o

gradx and Cs = grad#y , it follows that the abstract conditions (12)-(14) are
satisfied (Note that (10) is easy, by choosing D1 = D2 = C∞

c (Q) and E1 = E2 = C∞(�)):

Lemma 5.2. For ε 6= 0, we have

ε
o

gradxT−εϕ = εT−ε

o

gradxϕ+ grad#y T−εϕ, for all ϕ ∈ dom(
o

gradx) ∩ dom(grad#y ),

Tεgrad#y ⊆ grad#y Tε,
Tεϕ = ϕ, for all ϕ ∈ ker(grad#y ).

Note that dom(
o

gradx) ∩ dom(grad#y ) = H1
0 (Q) ⊗ L2(�) ∩ L2(Q) ⊗ H1

#(�) and ker(grad#y ) ≃
L2(Q)⊗ C.

Proof of Lemma 5.2. Let η ∈ C∞
c (Q)

a
⊗ C∞(�)n. Then

〈
εT−ε

o

gradxϕ, η

〉

L2(Q)⊗L2(�)n
= −〈ϕ, εdivx Tεη〉L2(Q)⊗L2(�) .

Using the smoothness of η and the chain rule, we compute εdivx Tεη = εTε divx η−Tε div#y η, where
we use that divx Tεη(x, y) = ∂xi

(
ηi(x, y −

{
x
ε

}
�
)
)
a.e. Therefore, we obtain

〈
εT−ε

o

gradxϕ, η

〉

L2(Q)⊗L2(�)n
=

〈
ε

o

gradxT−εϕ− grad#y T−εϕ, η

〉

L2(Q)⊗L2(�)n
.

Since C∞
c (Q)

a
⊗ C∞(�) is dense in dom(

o

gradx) ∩ dom(grad#y ), the first claim follows.

The second claim follows from the fact that Tεgrad#y ϕ = grad#y Tεϕ for any ϕ ∈ C∞(�).

The last claim follows using that ker(grad#y ) ≃ L2(Q)⊗C, which can be obtained with the help
of the Poincaré inequality: There exists C > 0 such that

∥∥∥∥ϕ−
∫

�

ϕ

∥∥∥∥
L2(�)

6 C‖grad#y ϕ‖L2(�)n for all ϕ ∈ dom(grad#y ).
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Stochastic unfolding

Let Q ⊆ R
n be open, (Ω,Σ, µ, τ) be a probability space satisfying Assumption 1. In this section, we

setHd = L2(Q) andHs = L2(Ω) and consider the stochastic unfolding operator Tε : L2(Q)⊗L2(Ω)→
L2(Q)⊗ L2(Ω) defined in (7).

Remark 5.3. The stochastic unfolding operator is a generalization of the periodic unfolding oper-
ator since in the case (Ω,Σ, µ) = (�,L, dy) and τxy = y+{x}� the two operators coincide. Another
instance of stochastic unfolding corresponds to the choice (Ω,Σ, µ) = (�m,Lm, (dy)m) (for some
m ∈ N) with τxy = (y1 + {x}� , . . . , ym + {x}�). The latter is well-suited for the treatment of
problems involving quasi-periodic rapidly-oscillating coefficients.

With help of the dynamical system τ (for fixed i ∈ {1, . . . , n}) we introduce the group of unitary
operators (h ∈ R) Thei : L

2(Ω) → L2(Ω) given by

Theiϕ = ϕ ◦ τhei . (31)

This group is strongly continuous and we denote its infinitesimal generator by ∂ω,i : dom(∂ω,i) ⊆
L2(Ω) → L2(Ω), i.e.,

∂ω,iϕ = lim
h→0

Theiϕ− ϕ

h
.

Analogously to (31), we define Tx : L2(Ω) → L2(Ω) for x ∈ R
n. Using the stochastic partial

derivatives ∂ω,i, we define the stochastic gradient

gradω : H1(Ω) :=
⋂

i∈{1,...,n}

dom(∂ω,i) ⊆ L2(Ω) → L2(Ω)n

given by
gradωϕ = (∂ω,1ϕ, . . . , ∂ω,nϕ) .

It is a closed and densely defined linear operator and we let divω = − (gradω)
∗. Also, we introduce

the space of smooth random variables by

H∞(Ω) =
{
ϕ ∈ L2(Ω) : ∂α1

ω,1 · · · ∂αn

ω,nϕ ∈ H1(Ω) for all α1, . . . , αn ∈ N0

}
.

In the case n = 3, we define the stochastic counterpart of the
o

curlx operator as follows. Let
∇ω× : H∞(Ω)3 ⊆ L2(Ω)3 → L2(Ω)3 be given by

∇ω × ϕ = (∂ω,2ϕ3 − ∂ω,3ϕ2, ∂ω,3ϕ1 − ∂ω,1ϕ3, ∂ω,1ϕ2 − ∂ω,2ϕ1) .

We let curlω = (∇ω×)∗∗. The choice Cd =
o

gradx and Cs = gradω satisfies assumptions (12)-(14),

and if we set Cd =
o

curlx and Cs = curlω we merely obtain (12)-(13). (Again, note that (10) in both
cases follows with the choice D1 = D2 = C∞

c (Q) and E1 = E2 = H∞(Ω).)

Lemma 5.4. Let ε 6= 0.
(a) Then

ε
o

gradxT−εϕ = εT−ε

o

gradxϕ+ gradωT−εϕ for all ϕ ∈ dom(
o

gradx) ∩ dom (gradω),

Tεgradω ⊆ gradωTε,
Tεϕ = ϕ for all ϕ ∈ ker(gradω).
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(b) If n = 3, then

ε
o

curlxT−εϕ = εT−ε

o

curlxϕ+ curlω T−εϕ for all ϕ ∈ dom(
o

curlx) ∩ dom(curlω),

Tε curlω ⊆ curlω Tε.

Proof. (a) Let η ∈ C∞
c (Q)

a
⊗H∞(Ω)n. We have

〈
εT−ε

o

gradxϕ, η

〉

L2(Q)⊗L2(Ω)

= 〈ϕ, εdivx Tεη〉L2(Q)⊗L2(Ω) .

We compute εdivx Tεη = εTε divx η − Tε divω η, in order to obtain,
〈
εT−ε

o

gradxϕ, η

〉

L2(Q)⊗L2(Ω)

=

〈
ε

o

gradxT−εϕ− gradωT−εϕ, η

〉

L2(Q)⊗L2(Ω)

.

Note that C∞
c (Q)

a
⊗H∞(Ω) is dense in dom(

o

gradx) ∩ dom (gradω) (see (33) below) and therefore
the first claim follows.

In order to obtain the second claim, it is sufficient to show that Tε∂ω,iϕ = ∂ω,iTεϕ for any

ϕ ∈ H∞(Ω) (for any i ∈ {1, . . . , n}). Let ϕ, η ∈ L2(Q)
a
⊗ H∞(Ω). We have

〈Tε∂ω,iϕ, η〉L2(Q)⊗L2(Ω) = lim
h→0

1

h
〈TεTheiϕ− Tεϕ, η〉L2(Q)⊗L2(Ω)

= lim
h→0

1

h
〈Tεϕ, T−heiη − η〉L2(Q)⊗L2(Ω)

= −〈Tεϕ, ∂ω,iη〉L2(Q)⊗L2(Ω)

= 〈∂ω,iTεϕ, η〉L2(Q)⊗L2(Ω) .

As a result of this and by the density of H∞(Ω) in H1(Ω), the claim follows.
For ϕ ∈ ker(gradω), we have Txϕ = ϕ for all x ∈ R

n (see, e.g., [14, Lemma 3.10]). As a result
of this, the third claim follows.

(b) The proof follows analogously to part (a).

Remark 5.5 (Boundary conditions). The first commutation relation from Lemmas 5.2 and 5.4

(a) remains valid if the gradient operator
o

gradx (which is defined on a domain which accounts
for homogeneous Dirichlet boundary conditions) is replaced by gradient operators corresponding
to other types of boundary conditions (e.g., with homogeneous Neumann condition or periodic
boundary condition). In this respect, the unfolding procedure does not only apply to problems
with certain boundary conditions.

Auxiliary results. We provide certain facts that will be helpful in the treatment of the
stochastic homogenization problems considered in the following section (in particular for corrector
type results). The following standard orthogonal decompositions hold (see, e.g., [7])

L2(Ω) = ker(gradω)⊕⊥ ran(divω), L2(Ω)n = ker(divω)⊕⊥ ran(gradω). (32)

Pinv and Ppot denote the orthogonal projections Pinv : L2(Ω) → ker(gradω) and Ppot : L
2(Ω)n →

ran(gradω) =: L2
pot(Ω). We have ker(gradω) =

{
u ∈ L2(Ω) : Txu = u for all x ∈ R

n
}
=: L2

inv(Ω)
(see, e.g., [14, Lemma 3.10]). If we additionally assume that the probability space is ergodic, we
get L2

inv(Ω) ≃ C.
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Lemma 5.6. Let n = 3. Then

ker(curlω) = L2
inv(Ω)

3 ⊕⊥ L2
pot(Ω), ker(curl∗ω) = L2

inv(Ω)
3 ⊕⊥ L2

pot(Ω).

The following standard mollification procedure for random variables (see, e.g., [15, 4]) is useful
in the proof of the above lemma. For a sequence δ → 0, we consider a sequence of standard mollifiers
ρδ ∈ C∞

c (Rn) (even and non-negative) and for ϕ ∈ L2(Ω), we set

ϕδ =

∫

Rn

ρδ(y)Tyϕdy. (33)

We obtain that ϕδ ∈ H∞(Ω) (apply the definition of ∂ω,i, transform the integral to have the
difference quotient on ρδ, and then apply the dominated convergence theorem), 〈ϕδ〉 = 〈ϕ〉 =∫
Ω ϕ(ω)dµ(ω) and ϕδ → ϕ in L2(Ω) as δ → 0 (see, e.g., [15, Section 7.2]). We collect some further
useful properties of this mollification procedure:

Lemma 5.7. Let ϕ ∈ L2(Ω). Then ϕδ ∈ H∞(Ω); and ϕδ → ϕ in L2(Ω) as δ → 0.
Moreover, the following statements hold:

(a) If ϕ ∈ H1(Ω), then gradωϕδ = (gradωϕ)δ and gradωϕδ → gradωϕ.
(b) If ϕ ∈ dom(divω), then divω ϕδ = (divω ϕ)δ and divω ϕδ → divω ϕ.
(c) (n = 3) If ϕ ∈ dom(curlω), then curlω ϕδ = (curlω ϕ)δ and curlω ϕδ → curlω ϕ.
(d) (n = 3) If ϕ ∈ dom(curl∗ω), then curl∗ω ϕδ = (curl∗ω ϕ)δ and curl∗ω ϕδ → curl∗ω ϕ.
(e) curlω = curl∗ω.

Proof. The first statements of the lemma follow the same way as they follow in the deterministic
case.

(a) We have (for i ∈ {1, . . . , n}),
∥∥∥∥
1

h
(Theiϕδ − ϕδ)− (∂ω,iϕ)δ

∥∥∥∥
L2(Ω)

=

∥∥∥∥
∫

Rn

ρδ(y)

(
Ty+heiϕ− Tyϕ

h
− Ty∂ω,iϕ

)∥∥∥∥
L2(Ω)

.

Using the above and that ρδ is bounded and compactly supported, we obtain that there exists
C(δ) > 0 such that

∥∥∥∥
1

h
(Theiϕδ − ϕδ)− (∂ω,iϕ)δ

∥∥∥∥
L2(Ω)

6 C(δ)

∥∥∥∥
1

h
(Theiϕ− ϕ)− ∂ω,iϕ

∥∥∥∥
L2(Ω)

.

In the limit h → 0 the right-hand side vanishes, and this implies that gradωϕδ = (gradωϕ)δ . Con-
sequently, gradωϕδ → gradωϕ.

(b) For η ∈ H1(Ω), we have

−〈ϕδ, gradωη〉L2(Ω)n = −
〈∫

Rn

ρδ(y)Tyϕgradωηdy

〉
= −

∫

Rn

〈ρδ(y)Tyϕgradωη〉 dy.

Using that T−y and (the infinitesimal generator) gradω commute, we obtain that the last expression
equals

−
∫

Rn

ρδ(y) 〈ϕgradωT−yη〉 dy =

〈∫

Rn

ρδ(y)Ty divω ϕdyη

〉
= 〈(divω ϕ)δ , η〉L2(Ω) .
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As a result of this, we have divω ϕδ = (divω ϕ)δ and divω ϕδ → divω ϕ.
(c) Let η ∈ dom(curl∗ω). We have

〈ϕδ, curl
∗
ω η〉L2(Ω)3 =

〈∫

Rn

ρδ(y)Tyϕ curl∗ω ηdy

〉
=

∫

Rn

ρδ(y) 〈ϕT−y curl
∗
ω η〉 dy.

In order to obtain the claim of the lemma, it is sufficient to show that T−y curl
∗
ω η = curl∗ω T−yη.

Indeed, in that case the above expression equals

∫

Rn

ρδ(y) 〈ϕ curl∗ω T−yη〉 dy =

〈∫

Rn

ρδ(y)Ty curlω ϕdyη

〉
= 〈(curlω ϕ)δ , η〉L2(Ω)3 ,

and therefore the claim follows. In the following we show that T−y curl
∗
ω η = curl∗ω T−yη. Let

ψ ∈ H1(Ω)3. We have

〈T−yη, curlω ψ〉
L2(Ω)3 = 〈η, Ty curlω ψ〉L2(Ω)3 = 〈η, curlω Tyψ〉L2(Ω)3 = 〈T−y curl

∗
ω η, ψ〉L2(Ω)3

By density of H1(Ω)3 in dom(curlω), we obtain that for any ψ ∈ dom(curlω), 〈T−yη, curlω ψ〉
L2(Ω)3 =

〈T−y curl
∗
ω η, ψ〉L2(Ω)3 that implies T−yη ∈ dom(curl∗ω) and T−y curl

∗
ω η = curl∗ω T−yη. The proof is

done.
(d) The proof follows analogously to part (c) if we obtain that for η ∈ dom(curlω), T−y curlω η =

curlω T−yη. In order to show this, we consider a sequence (ηk)k in H1(Ω)3 such that ηk → η and
curlω ηk → curlω η (by definition such a sequence exists). The operator T−y is unitary and therefore
we have T−yηk → T−yη and T−y curlω ηk → T−y curlω η. Moreover, since T−y curlω ηk = curlω T−yηk,
and using that curlω is closed, we get curlω T−yη = T−y curlω η.

(e) It is elementary to show that curlω ⊆ curl∗ω; see also [4, p 22]. The remaining inclusion
follows from (d) as this statement shows that H1(Ω) is a core for curl∗ω. Hence,

curlω ⊆ curl∗ω = curl∗ω |H1(Ω) = curlω |H1(Ω) = curlω .

Proof of Lemma 5.6. Let ϕ ∈ ker(curlω). Then ϕ = Pinvϕ+Ψ where Ψ = ϕ− Pinvϕ. Using (32) it
follows that Ψ may be decomposed as follows

Ψ = Ψ1 +Ψ2,

where Ψ1 ∈ ker(divω) and Ψ2 ∈ ran(gradω). In the following we show that Ψ1 = 0. Using Lemma
5.7 we find a sequence (ϕk)k in H∞(Ω) such that gradωϕk → Ψ2 as k → ∞. Moreover, since
curlω gradωϕk = 0 for all k ∈ N, we conclude that Ψ2 ∈ ker(curlω) and therefore it follows that

Ψ1 = Ψ−Ψ2 = ϕ− Pinvϕ−Ψ2 ∈ ker(curlω).

For the mollified functions Ψ1,δ (defined as in (33)), by a direct computation we obtain

∫

Ω
| curlω Ψ1,δ|2 + |divω Ψ1,δ|2 =

∫

Ω
|gradωΨ1,δ|2.

Using Lemma 5.7 we pass to the limit δ → 0 and it follows that gradωΨ1,δ → 0. Moreover, since
Ψ1,δ → Ψ1, we obtain that gradωΨ1 = 0 and therefore Ψ1 = 0 (using that PinvΨ1 = 0). This
concludes the proof of the first part. The second claim follows from Lemma 5.7 (e).
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5.2 Periodic homogenization of elliptic equations

We start by showing that the classical example of periodic homogenization of elliptic equations
fits into the previously described abstract framework (see Section 3). We refer to [3, 1] for the
standard treatment of elliptic equations with periodic coefficients and to [25, 4] for its stochastic
counterpart. Let Q ⊂ R

n be open and bounded. In this section, we consider the periodic unfolding
operator Tε : L2(Q)⊗ L2(�) → L2(Q)⊗ L2(�) defined in (30).

In this setting the role of Cd and Cs is played by
o

gradx and grad#y , respectively. Let A ∈
L∞(Q × �)n×n be such that there exists c > 0 with |A(x, y)| 6 1

c
and 1

2 (A(x, y) +A(x, y)∗) > c
a.e. We interpret A as a multiplication operator in (L2(Q) ⊗ L2(�))n. For ε > 0, we consider the
following equation

− divx T−εATε
o

gradxuε = f (34)

with f ∈ L2(Q) ⊗ C. In this case, the term T−εATε
o

gradxuε boils down to the familiar expression

(x, y) 7→ A
(
x, y +

{
x
ε

}
�

) o

gradxuε(x, y). Since
o

gradx is injective and its range is closed (due to
the Poincaré inequality), a direct application of Theorem 3.1 and the fact that Tεu = u for u ∈
ker(grad#y ) imply the following:

Corollary 5.8. Let A be given as above and uε be the unique solution of (34). Then

Tεuε → u strongly in L2(Q)⊗ L2(�), Tε
o

gradxuε ⇀
o

gradxu+ v weakly in (L2(Q)⊗ L2(�))n,

where u ∈ dom(
o

gradx)⊗ C and v ∈ ran(grad#y ) are the unique solution to

− divx PA(
o

gradxu+ v) = f,

− div#y A(
o

gradxu+ v) = 0.
(35)

Above, P is the projection to constant functions (in the y-variable), i.e., Pϕ =
∫
�
ϕdy.

Remark 5.9. In order to transform the above (two-scale) homogenized problem (35) into the usual
one-scale form (see [1] for detailed investigation of such two-scale effective equations), we might
introduce the following (uniquely defined) correctors ϕi ∈ dom(grad#y ) (i ∈ {1, . . . , n}) by

− div#y A
(
ei + grad#y ϕi

)
= 0,

∫

�

ϕi = 0.

It follows that the choice v =
∑n

i=1(
o

gradxu)igrad
#
y ϕi satisfies the second equation in (35). Conse-

quently, u is the solution of the equation

− divxAhom

o

gradxu = f,

where Ahomei · ej =
∫
�
A(ei + grad#y ϕi) · (ej + grad#y ϕj)dy. The last equation is the classical form

of the homogenized equation. Notice, however, that the result presented in Corollary 5.8 is slightly
different from the classical result; as the notion of convergence is different. We also refer to [4,
Remark on page 32] for a similar statement in the stochastic setting.
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5.3 Stochastic homogenization of Maxwell’s equations

In this section we consider stochastic homogenization of Maxwell’s equations. We refer to [50,
17] for the treatment of Maxwell’s equations in the periodic setting using two-scale convergence
arguments. The stochastic-periodic case is treated in [33] that is based on the notion of stochastic
two-scale convergence from [4]. However, our approach is different, it relies on the operator theoretic
formulation and on the unfolding strategy, in fact, the homogenization result Corollary 5.10 readily
follows from the abstract Theorem 4.10. Also, we treat a more general situation—in contrast to
our case—in [33] the assumptions on the coefficients do not allow for jumps or for regions, where
the conductivity or dielectricity vanish. Moreover, as far as we know, the corrector type result
Corollary 5.16 is not presented earlier in the stochastic setting, see [50, Theorem 3.3] for a similar
periodic corrector result.

Let Q⊆ R
3 be open and (Ω,Σ, µ, τ) be a probability space satisfying Assumption 1 (with n = 3).

In this section we consider the stochastic unfolding operator Tε : L2(Q)⊗L2(Ω) → L2(Q)⊗L2(Ω)

defined in (7). The role of Cd and Cs in this setting is played by the operators
o

curlx and curlω,
respectively.

We set H0 = H1 = (L2(Q) ⊗ L2(Ω))3 and H = H0 ⊕ H1. We consider ν0 > 0, η0, σ0, µ0 ∈
L∞(Q× Ω)3×3 such that η0 and µ0 are Hermitian a.e. and there exists c > 0 such that

νη0 +Re(σ0) > c (for all ν > ν0), µ0 > c. (36)

For ε > 0 and (f, g) ∈ L2
ν

(
R;L2(Q)3 ⊕ L2(Q)3

)
, we consider the following system of equations

Bε

(
uε
qε

)
=

(
f
g

)
, where Bε = T−ε

(
∂t,νη0 + σ0 0

0 ∂t,νµ0

)
Tε +

(
0 − curlx
o

curlx 0

)
. (37)

The above system represents a system of Maxwell’s equations with random and oscillating coeffi-
cients (the oscillating coefficients have the form T−εη0Tε and similarly for σ0 and µ0). According
to Theorem 4.1 there exists a unique solution of the above equation (uε, qε) ∈ L2

ν(R;H). Moreover,
a direct application of Theorem 4.10 yields the following:

Corollary 5.10. Let η0, σ0, µ0 be given as above and let (uε, qε) ∈ L2
ν(R;H) be the unique solution

to (37). We have
Tε(uε, qε) ⇀ (ιsu, ιsq) weakly in L2

ν(R,H).

Above, ιs denotes the canonical embedding ιs : ker(curlω) →֒ H0 = H1 and

(u, q) ∈ L2
ν (R; ker(curlω)⊕ ker(curlω))

denotes the unique solution to

Bhom

(
u
q

)
=

(
ι∗sf
ι∗sg

)
, where Bhom =

(
∂t,νι

∗
sη0ιs + ι∗sσ0ιs 0

0 ∂t,νι
∗
sµ0ιs

)
+

(
0 −ι∗s curlx ιs

ι∗s
o

curlxιs 0

)
.

(38)

Note that the fact (u, q) ∈ L2
ν(R; ker(curlω) ⊕ ker(curlω)) does not imply in general that the

limit solution is deterministic (or shift-invariant), i.e., the solution still depends on the probability
space variable ω. In the following we present an equivalent formulation of the above equation
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by decomposing the solution (u, q) to its deterministic (shift-invariant) and random parts. In
particular, the deterministic part satisfies an effective Maxwell system and the random part is
given by a suitable corrector equation. We introduce the following canonical embeddings

ι0 : L
2
inv(Ω)

3 →֒ ker(curlω), ι1 : L
2
pot(Ω) →֒ ker(curlω).

Moreover, we consider the transformation

T :=

(
ι0 ι1 0 0
0 0 ι0 ι1

)
: L2

inv(Ω)
3 ⊕ L2

pot(Ω)⊕ L2
inv(Ω)

3 ⊕ L2
pot(Ω) → ker(curlω)⊕ ker(curlω)

that is unitary (by Lemma 5.6). As a result of this, we obtain the following:

Corollary 5.11. Let (u, q) ∈ L2
ν (R; ker(curlω)⊕ ker(curlω)) be the solution of (38). Then




u0
χ1

q0
χ2


 := T−1(u, q) ∈ L2

ν

(
R;

(
(L2(Q)⊗ L2

inv(Ω))
3 ⊕ (L2(Q)⊗ L2

pot(Ω))
)2)

is the unique solution to

T−1BhomT




u0
χ1

q0
χ2


 = T−1

(
ι∗sf
ι∗sg

)
. (39)

Remark 5.12. Dropping the notation for the embeddings ιs, T and closure bars, system (39) reads

∂t,νPinvη0(u0 + χ1) + Pinvσ0 (u0 + χ1)− curlx q0 = f

∂t,νPpotη0(u0 + χ1) + Ppotσ0(u0 + χ1) = 0

∂t,νPinvµ0(q0 + χ2) +
o

curlxu0 = g

∂t,νPpotµ0(q0 + χ2) = 0.

Note that in the second equation we used that Ppot curlx(q0 + χ2) = 0 since Ppotq0 = 0 and
Ppot curlx χ2 = 0 (that can be obtained by a direct computation) and in the fourth equation we

use Ppot

o

curlx(u0 + χ1) = 0 (obtained similarly as the previous claim). We regard the first and
third equations as the effective Maxwell system for the (averaged) variable (u0, q0) and the second
and fourth equations are corrector equations which allow us to express (χ1, χ2) as functions of
(u0, q0). In particular, the second and fourth equations imply that (additionally assuming that η0
is positive-definite)

χ1(t) = −χi
η0
ui0(t) + e−At

(
χi
η0
ui0(0) + χ1(0)

)
+

∫ t

0
e−A(t−τ)A

(
χi
η0

− χi
σ0

)
ui0(τ)dτ,

χ2(t) = −χi
µ0
qi0(t) + χi

µ0
qi0(0) + χ2(0),

where A = η−1
0 σ0 and χi

η0
, χi

σ0
, χi

µ0
∈ L2(Q) ⊗ L2

pot(Ω) (i ∈ {1, 2, 3}) are the unique solutions to
(respectively)

Ppotη0(ei − χi
η0
) = 0, Ppotσ0(ei − χi

σ0
) = 0, Ppotµ0(ei − χi

µ0
) = 0. (40)
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The derivation of these formulas is analogous to the periodic case [50] (see also [33] for the periodic-
stochastic case). In this sense, the effective equations for the averaged variables (u0, q0) are non-local
in time. This so-called memory effect has also been observed in [47] and [49] for coefficients that
are not necessarily periodic or stochastic.

Remark 5.13 (Corrector equations). The equations in (40) are standard corrector equations in
stochastic homogenization and might be brought into the form of an elliptic partial differential
equation on R

3. For simplicity let us consider the first equation in (40) and assume that η0 does
not depend on the physical space variable, i.e., η0(x, ω) = η0(ω). The equation is equivalent to

∫

Ω
η0(ω)(ei − χi

η0
(ω)) · χ(ω)dµ(ω) = 0 for all χ ∈ L2

pot(Ω), (41)

which is a variational problem in the L2-probability space. It turns out that for µ-almost every
ω ∈ Ω, the vector field x 7→ χi

η0
(τxω) has a potential ϕ(ω, ·) ∈ H1

loc(R
3) that is a distributional

solution to
−∇ · (η0(τxω) (ei −∇ϕ(ω, x))) = 0 in R

3. (42)

On the other hand, by standard theory in stochastic homogenization there exists a unique random
field ϕ : Ω × R

3 → R that is a distributional solution to (42) for µ-a.e. ω ∈ Ω such that ∇ϕ is
stationary (i.e., ∇ϕ(ω, x + z) = ∇ϕ(τzω, x) for µ-a.e. ω ∈ Ω and a.e. x, z ∈ R

3), square integrable∫
Ω |∇ϕ(ω, x)|2 dµ(ω) <∞, mean-free

∫
Ω ∇ϕdµ = 0, and anchored in the sense of

∫
(0,1)d ϕ(ω, x) dx =

0, µ-a.s. With this solution we recover the random vector field χi
η0
(ω) := ∇ϕ(ω, 0) solving (41), see

[22, Section 2.2] for details.
Note that both formulations, (41) and (42), are not accessible to a direct numerical approx-

imation, since in the case of (41) a typical example for the probability measure µ would be a
product-measure of the form µ̂⊗R3

, while (42) is posed on the unbounded domain R
3. A stan-

dard approximation scheme is the so-called periodization method, where in (42) the domain R
3 is

replaced by a large torus, say L� with L ≫ 1, see, e.g., [5].

Corrector type results for Maxwell equations. First, we recall a (standard) mollifi-
cation procedure from [30] (see also [45, 31]). For δ > 0, we consider the bounded operator
Fδ := (1 + δ∂t,ν)

−1. We remark that Fδ → 1 as δ → 0 in the strong operator topology and that for
any ϕ ∈ dom(Bε), we have Fδϕ ∈ dom(Bε) and FδBεϕ = BεFδϕ and the same statements hold if
we replace Bε by Bhom. Using Fδ and the properties of (uε, qε), we obtain the following corrector
type results. Before that, we provide another auxiliary result.

Lemma 5.14. We have

ι∗s curlx ιs = ι∗s curlx ιs and ι∗s
o

curlxιs = ι∗s
o

curlxιs.

Proof. Since curlx and
o

curlx are closed linear operators, the claim follows, if we show that the

application of curlx and
o

curlx leaves ker(curlω) invariant. This, however, follows from the fact that

curlx and curlω (
o

curlx and curlω) commute on the intersection of their domains.

In order to avoid clutter in notation, in the following we disregard the notation for the embedding
ιs and T .
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Proposition 5.15. Let δ > 0, (uε, qε) be the solution of (37) and (u0, χ1, q0, χ2) be the solution of
(39). Then

‖Fδ (uε − T−εχ1 − u0) ‖L2
ν(R;H0) + ‖Fδ (qε − T−εχ2 − q0) ‖L2

ν(R;H1) → 0 as ε → 0.

Proof. Using the facts that

Re

〈(
uε
qε

)
,T−ε

(
∂t,νη0 + σ0 0

0 ∂t,νµ0

)
Tε

(
uε
qε

)〉
> c

∥∥∥∥
(
uε
qε

)∥∥∥∥
2

(using the assumptions on η, σ, µ, see (36)) and that

(
0 − curlx
o

curlx 0

)
is skew-self-adjoint, we

obtain

‖Fδ (uε − T−εχ1 − u0) ‖2L2
ν(R;H0)

+ ‖Fδ (qε − T−εχ2 − q0) ‖2L2
ν(R;H1)

(43)

6
1

c
Re

〈
BεFδ

(
uε − T−εχ1 − u0
qε − T−εχ2 − q0

)
,Fδ

(
uε − T−εχ1 − u0
qε − T−εχ2 − q0

)〉

=
1

c
Re

〈
FδBε

(
uε
qε

)
,Fδ

(
uε − T−εχ1 − u0
qε − T−εχ2 − q0

)〉

−1

c
Re

〈
BεFδ

(
u0 + T−εχ1

q0 + T−εχ2

)
,Fδ

(
uε − T−εχ1 − u0
qε − T−εχ2 − q0

)〉
.

Above, we use that Fδ

(
T−εχ1 + u0
T−εχ2 + q0

)
∈ dom(Bε). This can be seen using the facts that

Fδ

(
u0 + χ1

q0 + χ2

)
∈ dom(Bhom)

and that T−ε and Fδ commute and, thus,

Fδ

(
T−εχ1 + u0
T−εχ2 + q0

)
∈ dom

((
0 − curlx
o

curlx 0

))
,

by Lemma 5.14. Since (uε, qε) solves problem (37) and (f, g) ∈ ker(Tε − 1), it follows that the first
term on the right-hand side satisfies

1

c
Re

〈
FδBε

(
uε
qε

)
,Fδ

(
uε − T−εχ1 − u0
qε − T−εχ2 − q0

)〉
=

1

c
Re

〈
Fδ

(
f
g

)
,Fδ

(
uε − T−εχ1 − u0
qε − T−εχ2 − q0

)〉

=
1

c
Re

〈
Fδ

(
f
g

)
,Fδ

(
Tεuε − χ1 − u0
Tεqε − χ2 − q0

)〉
.

The last expression vanishes in the limit ε → 0 since (uε, qε)
2
⇀ (u0 + χ1, q0 + χ2). We treat the
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second term on the right-hand side of (43) as follows:

Re

〈
BεFδ

(
u0 + T−εχ1

q0 + T−εχ2

)
,Fδ

(
uε − T−εχ1 − u0
qε − T−εχ2 − q0

)〉

= Re

〈((
∂t,νη + σ 0

0 ∂t,νµ

)
+ Tε

(
0 − curlx
o

curlx 0

)
T−ε

)
Fδ

(
u0 + χ1

q0 + χ2

)
,Fδ

(
Tεuε − χ1 − u0
Tεqε − χ2 − q0

)〉

= Re

〈((
∂t,νη + σ 0

0 ∂t,νµ

)
+

(
0 − curlx
o

curlx 0

))
Fδ

(
u0 + χ1

q0 + χ2

)
,Fδ

(
Tεuε − χ1 − u0
Tεqε − χ2 − q0

)〉
.

(44)

In order to justify the second equality above, we compute
(

0 − curlx
o

curlx 0

)
T−εFδ

(
u0 + χ1

q0 + χ2

)
=

(
curlx T−εFδ (q0 + χ2)
o

curlxT−εFδ (u0 + χ1)

)
=

(
T−ε curlxFδ (q0 + χ2)

T−ε

o

curlxFδ (u0 + χ1)

)
,

(45)
where we used the commutation relations from Lemma 5.4 (b), the fact that Fδ and curlω commute,
and that (u0 + χ1) ∈ ker(curlω) and (q0 + χ2) ∈ ker(curlω). Also, letting ε → 0 in (44), the right-

hand side vanishes since (uε, qε)
2
⇀ (u0 + χ1, q0 + χ2). This concludes the proof.

If we, additionally, assume that (f, g) ∈ dom(∂t,ν), it follows that (uε, qε) ∈ dom(∂t,ν) and
(uε, qε) ∈ dom(Bε) (the analogous claims hold if we replace Bε by Bhom and (uε, qε) by (u0 +
χ1, q0 + χ2)). As a result of this, we obtain the following:

Corollary 5.16. Assume the same assumptions as in Corollary 5.10. Additionally, we assume
that (f, g) ∈ H1

ν (R;H)(= dom(∂t,ν)). Then

‖uε − T−εχ1 − u0‖2L2
ν(R;H0)

+ ‖qε − T−εχ2 − q0‖2L2
ν(R;H1)

→ 0 as ε → 0.

Proof. Since (f, g) ∈ H1
ν (R;H), we may apply the operator (1+ ∂t,ν) to both sides of the equations

(37) and (38) to obtain

Bε(1 + ∂t,ν)

(
uε
qε

)
= (1 + ∂t,ν)

(
f
g

)
,

Bhom(1 + ∂t,ν)

(
u0 + χ1

q0 + χ2

)
= (1 + ∂t,ν)

(
f
g

)
.

We have that wε := (1 + ∂t,ν)

(
uε
qε

)
and w0 := (1 + ∂t,ν)

(
u0 + χ1

q0 + χ2

)
solve equations (37) and (38)

with right-hand side (1 + ∂t,ν)

(
f
g

)
(instead of

(
f
g

)
). As a result of this, Proposition 5.15 implies

that for any δ > 0, we have

‖Fδ (wε − T−εw0) ‖2L2
ν(R;H) → 0 as ε → 0.

Setting δ = 1, the claim follows.
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5.4 Stochastic homogenization of some mixed type equations

A standard reference for homogenization of the wave and heat equation is [6], where general equa-
tions are treated in the framework of H-convergence. In contrast to standard results for the wave
or heat equation, the equation we consider features coefficients η and σ, cf. (47), that are allowed
to be alternatingly vanishing in some regions of the considered physical domain. This means that
our setting contains equations of mixed alternating hyperbolic-parabolic type.

Let Q⊆ Rn be open and (Ω,Σ, µ, τ) be a probability space satisfying Assumption 1. We consider
the stochastic unfolding operator Tε : L2(Q)⊗ L2(Ω) → L2(Q)⊗ L2(Ω) defined in (7). The role of

Cd and Cs in this setting is played by the operators
o

gradx and gradω (respectively).
Let ν0 > 0, A ∈ L∞(Q × Ω)n×n be such that there exists c > 0 with A Hermitian a.e and

c 6 A(x, ω) 6 1
c
a.e.. Also, let η, σ ∈ L∞(Q× Ω) be such that there exists c > 0 with

Re(zη + σ) > c (for all z ∈ CRe>ν0).

Let H0 = L2(Q)⊗ L2(Ω), H1 = L2(Q)⊗ L2(Ω)n and H = H0 ⊕H1. For ε > 0 and f ∈ L2(Q),
we consider the following system

Bε

(
uε
qε

)
=

(
f
0

)
, where Bε = T−ε

(
∂t,νη + σ 0

0 ∂t,νA
−1

)
Tε +

(
0 divx
o

gradx 0

)
. (46)

According to Theorem 4.1 the above system has a unique solution (uε, qε) ∈ L2
ν(R;H).

Remark 5.17. Setting wε = ∂−1
t,ν uε, it follows that wε solves the following wave equation

ηε∂
2
t,νwε + σε∂t,νwε − divxAε

o

gradxwε = f, (47)

where the oscillating coefficients are given as the composition Aε := T−εATε, ηε := T−εηTε and
σε := T−εσTε.

Using our abstract homogenization result Theorem 4.10 we obtain:

Corollary 5.18. Let A, η, σ be given as above and let (uε, qε) ∈ L2
ν(R;H) be the unique solution

to (46). Then
Tε(uε, qε) ⇀ (ιsu, ιs∗q) weakly in L2

ν(R;H).

Above, ιs and ιs∗ denote the canonical embeddings ιs : ker(gradω) → H0 and ιs∗ : ker(divω) → H1,
and (u, q) ∈ L2

ν(R; ker(gradω)⊕ ker(divω)) is the unique solution to

Bhom

(
u
q

)
=

(
ι∗sf
0

)
,

Bhom =

(
∂t,νι

∗
sηιs + ι∗sσιs 0

0 ∂t,νι
∗
s∗A

−1ιs∗

)
+

(
0 ι∗s divx ιs∗

ι∗s∗
o

gradxιs 0

)
.

Remark 5.19. In order to recover the classical form of the homogenized wave equation, we set
w = ∂−1

t,ν u to obtain (with the usual abuse of notation)

Pinvη∂
2
t,νw + Pinvσ∂t,νw + divx Pinvq = f,
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where q satisfies Pker(divω)

(
∂t,νA

−1q +
o

gradx∂t,νw

)
= 0 (here Pker(divω) = ι∗s∗). Applying ∂−1

t,ν , it

follows that Pker(divω)A
−1q = −

o

gradxw. As a result of this and using (32), we have that A−1q =

−
o

gradxw + χ where χ ∈ L2(Q) ⊗ L2
pot(Ω) (note that χ is uniquely determined). Also, since q ∈

ker(divω), we have − divω A

(
o

gradxw − χ

)
= 0. Collecting these facts, we obtain that w satisfies

Pinvη∂
2
t,νw + Pinvσ∂t,νw − divx PinvA

(
o

gradxw − χ

)
= f, (48)

where χ solves the usual corrector equation − divω A(
o

gradxw − χ) = 0.

The above remark suggests the following corrector type statement Tε
o

gradxwε + χ →
o

gradxw
that is equivalent to A−1Tεqε−χ → Pker(divω)A

−1q = A−1q−χ. We formalize this in the following.

Proposition 5.20 (Corrector type result). Let f ∈ H1
ν (R;H0), then

‖∂−1
t,ν uε − ∂−1

t,ν u‖L2
ν(R,H0) + ‖uε − u‖L2

ν(R;H0) + ‖Tεqε − q‖L2
ν(R;H1) → 0 as ε → 0.

Proof. This proof follows similar lines to the proof of Proposition 5.15. Using the assumptions on
A, σ, and η, we have

Re

〈(
wε

qε

)
,Tε

(
∂t,νη + σ 0

0 ∂t,νA
−1

)
T−ε

(
wε

qε

)〉
> c

∥∥∥∥
(
wε

qε

)∥∥∥∥
2

.

As a result of this and by the skew-self-adjointness of

(
0 divx
o

gradx 0

)
, we obtain

‖uε − T−εu‖2L2
ν(R;H0)

+ ‖qε − T−εq‖2L2
ν(R;H1)

6
1

c
Re

〈
Bε

(
uε − T−εu
qε − T−εq

)
,

(
uε − T−εu
qε − T−εq

)〉

=
1

c
Re

〈(
f
0

)
,

(
uε − T−εu
qε − T−εq

)〉
− 1

c
Re

〈
Bε

(
T−εu
T−εq

)
,

(
uε − T−εu
qε − T−εq

)〉
,

where in the second equality we use the equation (46). The first term on the right-hand side
vanishes in the limit ε → 0 using Corollary 5.18 and that Tεf = f . The second term is treated as
follows. We have

Re

〈
Bε

(
T−εu
T−εq

)
,

(
uε − T−εu
qε − T−εq

)〉

= Re

〈((
∂t,νη + σ 0

0 ∂t,νA
−1

)
+ Tε

(
0 divx
o

gradx 0

)
T−ε

)(
u
q

)
,

(
Tεuε − u
Tεqε − q

)〉

Similarly as in (45), we obtain Tε
(

0 divx
o

gradx 0

)
T−ε

(
u
q

)
=

(
0 divx
o

gradx 0

)(
u
q

)
and therefore

the above expression vanishes in the limit ε → 0. This concludes the proof.
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Above, we assumed that the right-hand side f is smooth for convenience, if this is not the
case, we could use a mollification procedure as in Proposition 5.15. We briefly summarize the
implications of the above proposition for the sequence wε:

wε → w, ∂t,νwε → ∂t,νw,
o

gradxwε+T−εχ→
o

gradxw (strongly in L2
ν(R;L

2(Q)⊗L2(Ω))). (49)

Remark 5.21. It is well-known that the classical homogenized wave equation (48) is an unsatis-
factory approximation for (47) on large time scales t & ε−2 (see [12]). This fact is not reflected in
our result ((49) is given in a norm accounting for the whole time line t ∈ R) since we use a norm
which is weighted with an exponential weight e−2νt (ν > 0) that diminishes the effects on large
time scales.
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