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Periodically distributed wall-mounted hot blocks with a cubic shape located at the bottom
of a layer of liquid with a free top interface tend to create patterns in their surrounding fluid
that are reminiscent of the classical modes of Marangoni–Rayleigh–Bénard convection.
Through direct numerical solution of the governing equations in their complete
three-dimensional unsteady and nonlinear formulation, we investigate this specific subject
giving much emphasis to understanding how ensemble properties arise from the interplay
of localized effects. Through the used numerical framework, we identify the emerging
planforms and connect the statistics of the associated heat transport mechanisms with the
spatially averaged behaviour of the underlying thermal currents. In some cases, all these
features can be directly mapped into the topography at the bottom of the layer. In other
circumstances, these systems contain their own capacity for transformation, i.e. intrinsic
evolutionary mechanisms are enabled, by which complex steady or unsteady patterns are
produced. It is shown that self-organization driven by purely surface-tension or mixed
buoyancy–Marangoni effects can result in ‘quantized states’, i.e. aesthetically appealing
solutions that do not depend on the multiplicity of wall-mounted elements.
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1. Introduction

In many different types of thermal convection, the nature of the force driving fluid
motion and the direction of the prevailing temperature gradient can have a paramount
importance in determining the properties of the flow. As an example, the different outcome
in terms of convective structures and related hierarchy of bifurcations when the cases
of a temperature difference parallel or perpendicular to gravity are examined is one of
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the main reasons for the existence of a fundamental dichotomy in the literature, i.e.
the distinction between Rayleigh–Bénard (RB) convection (see, e.g. Clever & Busse
1994; Li & Khayat 2005; Lappa & Boaro 2020) and the equivalent buoyancy flow in
laterally heated systems (the so-called Hadley problem, Kaddeche, Henry & Ben Hadid
(2003), Lappa (2005a,b), Melnikov & Shevtsova (2005), Gelfgat (2020) and references
therein). A similar concept holds if variations of density are replaced with gradients
of surface tension: the different orientation of the imposed temperature difference with
respect to the free interface (temperature gradient perpendicular or parallel to it) gives
rise to two different variants of surface-tension-driven convection, generally known as
Marangoni–Bénard (MB) (Nepomnyashchy & Simanovskii 1995; Ueno, Kurosawa &
Kawamura 2002; Lyubimova, Lyubimov & Parshakova 2015; Lyubimov et al. 2018) and
thermocapillary (or simply Marangoni) flow (Shevtsova, Nepomnyashchy & Legros 2003;
Shevtsova, Melnikov & Nepomnyashchy 2009; Kuhlmann et al. 2014; Lappa 2016, 2018;
Gaponenko et al. 2021), respectively.

These well-established paradigms have instigated much research leading to a significant
amount of knowledge. Most of this success has come from the remarkable simplicity of
the related kinematic and thermal boundary conditions (smooth surfaces and uniform
temperature distributions) and the associated possibility to conduct experiments in
well-controlled conditions. At the moment, the results are spread in myriad papers and
those who wish to get in touch with the field may consider some relevant books where
such knowledge has been collected in a structured way (Koschmieder 1993; Getling 1998;
Colinet, Legros & Velarde 2001; Lappa 2009, 2012). We wish to remark, however, that,
although studies on these fundamental modes of convection and the related hierarchy
of bifurcations are not showing any obvious sign of reaching a limit yet (relevant
investigations being still produced at a constant rate), the need to place part of these efforts
in a more practical context has stimulated the development of ‘alternate’ lines of inquiry.

This endeavour, which has not yet been fully explored, has been produced essentially by
the ambition (and/or concrete need) to increase the translational applicability of this type
of research to technological problems where fluid motion can be brought about by many
mechanisms working ‘in parallel’ (i.e. coexisting). This typically happens in circumstances
where point-like, spot-like or finite-size (extended in the three-dimensional space) sources
of energy are present, and result in a complex distribution of differently oriented gradients
of temperature.

Along these lines, box-shaped roughness elements have received appreciable attention
in recent years by virtue of their ability to increase the heat transfer in problems of (pure)
thermal convection. Relevant applications are connected with the design of electronic
boards (where natural convection is generally regarded as a cheap and convenient cooling
strategy because it does not require auxiliary electromechanical equipment) and can be
found in other areas where buoyant flow is dominant such as solar energy collectors,
nuclear reactors, energy storage systems and furnaces or crucibles (Lappa 2017; Lappa
& Ferialdi 2017; Nadjib et al. 2018; Arkhazloo et al. 2019; Lappa & Inam 2020).

For these reasons, the fundamental problem represented by a set of heated elements
located on a horizontal adiabatic wall interacting with air or other fluids has been
investigated for a variety of circumstances, including (but not limited to) different
enclosure aspect ratios, variable horizontal and vertical size of the blocks (with the case of
flush-mounted discrete heat sources considered as a limiting condition), different thermal
behaviours along the boundary of the enclosure (e.g. cavities with cold top and lateral
walls, or with the cooling role played by the sidewalls only, or with asymmetric cooling
arrangements, etc.) Related studies conducted under the constraint of two-dimensionality
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have produced interesting and valuable results in terms of trends and general dependences
(e.g. Ichimiya & Saiki (2005), Bazylak, Djilali & Sinton (2006), Cheikh, Beya & Lili
(2007), Paroncini & Corvaro, (2009), Mukhopadhyay (2010), Naffouti et al. (2016), Soni
& Gavara (2016), Biswas et al. (2016) just to cite some recent efforts). In comparison,
results for three-dimensional (3-D) configurations are more rare and sparse (see, e.g. the
experiments by Polentini, Ramadhyani & Incropera (1993) and Tso et al. (2004) and the
numerical simulations by Sezai 2000).

As evidenced by all these efforts, for the specific case of mixed forced–buoyant or pure
buoyant convection, our knowledge of these phenomena has reached a sort of maturity in
the sense that numerical and experimental techniques have successfully led to valuable
and relevant information. Unexpectedly, however, this short review of the literature also
clearly shows that equivalent findings for the situation in which the flow is significantly
affected (or dominated) by surface-tension effects are de facto still missing.

A vast and long-lasting line of inquiry dedicated to surface-tension-driven flows and
related instabilities only exists for the case in which the fluid is uniformly heated along one
of the boundaries delimiting the fluid domain and this boundary is flat (for the canonical
MB convection, in particular, heating is applied from below, Bénard 1900, 1901; Pearson
1958; Cloot & Lebon 1984; Bragard & Lebon 1993). To the best of our knowledge,
only a single relevant analysis has been produced till date where periodically patterned
plates have been considered as bottom (hot) wall. Ismagilov et al. (2001) conducted a
series of interesting experiments along these lines using infrared imaging to observe the
emerging planform for different morphologies of the imposed topography (bulges having
triangular, square or hexagonal shape or being one-dimensional, i.e. configured as a set of
corrugations developing continuously along a fixed direction). These authors revealed that
when the convective cells typical of this type of convection form under the same conditions
that would produce ‘standard’ MB convection, but over a periodically corrugated or shaped
wall, their structure and size essentially depend on two factors, namely, the thickness of
the topography and the related symmetry and frequency (i.e. the shape of the bulges and
their number per unit length).

The overarching aim of the present study is to continue such inquiry with an eye
on the lines of research (illustrated before) where ‘cubic’ items were considered as the
elements ‘perturbing’ the flow. Put simply, our objective is to analyse convection driven by
gravitational and surface-tension effects in a layer of liquid with a free top interface in the
presence of 3-D blocks (rods) of square cross-section (parallelepipedic shapes) regularly
arranged at its bottom along two perpendicular horizontal directions (thereby resembling
the squares of a checkerboard or the elements of a structured grid).

Obviously, in addition to the purely theoretical implications represented by the inclusion
of a new driving force in this specific line of research, the present work also aims to
build new information potentially supporting the introduction of new technologies or the
advancement of already existing ones. Indeed, micro-patterned surfaces delimiting a liquid
in contact with an external gas are critical to the development of moulds or scaffolding for
forming ordered microstructures. They can be used as model substrates for a variety of
applications in surface science and are at the root of several lab-on-chip devices (Schäffer
et al. 2003; McLeod, Liu & Troian 2011; Mayer et al. 2015). Another relevant example
is represented by the preparation of porous polymer membranes for innovative processes
where the biggest challenge is represented by the need to control both the size distribution
and the relative positions of the pores (Widawski, Rawiso & François 1994; Khan et al.
2017). They also find application in controlled release of drugs or other bioactive species
(Zhao, Moore & Beebe 2001) and enhanced cell culturing (Wang et al. 2017). Last but
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Figure 1. Three-dimensional view of the fluid layer hosting an array of square bars resting on the bottom wall
(hot blocks), uniformly spaced along the x and z (horizontal) directions (spacing, width and height can be
systematically varied).

not least, engineered surfaces with topographies that scale favourably at small length
scales can be used for the production of nanocrystals (Maillard, Motte & Pileni 2001)
or to assemble microscopic particles (Ismagilov et al. 2001; Balvin et al. 2009) or droplets
(Widawski et al. 1994) into regular lattices; in these applications, the ability to control the
fluid-dynamic conditions is the key to obtain desired deposition conditions or to generate
lattices with well-defined properties.

2. Mathematical model

2.1. The geometry
As anticipated in the introduction, the hallmark of the present study is the consideration
of a ‘patterned’ surface delimiting the considered liquid from below, where the attribute
‘patterned’ is used to describe both the physical morphology of the boundary and its
thermal features. Put simply, this fixed imposed topography consists of wall-mounted hot
rods with square cross-section (having side length �horiz) and thickness �vert. Successions
of such box-shaped blocks, evenly distributed in space, are implemented along both the
x and z (horizontal) directions. As shown in figure 1, this results in a horizontal wall
displaying a regular distribution of N×M elements protruding vertically (along the y
axis) into the liquid. Depending on the specific perspective taken by the observer, this
distribution might also be seen as a set of staggered solids, arranged in N distinct ‘rows’
or M ‘columns’, respectively (a kind of wall ‘roughness’ with well-defined geometrical
properties).

For the sake of completeness, we consider the two disjoint situations in which the floor
(the portions of flat bottom boundary between adjoining elements) is either adiabatic or
set at the same temperature Thot as the blocks (hot floor case). This actually enriches
the problem with an additional degree of freedom (with respect to those enabled by the
possibility to change the spacing among the rods, their number and size).

Not to increase excessively the overall problem complexity, however, the free interface
separating the liquid from the overlying gas is assumed to be flat and undeformable.
This simplification holds under the assumption that the Galileo and capillary numbers
take relatively small values (the related rationale can be found, e.g. in Lappa (2019b,c)
and references therein). These can be defined as Gac = μVr/�ρgd2 and Ca = μVr/σ ,
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respectively, where μ is the liquid dynamic viscosity, g is the gravity acceleration, d is the
characteristic depth of the fluid layer, �ρ ∼= ρ is the difference between the density of the
liquid ρ and that of the overlying gas, σ is the surface tension and Vr is a characteristic flow
velocity, which can be expressed as Vg = ρgβT�Td2/μ or VMa = σT�T/μ depending
on whether buoyancy or Marangoni effects are dominant (βT and σ T being the thermal
expansion coefficient and the surface-tension derivative with respect to temperature,
respectively; �T being a characteristic temperature difference). For Gac < 1 or Ca < 1, the
non-dimensional deformation δ experienced by a free surface under the action of viscous
forces can be estimated in terms of order of magnitude as δ = O(Gac) or δ = O(Ca),
respectively. Following a common practice in the literature, δ can therefore be neglected
provided Gac � 1 and/or Ca � 1 (see again Lappa (2019b,c) and references therein).

2.2. The governing equations
In line with earlier studies on the classical MB and RB systems, we rely on the
self-consistent framework of continuum mechanics where vital information on thermal
convection in liquids (and the related hierarchy of instabilities) is obtained through
solution of the balance equations for mass, momentum and energy properly constrained
by the assumption of incompressible flow and the related Boussinesq approximation.
Moreover, more efficient exploration of the space of parameters is obtained by putting
such equations in non-dimensional form, that is, length, time and the primitive variables
(velocity V , pressure p and temperature T) are scaled here by relevant reference quantities.
In particular, the following compact form:

∇ · V = 0, (2.1)

∂V
∂t

= −∇p − ∇ · [VV ] + Pr∇2V − Pr RaTn̂, (2.2)

∂T
∂t

+ ∇ · [V T] = ∇2T, (2.3)

corresponds to the following choices: Cartesian coordinates (x,y,z), time (t), velocity (V ),
pressure (p) scaled by the reference quantities d, d2/α, α/d and ρα2/d2, respectively (where
α is the liquid thermal diffusivity). Moreover the temperature (T) is scaled by �T, that
is, the difference between the temperature of the hot solid elements and the ambient
temperature Tref (temperature of the external gas).

Obviously, Pr is the well-known Prandtl number (defined as ratio of the fluid kinematic
viscosity ν =μ/ρ and the aforementioned thermal diffusivity α), and Ra = gβT�Td3/να

is the standard Rayleigh number. By setting Ra to 0, obviously, excluded are any
processes that depend on buoyancy effects. In the present circumstances, fluid convection
is also produced by gradients of surface tension, that is, thermocapillary effects. The
related driving force can be accounted for through a dedicated equation, which expresses
separately the balance of shear stresses at the free surface of the layer. Neglecting the shear
stress in the external gas, such a relationship in non-dimensional form simply reads

∂V S

∂n
= −Ma∇ST, (2.4)

where n is the direction perpendicular to the free interface (planar in our case), ∇S is the
derivative tangential to the interface and V s is the surface velocity vector. Moreover, Ma
is the Marangoni number defined as Ma = σT�Td/μα. A related number, measuring the
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relative importance of buoyancy and Marangoni effects, is the so-called dynamic Bond
number, namely, Bodyn = Ra/Ma.

An adequate characterization of the overall problem also requires the introduction of
proper non-dimensional geometrical parameters to be used to account for the spatial
distribution of the cubic elements and their aspect ratio. These are

δx = �horiz

d
, δy = �vert

d
, δz = �horiz

d
, (2.5a)

Axbar = δy

δx
, Azbar = δy

δz
. (2.5b)

Similarly, the aspect ratios of the entire fluid domain are defined as

Ax = Lx

d
, Az = Lz

d
, (2.6a,b)

where Lx and Lz are the related (dimensional) horizontal extensions. Indicating by N
the number of elements along z and by M the corresponding number along x, the
non-dimensional distance between adjoining elements can therefore be expressed as

ξx = Lx − M�horiz

Md
= Ax

M
− δx, ξz = Lz − N�z

Nd
= Ahoriz

N
− δz. (2.7a,b)

Accordingly, each element indexed as (i,k) can be mathematically represented in the
physical (non-dimensional) space as

(i − 1)δx +
(

i − 1
2

)
ξx ≤ x ≤ (i)δx +

(
i − 1

2

)
ξx for 1 ≤ i ≤ M

0 ≤ y ≤ δy

(k − 1)δz +
(

k − 1
2

)
ξz ≤ z ≤ (k)δz +

(
k − 1

2

)
ξz for 1 ≤ k ≤ N

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, (2.8)

and on its boundary with the fluid, we assume

V = 0 (no slip conditions) and T = 1. (2.9)

Along the portions of floor (at y = 0) separating adjoining elements, as anticipated in
§ 2.1, adiabatic or constant temperature conditions are set, i.e.

∂T
∂y

= 0, (2.10a)

or
T = 1. (2.10b)

Heat exchange of the liquid with the external gaseous environment at the free surface
is modelled through the classical Biot number (defined as hd/λ where h and λ are the
convective heat exchange coefficient and the liquid thermal conductivity, respectively),
i.e.

∂T
∂y

= −BiT. (2.11)

The lateral boundaries of the fluid domain are considered no slip and adiabatic or periodic
boundary conditions (PBC) are assumed there. At the initial time t = 0, the flow is
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quiescent and at the same temperature as the ambient, i.e. T = 0. As time increases its
temperature rises as a result of the heat being exchanged with the heated elements until
equilibrium conditions are reached.

In the present work, such heat exchange is quantified through the ‘ad hoc’ introduction
of different versions of the Nusselt numbers tailored to account separately for the thermal
behaviour of the lateral, top or total surface of each heated element, i.e.

Nuik
barlateralsurface = 1

(2δxδy + 2δzδy)

[∫ δy

0

∫ xi+δx

xi

∂T
∂z

∣∣
z=zk

dx dy −
∫ δy

0

∫ xi+δx

xi

∂T
∂z

∣∣
z=zk+δz

dx dy

+
∫ δy

0

∫ zk+δz

zk

∂T
∂x

∣∣∣∣
x=xi

dz dy −
∫ δy

0

∫ zk+δz

zk

∂T
∂x

∣∣
x=xi+δx

dz dy

]
, (2.12)

Nuik
bartop = − 1

δxδz

∫ zk+δz

zk

∫ xi+δx

xi

∂T
∂y

∣∣∣∣
y=δy

dx dz, (2.13)

Nuik
bar =

Nuik
barlateralsurface(2δxδy + 2δzδy) + Nuik

bartopδxδz

(2δxδy + 2δzδy) + δxδz
, (2.14)

where

xi = (i − 1)δx +
(

i − 1
2

)
ξx and zk = (k − 1)δz +

(
k − 1

2

)
ξz. (2.15a,b)

Accordingly, space averaged values are introduced as

Nuaverage
side = 1

NM

N∑
k=1

M∑
i=1

Nuik
barlateralsurface, (2.16)

Nuaverage
top = 1

NM

N∑
k=1

M∑
i=1

Nuik
bartop, (2.17)

Nuaverage
bar = 1

NM

N∑
k=1

M∑
i=1

Nuik
bar. (2.18)

3. Numerical method

3.1. The projection method
The set of (2.1)–(2.3) with the related boundary conditions ((2.4) and (2.8)–(2.11))
have been solved numerically using an explicit in time primitive-variable technique
pertaining to the general category of ‘projection’ or ‘fractional-step’ methods. An extended
description of this class of algorithms can be found in Lappa (2019a) and/or Lappa &
Boaro (2020).

In the present work, convective terms have been treated using the quadratic
upstream interpolation for convective kinematics (QUICK) scheme while standard central
differences have been used to discretize the diffusive terms. Given the delicate role played
by the coupling between pressure and velocity (see, e.g. Choi, Nam & Cho 1994a,b) a
staggered arrangement has been used for the primitive variables, that is, while pressure
occupies the centre of each computational cell, the components of velocity are located at
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Figure 2. Profile of maximum velocity as a function of time (a) and related growth rate (b) as a function of
the Marangoni number (Pr = 10, layer uniformly heated from below with aspect ratio A = 11.5, Bi = 1, mesh
150 × 25).

the centre of the cell face perpendicular to the x, y and z axes, respectively (see, e.g. Lappa
1997).

A structured uniform mesh, covering the fluid and all the blocks, has been used;
however, no calculations have been performed inside the blocks where the temperature
is constant and the velocity is zero (from a purely algorithmic standpoint, this has been
implemented by using computational cycles able to distinguish blocks from the fluid on
the basis of (2.8)).

3.2. Validation
The validation has been articulated into distinct stages of verification. More precisely, the
coherence of the model has been verified through comparison with existing linear stability
analyses (LSAs) and earlier nonlinear calculations conducted by other authors. Given the
nature of the specific subject being addressed, both the classical problems of MB and
buoyancy convection have been considered.

The outcomes of the validation exercise based on the comparison with the LSA for
the classical MB problem are summarized in figure 2. In particular, figure 2(a) shows
the evolution in time of the maximum velocity of the fluid for different values of the
Marangoni number, while the corresponding ‘growth rate’ (determined as the logarithm
of the slope of the branch of the velocity profile with constant inclination) is reported in
figure 2(b). The latter also includes the value of the critical Marangoni number (for the
onset of convection from the initially thermally diffusive and quiescent state) determined
through extrapolation to zero of the disturbance growth rate. As the reader will easily
realize, this value matches with a reasonable approximation (less than 1.5 %) that obtained
with the LSA approach (Pearson 1958; Colinet et al. 2001). The 3-D pattern emerging for
a value of the Marangoni number slightly larger than the critical one is shown in figure 3
(presenting the classical honeycomb structure of MB convection).

For the sake of precision, it should be noted that the definition of the Marangoni
number we have used for comparison with the LSA is slightly different with respect to
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Figure 3. Case Pr = 10, layer aspect ratio Ax = Az = 11.5, Ma = 125, Bi = 1, mesh 150 × 25 × 150, PBC:
(a) temperature and velocity pattern on the free surface; (b) spectrum of the surface temperature distribution.

that introduced in § 2.2. While in the present work the �T appearing in the expression of
Ma is the difference between the temperature of the hot walls and that of the ‘ambient’
(the gas located at a certain distance from the liquid surface, assumed not be disturbed
and maintain a constant temperature in time), the LSA considers the effective temperature
difference which would be established in the absence of convective effects between the top
and bottom geometrical boundaries of the liquid layer, i.e. the uniformly heated bottom
wall and the free interface. Therefore, the Marangoni number shown in figure 2 is related
to that defined in § 2 through a scaling factor, which in the current theoretical framework is
(Thot − Tsurface)/(Thot − Tref ), i.e. in non-dimensional form Bi/(Bi + 1) (Eckert, Bestehorn
& Thess 1998).

These simulations confirm that (as expected) the only effect of a Bi /= 0 is to shift
the critical Marangoni number (MaLSA ∼= 80 for Bi = 0) and change the growth rates of
unstable modes, while the hexagonal planform (figure 3a) is still a stable attractor for the
nonlinear governing equations. The related wavenumber determined through analysis of
the surface temperature distribution (figure 3b) k ∼= 2.2 is in very good agreement with the
prediction by Pearson (1958) and Colinet et al. (2001) (the additional wavenumbers visible
in the spectrum represent higher-order harmonics with negligible amplitude, which are
excited because the considered Ma is slightly larger than the critical value).

As a second step of code verification, we have examined pure buoyancy convection
originating from a heated element with rectangular shape encapsulated in (located on the
bottom of) a square cavity with adiabatic bottom boundary and cold (isothermal) top and
lateral walls. Assuming the same conditions originally investigated by Biswas et al. (2016),
we have tackled four representative conditions corresponding to distinct aspect ratios of the
heater and different values of the Rayleigh number (see figure 4 and table 1). As witnessed
by these data, a very good agreement holds in terms of Nusselt number.

As a concluding remark for this section, we wish to recall that the computational
kernels underpinning the present algorithm have already been used extensively in earlier
studies of the present authors (concerned with various realizations of buoyancy and
surface-tension-driven convection, see, e.g. Lappa 2019b,c). Accordingly, they were
also validated through comparison with other relevant benchmarks and test cases (this
information is not duplicated here for the sake of brevity).
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Figure 4. Temperature and streamlines in a square cavity with heater located on adiabatic bottom and other
(lateral and top) walls at constant (cold) temperature (Pr = 25.83, different values of Ra and the heated element
aspect ratio); (a) δhoriz = 0.33, Abar = 1.0, Ra = 105 (grid 100 × 100); (b) δhoriz = 0.64, Abar = 0.3, Ra = 104

(grid 70 × 70);

δhoriz

Abar =
δvert/δhoriz Ra

Nuaverage
side

(present)
Nuaverage

top
(present)

Nuaverage
bar

(present)
Nuaverage

bar
Biswas et al.

0.64 0.3 104 5.56593 4.2414 4.8381 ∼=4.8
0.33 1.0 104 4.8209 3.8613 4.5010 ∼=4.5
0.64 0.3 105 10.0709 7.7318 8.6032 ∼=8.65
0.33 1.0 105 10.5065 6.0701 9.0277 ∼=9.1

Table 1. Comparison with the results by Biswas et al. (2016) (see figure 7 in their work), square cavity with
heater located on adiabatic bottom and other (lateral and top) walls at constant (cold) temperature (Pr = 25.83,
different values of Ra and the heated element aspect ratio).

3.3. Mesh refinement and related criteria
In order to ensure the judicious use of the available computational resources and, at the
same time, produce results which can be trusted, it is known that good practice consists of
conducting a thorough and extensive analysis of the sensitivity of the emerging solutions
to the used mesh.

Towards the end to reduce the computational cost of the grid independence study itself,
in particular, here such a parametric assessment has been initially conducted considering
the equivalent 2-D configuration (assumed to have infinite extension along the third
direction z) for the same parameters investigated in § 4. Such a strategy rests on the
realization that since the 3-D geometry illustrated in figure 1 consists of periodically
positioned items along both the x and z directions (i.e. a rotation by 90° would not change
the physics of the problem), a 2-D framework should be regarded as a relevant approach for
a preliminary estimation of the needed numerical resolution. As sensitive parameters for
such investigation, in particular, we have considered both kinematic and thermal quantities,
namely, the maximum of the velocity components along x and y, and the spatially averaged
(over the considered set of blocks) Nusselt number defined through (2.16) and (2.17). The
outcomes of such a parametric investigation for a set of representative cases (Pr = 10,
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Grid umax vmax Nuaverage
side Nuaverage

top

N = 3
77 × 18 90.2574 53.7327 2.0597 1.3410
100 × 23 96.5027 53.6714 2.0018 1.2998
130 × 31 96.5020 53.6701 2.0015 1.2998
169 × 39 97.2471 53.5684 2.0003 1.2901

N = 5
77 × 18 81.7774 53.8776 1.7067 0.7401
100 × 23 84.4160 53.5783 1.5539 0.7840
130 × 31 87.1867 53.3406 1.3577 0.8405
169 × 39 87.3059 53.1240 1.3386 0.8508

N = 7
77 × 18 75.5011 54.4789 0.9724 0.6731
100 × 23 80.2911 53.7604 0.8875 0.7222
130 × 31 82.9442 53.0623 0.7405 0.7491
150 × 35 83.3752 52.3346 0.7245 0.7524
169 × 39 83.3794 52.2889 0.7185 0.7574

Table 2. Grid independence study (2-D configuration, aspect ratio = horizontal length/depth = 10, Pr = 10,
N = 3, 5 and 7, Ma = 5000, Ra = 10 000, Bi = 1.0).

N = 3, 5 and 7, Ma = 5000, Ra = 10 000, Bi = 1.0, δhoriz = 1.0, δvert = 0.3) are summarized
in table 2.

As a fleeting glimpse into a such a table would confirm, although the rate of convergence
tends to be slowed down as N is increased, a resolution with ∼=30 points along the vertical
direction and 130 points along the horizontal one can be considered enough for all these
cases (all the percentage variations falling below ∼=2 % for a further increase in the mesh
density).

To double check that such a resolution can also capture properly the small-scale details
of the emerging 3-D pattern (potentially affected by ‘high-wavenumber excitations’ for the
considered value of the Marangoni number, Thess & Orszag 1995), dedicated simulations
have been performed for resolution exceeding 130 computational nodes along both the x
and z directions. Given the complex nature of the convective structures produced in this
case, a quantitative assessment of the results (on increasing the number of points) has been
conducted in terms of (spatial) spectrum of the surface temperature distribution.

The related outcomes shown in figure 5 for N = 7, confirm that all the spectra align
almost perfectly. Most importantly, the extension of the spectrum does not change on
increasing the density of the mesh, neither in terms of amplitude distribution (vertical
coordinate), nor in terms of horizontal extension (i.e. the minimum and the maximum
values of k). These observations gives us confidence that the used resolution is also
sufficient to avoid unresolved regions in the 3-D fluid domain, i.e. it is enough to capture
the small-scale behaviour of surface-tension-driven convection for the considered value of
the Marangoni number (a denser mesh does not result in the realization of smaller-scale
kinematic or thermal features).

We wish to remark that a similar check has also been conducted for N = 5 (the spectrum
in this case, not shown, is simpler), leading to the same conclusions, i.e. a grid with ∼=130
points is sufficient to obtain convergence in terms of spectrum behaviour. Accordingly, all
the simulations presented in the next section have been conducted using 130 × 31 points
(corresponding to a total of ∼=5 × 105 nodes). As the reader will realize by inspecting the
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Figure 5. Spectrum of the surface temperature distribution for increasing number of grid points in
the horizontal direction (Pr = 10, Ma = 5 × 103, Ra = 104, Ax = Az = 10, Bi = 1.0, N = 7, 3-D numerical
simulations, solid lateral walls, spectrum for a temperature profile at x = 2).

related results, among other things, such resolution guarantees that in all cases the ratio
between the number of points in the horizontal direction and the number of convective-cell
wavelengths is on average always greater than or ∼=20).

4. Results

Without loss of generality we restrict our analysis to Pr = 10 (a value representative of a
vast category of high Prandtl number fluids) and unit Biot number (Bi = 1). Moreover, a
square layer with relatively large aspect ratio (horizontal extension/depth) is considered,
i.e. Ax = Az = Ahoriz = 10; accordingly we set δx = δz (hereafter simply referred to as
δhoriz, because the heated solid elements have a square basis) and N = M (i.e. the number of
elements along x reflects the corresponding distribution of elements along the z direction,
and vice versa).

As a key to unlocking the puzzle about the relationship between the emerging pattern
and the imposed boundary conditions, we vary parametrically the number of square rods
present in the regular array (N × N from 3 × 3 to 7 × 7 passing through intermediate states
5 × 5). Not to increase excessively the dimensionality of the space of parameters, the
vertical extension of the rods is fixed to δy = 0.3 (hereafter simply referred to as δvert,
corresponding to 30 % of the overall depth of the liquid layer), while three distinct values
are selected for δhoriz (namely, 0.1, 0.55 and 1.0). This allows us to change the spacing
among the elements while retaining the same overall number N × N. As anticipated in
§ 2, as an additional degree of freedom, the portions of flat surface (at the bottom)
separating adjoining elements are considered adiabatic (thermally insulated) or isothermal
(at the same temperature as the heated elements). Moreover, no-slip conditions (finite-size
horizontal extension) or PBC (to mimic an infinite layer) are imposed at the lateral
boundaries.

Since in the absence of observational information to properly constrain the model
parameters, considering asymptotic conditions in which a new problem reduces to
already known paradigms is beneficial, we also examine a few cases with uniform
heating or a single heat source (heated bar) located in the geometric centre of the
physical domain (these two models being obviously opposite extremes with respect
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to the situations mathematically described by (2.8)). Moreover, towards the end to
assess the separate influence of buoyancy and Marangoni effects, the simulations are
conducted by setting Ma and Ra to their intended values and ‘switching off’ alternately
one of them (the complementary situations with Ma = 0 or Ra = 0 being obviously
instrumental in discerning the pure gravitational or surface-tension-driven phenomena).
To limit the otherwise prohibitive scale of the problem thus defined, the ratio of the
Rayleigh and Marangoni numbers (Bodyn) is fixed to 2, i.e. Ra = 104 and Ma = 5 × 103

(assuming a realistic Pr = 10 oil with kinematic viscosity ν = 6.5 × 10−7 m2 s−1, thermal
diffusivity α = 6.5 × 10−6 m2 s−1, density ρ ∼= 0.97 × 103 kg m−3, thermal expansion
coefficient βT = 10−3 K−1, surface-tension derivative σ T = 6 × 10−5 N m−1 K−1, this
would correspond to a layer with depth d ∼= 3.5 mm and a �T ∼= 1 K).

We wish to remark once again that, in the present work, �T accounts for the temperature
difference between the bottom plate and the ‘ambient’ (gas) temperature. Using the same
definition of the Marangoni number traditionally adopted in the frame of LSA and similar
studies on MB convection, the MaLSA corresponding to the present value 5000 would be
2500, which is very close to the case that Thess & Orszag (1994, 1995) examined in the
limit as Pr → ∞ (we will come back to this interesting observation later).

All the simulations have been run for a time sufficiently long to allow the Nusselt
number to reach asymptotic (time-independent) values for the cases where the flow is
stationary (generally a period corresponding to 4 times the thermally diffusive time based
on the depth of the layer, i.e. tα = d2/α). The equations have been integrated with a
non-dimensional time step 2.5 × 10−6 (therefore requiring more than one million of steps
for each case). For time-dependent solutions, the simulations have been extended to a
non-dimensional time t = 10 (we will come back to the implications of this apparently
innocuous remark later). Given the density of the mesh (5 × 105 grid points), three
continuous months of calculations have been required using an 8-core workstation to
produce all the results reported in the following subsections.

4.1. The purely buoyant case
Following the approach outlined above, a first sub-set of numerical findings for the
purely gravitational situation (no surface-tension effects being considered) are presented
in figures 6–8. These refer to the situation with adiabatic floor. In particular, figure 6 relates
to the simplest possible case, i.e. the configuration with a single block located at the centre.

In agreement with the observations reported in earlier works (see, e.g. the numerical
investigation by Sezai 2000), the reader will recognize in this figure the classical
convective structure with hot fluid rising just above the top surface of the heated block,
reaching the top of the boundary (the free surface exchanging heat with the external gas
in our case, as opposed to the solid cold wall considered by Sezai 2000), then spreading
radially outward towards the sidewalls where it finally turns downward and moves back in
the radial direction towards the source where it was generated.

Following up on the previous point, figure 7 provides a first glimpse of all the considered
geometrical configurations and the related (surface temperature) patterns after transients
have decayed away when the number of blocks is increased from one to larger numbers. As
a property common to many different cases, it can be noticed that for a relatively ‘dilute’
distribution of blocks (i.e. a not too high value of N), each of them contributes to the
emergence of a well-defined plume similar to that obtained for N = 1. This is witnessed
by the visible presence of a ‘set’ of distinguishable approximately circular spots on the
free surface. Each of these warm areas corresponds to the localized region where a current
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Figure 6. Temperature and velocity fields for pure buoyancy convection (Ra = 104, Ma = 0, Bi = 1) and single
block with δhoriz = 1 (otherwise adiabatic floor): temperature and streamlines distribution at the free interface
(a); and isosurfaces of temperature (blue = 0.11, green = 0.22, red = 0.41) shown in combination with two
representative bundles of streamlines (b). The bowl shape of the temperature isosurfaces reflects the toroidal
structure of the single annular roll established in the cavity; hot fluid is transported from the centre towards the
lateral walls at the interface, while relatively cold fluid moves in the opposite direction along the bottom wall.
Here, Nuside ∼= 6.32, Nutop ∼= 5.12 and Nubar ∼= 5.78.
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Figure 7. Survey of patterns (surface temperature distribution) obtained by varying N in the range between 3
and 7 for δhoriz = 1, 0.55 and 0.1 (pure buoyancy convection, adiabatic floor).

of rising hot fluid meets the liquid/gas interface (where heat exchange with the external
environment takes place).

The significance of these figures primarily resides in their ability to make evident that
for relatively large spacing of the heated elements, the plumes are independent, i.e. they
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Figure 8. Nusselt number as a function of N for the configurations with adiabatic floor and adiabatic lateral
solid walls (pure buoyancy convection, the splines are used to guide the eye): (a) δhoriz = 1; (b) δhoriz = 0.55;
(c) δhoriz = 0.1.

do not interact and do not coalescence. However, they also reveal that if the spacing is
reduced (by increasing N), at a certain stage, non-trivial planforms are produced, i.e.
patterns with well-defined properties which do not simply reflect the (a priori-set) order
of the underlying grid of hot blocks.

While for δhoriz = 1, i.e. unit horizontal extension of the element side (first row of
figure 7), a perfect 1 : 1 correspondence can be established between sources and plumes
for both N = 3 and N = 5, for N = 7, as a result of plume interaction the number of
recognizable hot spots at the free surface decreases. More precisely, as opposed to
situations with smaller N, for which the location of rising currents is simply consistent with
the related distribution of heat sources, an external observer looking at the free surface of
the configuration with N = 7 would naturally be induced to map the set of plumes into an
array with lower dimensions, i.e. a 5 × 5 matrix.

Following up on these observations, very interesting aspects concern the symmetries,
which are broken or retained. In such a context it is worth recalling briefly that the
considered square configuration with a free surface has the symmetries of the dihedral
group D4, that is, the group of symmetries of a regular polygon with 4 vertices. These
include the reflections S0, S1, S2 and S3 (where the generic Sk is the reflection about the
line through the centre of the square making an angle of πk/4 with one of its sides, e.g. the
x axis in our case). The chosen disposition of the blocks allows keeping these symmetries,

939 A20-15

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2022.175


M. Lappa and W. Waris

T: 0.60 0.63 0.66 0.69 0.72 0.75 0.78 0.81 0.84 0.87 0.90 0.93 0.96 0.99 1.00
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(b)

Figure 9. Lateral view (plane xy) for δhoriz = 1 and different values of N (pure buoyancy convection,
adiabatic floor and adiabatic lateral solid walls): (a) N = 5; (b) N = 7.

whereas the up–down symmetry is not valid because of the free upper surface and the
presence of blocks.

It is interesting to see that all the buoyant cases (figure 7) keep all the symmetries of the
D4 group. The related patterns are also all steady. This suggests that no bifurcation occurs
in this case when the size of the blocks is increased and that there is a continuous evolution
between the cases with different sizes of blocks, even when the correspondence between
the blocks and the surface distribution of hot spots is lost, namely for the 7 × 7 case when
δhoriz is changed from 0.55 to 1.

Having completed a description of the emerging patterns in terms of spatial features, we
turn now to characterizing these solutions in terms of heat exchange (for which we use the
parameters introduced ‘ad hoc’ in § 2). These are reported in an ordered way as a function
of N in figures 8(a)–8(c) for δhoriz = 1.0, 0.55 and 0.1, respectively.

As a fleeting glimpse into these figures would confirm, although the trends are all
similar, swaps are possible in the relative importance of Nuaverage

side and Nuaverage
top , which

require some proper explanations or interpretations. In this regard it is convenient to
start from the simple remark that the decreasing behaviour of the different curves
(being perfectly monotonic for all cases) should be regarded as a consequence of a
thermal saturation effect, i.e. the obvious tendency of the fluid to acquire (on average)
an increasingly larger temperature as the number of heating elements (‘heaters’) grows
(figure 9). Such an increase obviously tends to weaken the temperature gradients between
the elements and the fluid, thereby causing a general decrease in the magnitude of the
Nusselt number.

This mechanism is also responsible for the inversion in the relative importance of
Nuaverage

side and Nuaverage
top for δhoriz = 1.0 as N exceeds a given threshold (in figure 8(a),

Nuaverage
top < Nuaverage

side or Nuaverage
side < Nuaverage

top for N ≤ 5 or N > 5, respectively). The
simplest way to elaborate a relevant interpretation is to consider the emergence of ‘heat
islands’, which for δhoriz = 1 tend to be formed in the thin (interstitial) regions located
between adjoining elements as N is increased. As an example, see figure 9(b), for N = 7
the temperature in these regions becomes almost identical to that of the elements. In other
words, for these specific conditions, the entire set of rods (though physically disjoint)
formally behave as they were a single uniformly heated block (having constant thickness
and the same horizontal extension of the entire liquid domain). Accordingly, Nuaverage

side
drops to a value that is almost negligible.
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(a)

(b)

Figure 10. Lateral view (plane xy) for N = 7 and different values of δhoriz (pure buoyancy convection,
adiabatic floor and adiabatic lateral solid walls): (a) δhoriz = 1; (b) δhoriz = 0.55.

N δhoriz Floor Nuaverage
side Nuaverage

top Nuaverage
bar

3 1 Adiabatic 3.472 2.376 2.973
3 1 Isothermal 0.331 0.403 0.364
7 0.1 Adiabatic 8.440 15.741 8.954
7 0.1 Isothermal 1.158 6.49 1.568

Table 3. Comparison between the Nusselt number obtained for configurations with adiabatic and hot bottom
wall (Ra = 104, Ma = 0).

Although the condition with unit horizontal extension of the elements (δhoriz = 1) is
the only one for which Nuaverage

side becomes almost zero for N = 7 (figure 8a), a similar
justification can be invoked for the inversion in the relative importance of Nuaverage

top and
Nuaverage

side in the range N ≤ 5 when δhoriz is decreased (Nuaverage
top < Nuaverage

side or Nuaverage
side <

Nuaverage
top for δhoriz ≥ 0.55 or δhoriz < 0.55, respectively). A rationale for this trend can

directly be rooted in the realization that while for δhoriz ≥ 0.55 large thermal plumes
originate from the top of the heated elements giving rise to vertically extended regions
of fluids (figure 10a,b) where the temperature is relatively uniform and close to that of the
heat sources (causing a significant weakening of Nuaverage

top with respect to Nuaverage
side ), for

δhoriz = 0.1, such ‘heat islands’ are weaker and, accordingly, the gradient between the top
surface of the elements and the overlying fluid is higher.

Obviously, the aforementioned thermal saturation effect is enhanced if the portions of
adiabatic floor located among adjoining elements are replaced with equivalent portions
of isothermal (hot) wall. Such a swap in the thermal boundary condition at the bottom
causes an appreciable decrease in the block Nusselt number (this being quantitatively
substantiated by the data summarized in table 3, where the values of Nu can be compared
for different thermal behaviours of the floor and equivalent geometrical conditions, i.e.
same values of N and δhoriz for some representative cases).

Notably, the differences are not limited to a variation in the magnitude of the heat
exchange taking place between the elements and the fluid. The changes can be substantial
and affect the entire structure of the flow, especially if one considers configurations
with small δhoriz. This conclusion is supported by cross-comparison of the patterns in
figure 11. Moving on from the case with adiabatic floor to that with hot floor, it can be
seen that, although some localized plumes originating from the hot blocks still manifest as
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(a) (b)

Figure 11. Isosurfaces of vertical velocity component (green =−3,5, red = 3.5, pure buoyancy convection,
adiabatic lateral solid walls): (a) N = 7, δhoriz = 0.1, hot floor, (b) N = 7, δhoriz = 0.1, adiabatic floor.
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Figure 12. Classical RB convection (Ra = 104, Ma = 0, Bi = 1, adiabatic lateral solid walls, no blocks along
the bottom): (a) combined view of surface temperature and velocity distribution; (b) surface distribution of
velocity component along x; (c) isosurfaces of vertical velocity (green = −3,5, red = 3.5), (d) sketch showing
the location of the main plumes, to be compared with Figure 11(a).

independent flow features, in the latter case the overall pattern tends to take a configuration
very similar to that with three main plumes along each wall, which is obtained when
the equivalent (classical) RB configuration is considered (this being shown in figure 12).
Although the shape of the plumes in figure 11(a) is less regular (their border is relatively
jagged), they occupy the same positions shown in figure 12(d).
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Figure 13. Survey of patterns (surface temperature distribution) obtained by varying N in the range between
3 and 7 for δhoriz = 1, 0.55 and 0.1 (mixed convection with Bodyn fixed to 2, adiabatic floor).

4.2. Mixed convection with Marangoni effects
The present section continues the previous investigation by probing the additional role
played by surface tension and related gradients induced by temperature effects at the
liquid/gas interface (i.e. cases with Ra /= 0 and Ma /= 0 are examined).

Figure 13 makes evident the differences with respect to the equivalent RB convection
(we return to the situation with adiabatic bottom wall and an increasing number of evenly
spaced heated elements). In this regard, we follow the same deductive approach already
undertaken in § 4.1 allowing both N and δhoriz to span relatively wide ranges.

The case with N = 1 is not discussed given its analogy with the convective structure
already described for pure buoyancy flow. The reader specifically interested in the mixed
Marangoni-buoyancy flow generated by a single source may consider some relevant works
in the literature (e.g. Bratukhin, Makarov & Mizyov 2000). Here, we limit ourselves to
reporting the values for Nuside, Nutop and Nubar which for N = 1 read 7.38, 7.31 and 7.35,
respectively (as expected, these values are slightly larger than those reported in the caption
of figure 6).

The results for N /= 1 are collected in the aforementioned figure 13 (the analogue of
figure 7). By inspecting this figure, one may say (in a broad outline) that the observable
trend is formally similar to that already seen for pure buoyant convection (from a spatial
point of view). Put simply, for relatively small values of N, the flow still manifests itself
in the form of separate convective cells at the free surface. However, some non-negligible
distinguishing marks can be identified. Although these cells resemble those obtained in
the pure buoyant case, their shape becomes ‘square’ (as opposed to the more rounded
morphology visible in figure 7).
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Notably, for relatively small N these patterns are steady just like those found for pure
buoyancy; nevertheless, on decreasing the space between the elements, at a certain stage,
more complex spatio-temporal phenomena are enabled. These emerge as fascinating
ordered flows, where, in analogy with the purely buoyant situation, a direct connection
between the heat sources at the bottom and the planform visible at the top can no
longer be recognized. At the same time, however, these convective structures also display
appreciable time dependence.

Interestingly, the D4 symmetries, i.e. the mirror reflections with respect to the middle
and diagonal vertical planes can still be recognized for a relatively small number of blocks
(for all the situations with 3 × 3 and 5 × 5 blocks and even for N = 7 and δhoriz = 0.1 and
0.55), and these cases are steady. For N = 7 and δhoriz = 1, the underlying block pattern is
no longer visible, but, unlike the equivalent buoyant case, this flow has also lost the D4
symmetries and it is oscillatory, which imply that a Hopf bifurcation has occurred.

The above description implies that, once again, the relationship between the pattern and
the multiplicity of heated elements sensitively depends on the horizontal extension of the
elements (δhoriz) as further illustrated in the following. In particular, as shown in figure 14
for δhoriz = 1.0, the steady and very ordered distribution of small surface square cells for
N = 5 (simply reflecting the underlying 5 × 5 matrix of elements periodically positioned
on the bottom, figure 14a), is taken over for N = 7 (figure 14b) by an aesthetically appealing
convective configuration with many ‘spokes’ (loci of points where the surface velocity
undergoes a kind of ‘discontinuity’) and four large approximately square cells located in
the corners of the domain; a complex internal circulation structure can be also seen where
the surface fluid is driven towards a central sink (this being witnessed by the distribution
of the surface velocity component along x in figure 14d).

This special point (knot) with fourfold topology corresponds to a kind of ‘singular’
vertex where the fluid (reaching it along different horizontal directions) is finally pushed
towards the bottom of the layer. As yet visible in figure 14(b,d), all the other knots have
a smaller topological order p = 3. The corresponding surface temperature distribution
(reported in the third panel of the first row of figure 13) essentially consists of a single
thermal loop formed by many plumes surrounding a central colder region that culminates
in a central peak where the surface temperature attains its smallest possible value (this
point occupies the same position of the aforementioned knot with topological order 4).

This flow is weakly time dependent. In particular, flow unsteadiness essentially stems
from localized effects, which consist of a ‘flickering’ (back and forth) motion of the
spokes along directions approximately perpendicular to them; more precisely, the overall
time-dependent behaviour is characterized by two apparently disjoint temporal scales, one
related to the just-mentioned localized oscillation of the spokes and another due to a more
general process by which some cells undergo a slow adjustment in time. The latter results
in minor changes in cell position and shape (we will come back to this aspect later; the
reader being referred to the extended discussion reported in § 5).

These results obviously further support the realization that once a certain value of N is
exceeded, these systems contain their own capacity for transformation, which can promote
the emergence of planforms with well-defined (non-trivial) features.

Notably, when the system has entered the specific regime where the surface pattern is no
longer a trivial (1 : 1) manifestation of the underlying topography, a switch in the thermal
boundary condition at the bottom (from adiabatic to isothermal) has a weak impact. These
observations are quantitatively substantiated by figure 15 (N = 7 and δhoriz = 1); apart
from some minor modification (compare figure 15 with figure 14b,d), the flow has the
same structure and topology (remarkably, we found the same pattern also by running a
simulation with N = 9 and adiabatic floor, not shown).
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(a) (b)

(c) (d)

U: –110.0 –79.7 –49.3 –19.0 11.4 41.7 72.1 102.4

Figure 14. Surface vector plot (a,b) and distribution of velocity component along x (c,d) for δhoriz = 1 and
different values of N (mixed convection, adiabatic floor and adiabatic lateral solid walls): (a,c) N = 5 (steady
flow); (b,d) N = 7 (unsteady flow).

Vice versa, the variation is dramatic if the swap in the thermal boundary condition
is implemented for systems which have not entered yet the self-organization regime,
see figure 16 (N = 7 and δhoriz = 0.1). As implicitly revealed by this figure, in place of
the trivial array of perfectly aligned spots which would be obtained for N = 7 with the
adiabatic floor condition (figure 13, third row, third panel), a planform with well-defined
properties is produced. Notably, it possesses all of the symmetries pertaining to the
aforementioned D4 group, i.e. the mirror reflections with respect to the vertical planes
x = Ahoriz/2, z = Ahoriz/2, x = z and z = Ahoriz − x and related combinations.
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(a) (b)

Figure 15. Isosurfaces of vertical velocity component ((a), green = −3,2, red = 11.3) and surface vector plot
(b) for the hot floor case (mixed convection, adiabatic lateral solid walls), N = 7 and δhoriz = 1 (unsteady flow,
Nuaverage

side
∼= 0.329, Nuaverage

top
∼= 1.154, Nuaverage

bar
∼= 0.704).

(a) (b)

T: 0.68 0.71 0.73 0.76 0.78 0.81 0.83 0.86 0.88 0.91 0.94 0.96 0.99

(c)

Figure 16. Isosurfaces of vertical velocity (green =−3,2, red = 11.3) component (a), surface vector plot (b)
and temperature distribution in the xy midplane (c) for the hot floor case (mixed convection, adiabatic lateral
solid walls), N = 7 and δhoriz = 0.1 (steady flow, Nuaverage

side
∼= 1.398, Nuaverage

top
∼= 8.525, Nuaverage

bar
∼= 1.947).

In a quite unexpected way, in this case the topological order of the central knot is even
increased with respect to the preceding cases (pmax = 8), while other knots do not exist at
all. Figures 16(a) and 16(b) are naturally complemented by figure 16(c), where evidence is
provided that the perfect symmetry of the flow (and the ensuing increase in the topological
order of the central knot) is supported by a kind of synchronization between specific heated
blocks and the location of the dominant thermal plumes. Apparently, specific blocks play
the role of ‘catalysts’ in generating rising currents, thereby stabilizing the flow, which
becomes essentially steady.

A further understanding of all these modes of convection can be gained by considering
the related behaviour in terms of heat exchange between the hot elements and the fluid.
Following the same approach implemented in § 4.1, we content ourselves with developing
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Figure 17. Nusselt number as a function of N for the configurations with adiabatic floor and adiabatic
lateral solid walls (mixed convection, the splines are used to guide the eye): (a) δhoriz = 1; (b) δhoriz = 0.55;
(c) δhoriz = 0.1.

this subject solely for the situations with adiabatic floor and solid sidewalls for which the
majority of the present results have been obtained (figure 17).

Correlation of figures 17(a) and 8(a) (δhoriz = 1.0 cases) is instrumental in revealing that
(as expected) the presence of an additional mechanism of convection located at the free
surface causes an appreciable rise in the values of Nuaverage

top . Vice versa, no significant
variations can be seen in Nuaverage

side both in terms of magnitude and trend (compare again
figures 8a and 17a).

The increase in Nuaverage
top is still appreciable for smaller values of δhoriz. For δhoriz = 0.55

(figure 17b), Nuaverage
top is now located above the corresponding Nuaverage

side line as opposed to
the situation seen in figure 8(b). For δhoriz = 0.1 (figure 17c) a big gap separates Nuaverage

top
and Nuaverage

side . Like the equivalent situation with only buoyancy flow (figure 8c), the reason
for the proximity of Nuaverage

bar to Nuaverage
side resides in the fact that the top area of each

element is very small with respect to its total lateral area (which, as made evident by (2.14)
contributes to make Nuaverage

bar
∼= Nuaverage

side ).

4.3. Microgravity conditions
A separate discussion is needed for the Ra = 0 circumstances, the surface expression of
which in the classical situation with uniform heating (and no topography) would be the
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Figure 18. Combined view of surface temperature and velocity distribution for δhoriz = 1 and different values
of N (microgravity conditions, adiabatic floor and adiabatic lateral solid walls): (a) N = 5 (steady flow);
(b) N = 7 (unsteady flow).

canonical MB convection. It is worth recalling that, strictly speaking, this kind of flow
can be obtained only in microgravity conditions (where the influence of buoyancy forces
can be completely filtered out). In normal gravity, situations approaching those for which
pure MB convection is obtained can be mimicked by reducing the ratio Ra/Ma as much
as possible (typically by decreasing the depth of the considered layer), i.e. if Bodyn ∼= 0.
The results presented in this section could therefore be applied in principle to experiment
performed on an orbiting platform (such as the International Space Station) or on Earth
in ‘microscale’ conditions (layer depth significantly smaller than 1 mm). This subject
has received significant attention over the years (though not being comparable to that
attracted by the companion problem represented by RB convection). Other studies worthy
of mention in addition to those reported in the introduction and the book by Colinet et al.
(2001) are those by Thess & Bestehron (1995) and Bestehorn (1996), who concentrated
on the evolution of the emerging planforms, showing that the well-known hexagonal
symmetry of the cells (underpinned by a threefold organization of the vertices, i.e. p = 3)
is spontaneously taken over for larger values of Ma by a fourfold vertex topology (p = 4)
resulting in square-shaped convective cells. Given the amount of literature available on
this specific subject, these references are obviously selective samples of existing valuable
investigations. However, studies concerned with the regime where this form of convection
becomes disordered in both time and space are relatively rare (Thess & Orszag 1994, 1995;
Thess, Spirn & Jiittner 1995, 1996); we will use them for some conclusive arguments
elaborated in § 5. In the present section, we limit ourselves to describing the dynamics
found in the present conditions by setting Ra = 0.

As shown by figure 18, in terms of symmetries, considerations very similar to those
already developed in § 4.2 could be given. For the sake of brevity, we limit ourselves to
re-emphasizing that the loss of symmetry with respect to the aforementioned D4 group
still manifest itself in conjunction with transition to time-dependent convection, which
indicates that this should be seen as a bifurcation of the flow.

Consideration of a representative hot floor case is also instructive (figure 19). Without
buoyancy, the ability of the heated protuberances with small transverse extension (δhoriz)
to exert an influence on the emerging pattern and its spatio-temporal behaviour is
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Figure 19. Combined view of surface temperature and velocity distribution (a); surface distribution of velocity
component along x (b); isosurfaces of vertical velocity (green =−3,2, red = 9.2) component (c) for N = 7 and
δhoriz = 0.1 (pure surface-tension-driven convection, hot floor and adiabatic lateral solid walls, unsteady flow
with a localized oscillon, Nuaverage

side
∼= 1.578, Nuaverage

top
∼= 10.517, Nuaverage

bar
∼= 2.265).

relatively limited. In place of the perfect (and steady) arrangement of cells observed in
figure 16 for N = 7, δhoriz = 0.1 and Bodyn = 2, an unsteady pattern with four large thermal
spots is obtained when Bodyn = 0 (figure 19).

Continuing with a focused review of the literature on classical MB convection, we wish
to remark that oscillatory behaviours relatively similar to that shown in figure 19 have also
been observed in other studies dealing with classical MB convection. As an example, while
investigating the possible existence of multiple solutions (states which depend on the initial
conditions) for slightly supercritical conditions, Kvarving, Bjøntegaard & Rønquist (2012)
found that the final state of MB convection may be dominated by a steady convection
pattern with a fixed number of cells, or the same system may occasionally end up in a
steady pattern involving a slightly different number of cells, or it may display a peculiar
convective configuration where most of the cells are stationary, while one or more cells
undergo a localized oscillatory process (a cell being continuously destroyed and re-formed
as time passes).

This is what can also be seen in figure 19, where the oscillations display a strongly
confined nature. The affected cell does not disappear. Rather it apparently undergoes
a localized instability, which results in a series of ripples originating from the central
segment where the two cells aligned along the NorthWest–SouthEast (NW–SE) diagonal
meet. All these spokes are embedded inside a single cell, while the rest of the pattern is
seemingly not affected by them.
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Figure 20. Nusselt number as a function of N for the configurations with pure surface-tension-driven
convection, δhoriz = 1, adiabatic floor and adiabatic lateral solid walls (the splines are used to guide the eye).

Ra Ma Nuaverage
side Nuaverage

top Nuaverage
bar

104 0 1.158 6.49 1.568
104 5 × 103 1.398 8.525 1.947
0 5 × 103 1.578 10.517 2.265

Table 4. Comparison between the Nusselt number obtained for configurations with hot bottom wall in
different circumstances (N = 7, δhoriz = 0.1).

We also take these observations as a cue to recall another related concept, that is, the
notion of the ‘oscillon’, already used in previous works. In Lappa & Ferialdi (2018), it was
loosely defined as the spontaneous localization or confinement of oscillatory phenomena
to a limited subregion of an otherwise stationary pattern in a translationally invariant
system. Although the present system is no longer perfectly isotropic like the classical MB,
the present results show that in the presence of a repetitive topography or thermal forcing,
this definition or concept can still be considered relevant.

As a concluding remark for this section, in line with similar considerations elaborated
for the companion circumstances with pure buoyancy or mixed buoyancy–Marangoni
convection, we focus on the heat exchange behaviour. Along these lines, for the purpose
of quantifying the variation undergone by such effects, figure 20 and table 4 show the
related Nusselt number for various cases. The major outcome of figure 20 (through critical
comparison with the equivalent figures 8a and 17a) resides in the indirect confirmation
that most of the increase of Nuaverage

top for δhoriz = 1 (adiabatic floor case) and relatively
small values of N when surface-tension effects are added to buoyancy (by which Nuaverage

top
becomes almost equal to Nuaverage

side ), essentially stems from the Marangoni effect itself.

5. Discussion

5.1. The strongly nonlinear regime of MB flow
A critical discussion of earlier studies in companion fields (and related theoretical
outcomes) is used in this section to elaborate some additional arguments for the
interpretation of the observed dynamics.
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In particular, as a first level of this specific abstraction hierarchy, we consider the
main outcomes of the existing literature where models were specifically introduced to
characterize chaos in MB systems. More specifically we refer to the line of inquiry
originating from the studies by Thess & Orszag (1994, 1995), where the so-called ‘strongly
nonlinear regime’ of MB flow was examined (enabled when the Marangoni number based
on the temperature difference between the bottom wall and the free surface exceeds a value
of 2000). These authors studied this problem under the assumption of infinite value of the
Prandtl number (because it leads to convenient simplifications in the governing equations)
and revealed that the dynamics typical of this regime has a ‘signature’ that makes it very
peculiar even when it is compared with akin phenomena such as turbulence in buoyancy
flow (i.e. notable differences also exist with regard to the ‘hard RB turbulence’ originally
analysed by Castaing et al. 1989).

As assumed by this model, MB flows in high-Pr fluids are dominated by viscous effects,
while the temperature isolines become strongly deformed. Moreover, it considers the
thermal diffusivity everywhere negligible with the exception of thin thermal layers. Earlier
simulations based on such approach have shown that the temperature field consists of
parabolic regions separated by increasingly sharp transition layers at the cell boundary,
where the temperature gradient experiences a discontinuity (as an example, Thess &
Orszag (1994, 1995) could reveal such discontinuities through evaluation of the second
derivative of the surface temperature).

The existence of such discontinuities also led researchers to naturally identify an
analogy with the slow dynamics of the Burgers equation; in this regard, we wish to recall
that the specific mathematical properties of this equation are known to produce shock
discontinuities (as shown by figures 14–16, 18 and 19, such discontinuities also manifest
in the present results, where they appear in the form of spokes emanating from specific
points).

Some variants have also been elaborated where in place of an infinite Prandtl number,
investigators focused on the Ma → ∞ idealized asymptotic state. Also this condition was
found to be advantageous because in this limit the thickness of the surface Marangoni
layer tends to zero, thereby allowing for 2-D models to be developed. Notably, in such a
theoretical/mathematical context, Thess et al. (1995, 1996) and Colinet et al. (2001) could
reduce the original 3-D problem to a 2-D nonlinear evolution equation involving only
free surface quantities ‘under the perspective that any statistical quantity related to the
three-dimensional velocity field could be considered a function of the two-dimensional
surface temperature only’.

The most important outcome of all this focused theoretical effort resides in the
connection that has been established between the formation of the discontinuities of the
temperature gradient (that emerge in a random way causing the splitting of large convective
cells into smaller ones) and the instability of the surface thermal boundary-layer.

The present results obtained through solution of the original equations in their complete
form essentially demonstrate that these concepts are also applicable to situations where
the Prandtl number takes a finite value. The discontinuities manifest as spokes in the
velocity field, corresponding to the presence of ripples in the temperature distribution,
which, in turn, are produced as a result of instability of the surface temperature
boundary layer. The adherence of the present results to this interpretation is further
witnessed by the peculiar scaling (in terms of wavenumbers) displayed by the surface
temperature distribution, which in these cases (as we will show in § 5.3) follows the same
universal spectrum E(k) ∝ k−3 predicted by Thess et al. (1995, 1996) and Colinet et al.
(2001).
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Notably, in our case the spatial surface spectrum of temperature aligns very well with
that predicted by such models not only in the circumstances where flow is produced by
surface tension alone, but also in the cases where buoyancy is significant (which leads
to the conclusion that for Bodyn = 2 and Bodyn = 0, the (spatial) scaling properties of the
surface turbulence are essentially the same).

5.2. Quantized states and buoyancy effects
Although comparison with other existing numerical simulations for high values of Ma
conducted in the limit as the Prandtl number tends to infinite or assuming an infinite
value of the Marangoni number (boundary-layer model) shows that the related dynamics
is in good agreement with that depicted in §§ 4.2 and 4.3, however, it should not
be forgotten that the present problem is different, in the sense that while in some
circumstances ‘quantized’ states are produced (i.e. ‘typical’ solutions where the pattern
becomes independent from the properties of the bottom), in other cases non-trivial states
emerge which do depend on the underlying morphologically and thermally textured wall
(i.e. the size and spacing of the blocks).

The present dynamics is made more complex or intriguing by the existence of what
we have called the self-organization regime. Again comparison with the literature can
help to shed some additional light on such a scenario. In this regard, it is certainly worth
considering the earlier experimental investigation by Ismagilov et al. (2001).

As outlined in the introduction, by means of infrared imaging, Ismagilov et al. (2001)
revealed that when the convective cells typical of MB convection form under the same
conditions that would produce ‘standard’ MB convection, but over a periodically patterned
surface (uniformly heated), a specific kind of complexity is produced that is not possible
when the bottom wall is perfectly planar and with no corrugations. More precisely, they
found a kind of competition between the ‘intrinsic spatial periodicity’ of the flow (i.e. the
wavelength of the planform that would be produced in the absence of topography) and the
geometrical properties of the considered wall. This was found to result in a non-smooth
(jerky) behaviour consisting of a set of discrete states, i.e. the ability of the fluid system to
undergo abrupt transitions between different planforms (commensurate with the imposed
shape of the bottom boundary) as the ratio of the intrinsic (wavelength) and perturbing
length scales (size and morphology of the bulges) was changed.

This trend is consistent with what we have observed in the present study (where the same
pattern has been found for different conditions, figures 14b,d and 15). Here, however, the
patterned nature of the bottom wall has not been limited to the presence of bulges (the
cubic elements in our case). Some control on the flow has also been exerted through the
related thermal properties (i.e. through thermal forcing). Assuming the portion of floor
between adjoining elements to be adiabatic, we have observed that new types of planforms
can be produced which reflect neither the ordered distribution of elements at the bottom
(through a trivial 1 : 1 correspondence), nor states which would be typical of standard MB
convection.

In this regard, comparison of mixed buoyancy/Marangoni (§ 4.2) and pure MB flow
(§ 4.3) has proved effective in allowing discerning the role played by buoyancy in such
processes. This adds new information to the study by Ismagilov et al. (2001) where, owing
the small thickness of the layer (100 cSt silicone oil with depth ∼=0.8 mm), buoyancy was
almost negligible (Bodyn = ρgβTd2/σT ∼= 0.1). Another important difference concerns
the degree of supercriticality. In Ismagilov et al. (2001) circumstances were considered
for which the emerging planform of standard MB convection would correspond to the
classical pattern with the honeycomb symmetry. Here, conditions enabling the so-called
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‘strongly nonlinear dynamics’, originally examined by Thess & Orszag (1994, 1995), have
been investigated.

As widely illustrated in §§ 4.1 and 4.2, for Ma = 5 × 103 and Bodyn = 2, buoyancy
enhances the role of thermal forcing through the generation of warm plumes that originate
from the top surface of the heated elements. This effect can contribute to make the
emerging solutions and related pattern more regular than the corresponding flow in the
absence of buoyancy. As a result, buoyancy can also strengthen the system abilities to
produce new patterns (e.g. the one shown in figure 16).

5.3. Temporal scaling laws and confinement effects
This final subsection is dedicated to an aspect that has been glossed over until now,
namely, the influence of the lateral confinement (the sidewalls, which, as already shown
in earlier valuable fundamental studies, can play a non-negligible role in the dynamics
of Marangoni–Rayleigh–Bénard convection, see, e.g. Dauby & Lebon 1996; Medale &
Cerisier 2002).

In order to implement such discussion and obtain some statistically meaningful data
(i.e. insights which display a sufficiently high level of generality), we consider two
representative cases, all pertaining to the sub-region of the space of parameters where
non-trivial patterns emerge. These are the configuration with adiabatic boundary (N = 7,
δhoriz = 1) and the one with isothermal floor (N = 7, δhoriz = 0.1). The analysis is developed
considering the temporal evolution of the Nusselt numbers Nuaverage

side and Nuaverage
top and

velocity signals (velocity component along the horizontal direction u as a function of time)
provided by numerical probes located above the heated blocks (at an intermediate position
between the top of the block and the free surface of the layer). In particular, the Nusselt
number is characterized in terms of frequency spectrum, that is, a further understanding
of the observed phenomena is gained by considering a fine-grained micromechanical
perspective able to provide information on the small spatial scales of the flow. We
explicitly use such a strategy to uncover features that could not be revealed by the
macrophysical approach (based only on the spatial properties of the patterns) developed
in § 4.

Simulations conducted replacing the solid vertical boundaries with PBC have confirmed
that the lateral confinement contributes significantly to the perfection of some of the stable
and highly ordered structures reported in §§ 4.2 and 4.3.

As a first example of this influence, figure 21(a,b) (N = 7, δhoriz = 1, adiabatic
floor, see also supplementary movie 1 available at https://doi.org/10.1017/jfm.2022.175)
immediately reveals that, if the no-slip lateral walls are replaced by PBC, the pattern takes
a relatively disordered spatio-temporal organization with respect to that obtained under
confinement (reported for the convenience of the reader in figure 21c). The well-defined
ring of hot spots (cell) surrounding a central knot with topological order p = 4 (clearly
visible in figure 21c) can no longer be recognized in figure 21(a). In place of a structure
dominated by p = 3 knots (and a single central p = 4 point), a much more complex network
of spokes is produced, with cells having a number of sides ranging between 3 and 6 (from
triangles to irregular hexagons) and knots with topological order much larger than that
seen for the configuration with solid walls (increasing up to p = 9 as witnessed by the
presence of one or more flower-like structures with many petals).

On a separate note, it is also worth highlighting the trend displayed by the related surface
temperature (spatial) spectrum (figure 21b). It follows essentially the same k−3 scaling
predicted by the models for highly supercritical MB convection discussed in § 5.1.
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Figure 21. Mixed convection for N = 7, δhoriz = 1 and adiabatic floor: (a) combined view of surface
temperature and velocity distribution for the case with periodic lateral boundary conditions (four snapshots
equally spaced in time, �τ = 1.0); (b) related surface temperature spectrum (line x = 3.55 at t ∼= 6);
(c) combined view of surface temperature and velocity distribution for the case with solid sidewalls (snapshot
at t = 5.25).
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The next figure of the sequence (figure 22) refers to the aforementioned case where the
floor is not adiabatic (hot bottom wall). As the reader will easily realize by inspecting it
(see also supplementary movie 2), in such a situation, the changes induced by a swap in
the lateral boundary conditions are even more dramatic. While the flow arising with solid
sidewalls was essentially steady (figure 22c), when PBC are applied, this is taken over by
completely different spatial and temporal convective mechanism. The p = 8 multiplicity
of the central knot is lost (a central knot even does no longer exist or make sense). The
cross-shaped network formed by cell boundaries (figure 22c) is replaced by a much more
complex topology (figure 22a). An interesting (peculiar) behaviour can be seen where
the fluid is pushed down (blue regions). These are characterized by the presence of some
ripples.

Notably, the surface temperature distribution (figure 22b) still obeys the k−3 scaling
found for the other cases.

We wish to remark that, besides the spatial scaling law for the surface temperature
spectrum (distribution of wavenumbers), all these cases with PBC also share another
remarkable property, which needs to be pinpointed suitably here. Although, thermal
ripples leading to localized splitting of cells are present in almost all cases (just like for
the cases with solid sidewalls), the most significant contribution to time dependence now
comes from the continuous modification in the size, shape and positions of the cells.

Unlike the discretely heated configurations under lateral confinement shown in
figure 21(c), where time dependence occasionally manifests as defects that travel slowly
in the pattern along the horizontal direction or localized ‘vibrating’ spokes that cause
breaking of cells into two or more parts, with PBC, the temporal behaviour consists of
cells that, ‘like boats drifting in open water’, continuously wander in an endless process.
This peculiar motion, which closely resembles that found by Lappa & Ferialdi (2018)
for slightly supercritical MB convection in viscoelastic fluids, affects the entire physical
domain (figures 21a and 22a). The characteristic time with which cells move is smaller
than the equivalent one corresponding to the slow re-adjustment process occurring in the
presence of sidewalls. This observation is qualitatively and quantitatively substantiated by
the velocity signals reported in figures 23(a) and 23(b) for the case N = 7, δhoriz = 1 and
adiabatic floor.

Following up on the previous point, these two panels immediately show that the
simple (slow) adjustment of the cells on a relatively long time scale (figure 23a) for
solid sidewalls is taken over for PBC by a faster process made visible by the increased
number of valleys and mountains in the velocity signals (figure 23b). Localized (high-
frequency) oscillations superimposed on an otherwise smaller-frequency signal are present
in both cases. Obviously, these correspond to the flickering of spokes repeatedly discussed
before, which exists independently of the motion of cells. Most remarkably, the vibrating
spokes are the dominant source of unsteadiness when pure Marangoni flow limited by
sidewalls is considered (the sinusoidal distortions visible in figure 23(c) have a very limited
amplitude). The last figure of the sequence (figure 23d) naturally complements the earlier
observations by making evident that, even in the absence of buoyancy, pure Marangoni
flow with PBC can yet display a progressive cell repositioning mechanism. It is also worth
noting that the amplitude of the oscillations related to the vibrating spokes increases as the
solid walls are replaced with PBCs regardless of whether gravity is present or not.

To elucidate further the significance and implications of these findings, figure 24 finally
reports the amplitudes of the different modes that contribute to the frequency spectrum of
the element Nusselt numbers for the flows with both buoyancy and Marangoni effects. It
can be seen that the continuous and relatively fast cell wandering allowed by the lack
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Figure 22. Mixed convection for N = 7, δhoriz = 0.1 and hot floor: (a) combined view of surface temperature
and velocity distribution for the case with periodic lateral boundary conditions (four snapshots equally spaced
in time, �τ = 1.0); (b) surface temperature spectrum (line x = 3.52 at t = 6); (c) combined view of surface
temperature and velocity distribution for the case with solid sidewalls (snapshot at t = 3.44).
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Figure 23. Signals provided by probes located above the heated blocks (y = 0.65) for N = 7, δhoriz = 1.0 and
adiabatic floor: (a) solid lateral walls (mixed convection); (b) PBC (mixed convection), (c) solid lateral walls
in microgravity conditions (Ra = 0), (d) PBC in microgravity conditions (Ra = 0).
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Figure 24. Frequency spectrum for the Nusselt number (mixed convection, PBC at the lateral boundaries):
(a) adiabatic floor, N = 7, δhoriz = 1; (b) hot floor, N = 7 and δhoriz = 0.1 [Nuaverage

side (black line), Nuaverage
top (red

line), related scaling law (blue line)].

of sidewalls leads to a ω−3/2 dependence visible in the high-frequency range of the
spectrum regardless of the thermal condition assumed for the bottom wall, ω is the angular
frequency.

6. Conclusions

We have investigated the peculiar dynamics that a morphological alteration (topography)
of the bottom wall consisting of periodically positioned cubic (hot) blocks can induce in
an overlying layer of a high-Pr liquid (Pr = 10) with an upper free surface.

In articulating this problem, our specific aim was to move beyond the idealized
limitations of the classical RB and MB paradigms, which so much attention have attracted
over several decades in terms of hierarchy of bifurcations and patterning behaviour (up
to the onset of chaos). In order to identify the correspondence between the geometrical
and thermal characteristics of the bottom wall and the emerging flow in terms of textural,
temporal and heat exchange properties, a systematic effort has been provided to map the
complexity of such conditions into a corresponding zoo of patterns.

Given the intrinsic nature of thermal convection induced by gravity, surface tension or
both driving forces, fulfilling such objective has required a fully 3-D approach based on
the integration of the nonlinear and time-dependent governing equations.

Taking advantage of this framework, we have observed that the connection between the
flow structure and the underlying structure is not as straightforward as one would imagine
since a variety of factors can contribute to determine the related nonlinear feedback
or coupling mechanisms. The relationship between a patterned boundary (intended as
repetition of sudden variations in its shape and related thermal attributes) and the flow
field induced accordingly is just like the interrelation between two fundamental types of
properties of any system in nature: characteristics that appear as a consequence of the
interaction of the system with its environment (the larger system of which it is a part)
through all its ‘boundaries’ and features that emerge as a result of mechanisms inherent
within the system itself (its sensitivity to certain categories of fluid-dynamic disturbances).

Put together these aspects determine how the behaviour of the considered system arises
from detailed structures and interdependencies on a smaller scale. In particular, three
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distinct regimes, have been identified for the situation considered in the present work:
trivial modes of convection where the surface pattern simply reflects (through a 1 : 1
correspondence) the ordered distribution of the underlying hot elements, states that display
a notable degree of analogy with the ‘parent’ convective mechanisms (classical RB and/or
MB flow) and a third category of flows represented by possible solutions driven by intrinsic
self-organization abilities of the considered system (enabled when a given threshold in
terms of number or horizontal size of the elements is exceeded).

Although such a general classification has been found to hold for all the considered
combinations of characteristic numbers (Ra /= 0, Ma = 0), (Ra = 0, Ma /= 0) and (Ra /= 0,
Ma /= 0), significant differences have been observed depending on the involved driving
forces. For pure buoyancy convection, transition from trivial patterns to more complex
ones is essentially driven by thermal plume interaction mechanisms. Such processes result
in shrinkage of the dimension of the matrix that can be used to map the distribution
of surface spots in comparison with the size of the underlying grid of hot elements.
For Ra = 104, only steady solutions exist. With the addition of surface-tension effects
(Bodyn = 2), the complexity of the problem increases as unsteadiness enters the dynamics
and points (vertices) with relatively high topological order pop up in the spatial network
of surface spokes. These ‘knots’ behave as the centres of closed polygonal multi-cellular
structures. Due to their existence, in general, the flow can be considered more ordered
(both in time and space) than the corresponding convective state that would be obtained
assuming a flat and isothermal floor (Marangoni–Rayleigh–Bénard flow).

Although surface-tension effects become dominant, buoyancy does still play a role in
such phenomena. This has been revealed through direct comparison of microgravity and
terrestrial conditions, leading to the realization that the hot blocks evenly spaced along the
bottom can contribute to the regularity of the flow spatial organization through the creation
of thermal pillars at fixed positions (still able to influence accordingly surface flow).

The involved driving forces, however, are not the only influential factor driving the
outcomes of the fluid-bottom-wall interaction. This process is also mediated by apparently
secondary details such as the thermal behaviour of the portion of floor between adjoining
elements and (especially) the kinematic condition at the system side (its outer rim).

If the adiabatic bottom wall (on which the hot blocks are placed) is replaced with an
isothermal floor (at the same temperature as the blocks) and the distribution of elements
is dilute and/or their horizontal extension is small, the intrinsic mechanisms of the parent
forms (MB, RB) of convection obviously tend to become dominant in determining the
emerging planform. However, this is not a general rule, as in some cases the separated
elements can still serve as ‘catalysts’ for the formation of well-defined and stable
plumes.

Replacement of the solid lateral wall with PBC has even more significant consequences,
especially in terms of temporal dynamics. The triadic relationship between the hierarchy
of involved driving forces, the lateral confinement and the system temporal response can
be summarized as follows. For pure Marangoni convection (microgravity conditions) and
solid lateral walls, unsteadiness essentially manifests itself in the form of high-frequency
oscillations physically corresponding to the existence of vibrating spokes in the pattern,
which cause localized cell breaking or coalescence effects. If buoyancy is also present,
these high-frequency modes are complemented by long-period disturbances corresponding
to the slow propagation of defects through the pattern (a slow displacement of the cell
centres occurring on time scale comparable to the thermal diffusion time). For PBC, this
slow process is taken over by a different phenomenon by which cells undergo a faster
relocation in time, accompanied by significant changes in their size and shape.
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In order to interpret this kaleidoscope of possible variants, a concerted approach
has been implemented using the tools of computational fluid dynamics in synergy
with existing models on the evolution of MB convection for highly supercritical Ma.
Interestingly, we have shown that the pattern of surface temperature is forced to follow the
k−3 spatial scaling originally identified by other authors (Thess and co-workers) regardless
of the amplitude of buoyancy flow for Bodyn up to 2.

The present study has been conducted under the optimistic hope that this theoretical
framework and its combination with numerical simulations will open up the way for a
new line of inquiry to rationally connect the properties of canonical forms of convection
(well-established paradigms) to the more intricate situations represented by the many
practical realizations one has to deal with in several fields (the reader being referred
again to the extended descriptions provided in the introduction). Along these lines, we
think that future studies shall be devoted to expanding the dimensionality of the space of
parameters examined here, e.g. by considering larger values of the dynamic Bond number
and eventually changing parametrically the vertical extension of the hot blocks.

Supplemental movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.175.
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