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Abstract—The continuous integration of renewable energy
sources into a power network has caused a paradigm shift in
energy generation and distribution. The intermittent nature of
renewable sources affects the prices at which energy can be sold
or purchased. In addition, the network is subject to operational
constraints, voltage limits at each node, rated capacities for the
power electronic devices, current bounds for distribution lines;
these constraints coupled with intermittent renewable injections
may pose a threat to system stability and performance. We
propose a distributed predictive controller to handle operational
constraints while minimising generation costs, and an agent based
market negotiation framework to obtain suitable pricing policies,
agreed among participating agents, that explicitly considers
availability of energy storage in its formulation. The controller
handles the problem of coupled constraints using information
exchanges with its neighbours to guarantee their satisfaction. We
study the effect of different forecast accuracy have on the overall
performance and market behaviours. We provide a convergence
analysis for both the negotiation iterations, and its interaction
with the predictive controller. Lastly, We assess the impact of the
information availability with the aid of testing scenarios.

Index Terms—Microgrids, Model Predictive Control, Multi
Agent Systems, Smart Local Energy Systems

I. INTRODUCTION

THE generation of energy has experienced a paradigm shift
in terms of energy pricing and generation capabilities. The

current landscape of the electricity market is marked by the ever
growing presence of renewable energy sources and a push for a
deregulation of the electric markets. Both of these streams entail
a similar requirement: a decentralisation of operations which
would grant more power to the participants in the network [1].
Decentralization of decision making within power networks has
the added benefit of enhancing reliability and flexibility, i.e.,
the systems involved are more responsive to local changes, and
modifications do not require global redesigns. The challenges
associated with this paradigm shift lie in the integration of
pricing mechanisms and decision making at the control level
allowing their stakeholders to engage with each other and
perform energy transactions across the system [2].

1 Pablo. R. Baldivieso Monasterios and George. C. Kon-
stantopoulos are with the Department of Automatic Control
& Systems Engineering, University of Sheffield, Sheffield, UK
{p.baldivieso,g.konstantopoulos}@sheffield.ac.uk

2 Nandor Verba and Elena Gaura are with the Faculty Re-
search Centre for Data Science, University of Coventry, Coventry, UK
{ad2833,csx216}@coventry.ac.uk

3 Euan A. Morris and Stephen McArthur are with the Department of
Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
{euan.a.morris, s.mcarthur}@strath.ac.uk

The new grid has at its heart the Distributed Energy Resource
(DER) which can be taken as an individual unit or agent.
These units include among them renewable sources like Photo-
voltaic (PV), Wind Turbine (WT), or batteries; these devices
introduce intermittent behaviour in terms of generation. To
address the problem of adjusting demand and prices in face of
this uncertainty, the authors in [3] propose a dynamic pricing
mechanism based on demand response and feedback. Feedback
methods have been used in pricing, see [4], in conjunction
with automatic generation control. Similarly, [5] proposes a
method for handling the volatile nature of renewable sources
in a power network using economic equilibrium arguments.
The approach taken in [6] considers coordination from the load
perspective. The common denominator among these approaches
is that their decision making elements can be considered agents.
Multi Agent System (MAS) provide non-centralised solutions
for market negotiation, in particular [7] and [8] provide a
framework for energy dispatch of heterogeneous units with
pricing using concepts of demand response. Furthermore, MAS
can allow the exploration of peer-to-peer energy trading [9].
Peer-to-peer networks offer a way for its members to interact
among them by performing energy transactions based on
energy availability; these type of networks are spearheading
the previously mentioned energy revolution [10]. Despite their
emerging popularity, these networks present a challenge in
terms of evaluation, see [11], since the metrics involved in
measuring their performance can vary widely according to
the services offered. In a nutshell, each node of such network
behaves as a prosumer, i.e., an entity capable of generating and
consuming power. Each prosumer trades its energy surplus Esur
or deficit Edef with the grid at a priori given prices cbuy > 0
and csell > 0 which generally satisfy csell � cbuy resulting in a
negligible monetary gain, i.e., Esurcsell � Edefcbuy [12].

The decentralisation of the grid from a control perspective
has been an active research field in the past years; the existing
methods are departing from hierarchical approaches to a
distributed scenario [13]. On the other hand, the problem of
optimal Micro-Grid (MG) operation requires control laws to
consider economic criteria such as generation costs, electricity
prices as seen in [14], in addition a generalisation of the
power sharing can be casted as an optimisation problem. The
integration of optimal dispatch and generation has been studied
in [15]. A practical way of implement optimal controllers is
through receding horizon techniques. This type of controller
has found as a natural way to handle supervisory controller
tasks; for example in [16], the authors use distributed Model
Predictive Control (MPC) controllers for DC and AC networks
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respectively where the nodes of the MG solve cooperatively a 
convex version of the power flow equation. In [17], [18], the 
authors used economic MPC arguments to control the power 
flow.

Surprisingly, the interplay of predictive controllers and 
pricing mechanisms has not been thoroughly explored in 
the literature. Furthermore, the effect of forecasts accuracy 
for both load consumption and renewable injection has not 
been studied in the control framework from a nominal point 
of view. This paper aims to bridge this gap by proposing 
a distributed predictive controller optimising a cost that is 
computed via a negotiation framework for a network with a 
meshed topology with nodes containing generation units and 
loads. This predictive controller handles both constraints on 
generation and coupled constraints in voltages and power flow; 
in addition, we include information on neighbouring voltages, 
as seen in [19], and renewable injections and load consumption 
forecasts. This idea of including information in a nominal 
setting has been explored in [20]; this type of approaches 
leverages on the properties of the Optimal Control Problem 
(OCP) to establish desired guarantees for recursive feasibility. 
The market part of the proposed system employs an agent based 
negotiation framework. All nodes forming the power network 
engage in negotiations to determine the pricing policy at which 
they trade their surpluses or deficits. Traditionally, each node 
can decide upon consumption to regulate prices [21], however 
this implies that each node can regulate consumption at will. In 
our setting, we turn to access to local storage devices to regulate 
consumption. Using batteries, however, has a drawback, these 
are dependent on their respective State of Charge (SoC) which 
implies that modifying consumption may not be feasible at 
all times. To overcome these difficulties, w e p ropose a  market 
mechanism that employs a pricing policy affecting the way 
batteries operate. A consequence of this approach is that we 
aim to shift the interest in choosing fixed p rices a long the 
range of available power to pricing policies which may more 
accurately reflect t he abundance or scarcity of power i n each 
node.

The contribution of this paper are the following:
• A distributed predictive controller which handles inter-

actions between batteries, local loads, and renewable
energy sources. The controller is subject to coupled
voltage constraints and the proposed controller employs
information about forecasts and neighbouring voltages
to compute its control law. Section III-A describes the
different components of the OCP.

• An agent based market negotiation framework where all
network elements engage in bargaining to determine the
price at which they will sell surplus or deficit of energy.
Section III-B states the problem and relevant definitions
of this negotiation problem.

• An analysis of the interplay between, predictive con-
troller, agent based negotiation framework, and forecasting
mechanisms in terms of convergence to game theoretic
equilibrium concepts and recursive feasibility of predictive
controllers.

• A set of testing scenarios were proposed to better un-
derstand and evaluate the impact of various forecasting

approaches, pricing methods and system configurations
on the value that an energy market and distributed control
solution can offer.

Notation: For a given graph G = (V,E) with nodes V

and edges E ⊆ V × V, the node-edge matrix B ∈ R|E|×|V|
characterises the relation between nodes and edges which for
edge e = (i, j) ∈ E involving nodes i and j can be defined as
[B]ei = 1 if node i is the source of e ∈ E, and [B]ej = −1 if
node j is its sink, and zero otherwise. The 2−norm is denoted
|x| =‖x‖2. A C-set is a compact and convex set containing
the origin; A PC-set is a C-set with the origin in its nonempty
interior. For a given set A ⊂ Rn, and linear transformations
B ∈ Rm×n and C ∈ Rn×p, the image of A is by B is
BA = {Bx : x ∈ A} ⊂ Rm and the preimage of A by C is
C−1A = {x : Cx ∈ A} ⊂ Rp.

II. PROBLEM SETUP AND BASIC FORMULATION

A. System description

Consider a connected directed graph G = (V,E) defining an
electric network. The set of nodes V can be partitioned into
two disjoint sets VI and V0 which correspond to the set of
renewable generators and the utility electric grid respectively.
When V0 = ∅, the electric network can be considered islanded.

1) System Model: Each node in i ∈ VI comprises DER
sources interfaced via power converters and local loads, see
Figure 1. The DER sources with variable input such as solar
PV and WT operate with a maximum point tracking rationale
which enables them to extract the maximum possible energy
for given environmental conditions. The power dynamics in
discrete time for each i ∈ VI and h ∈ H := {wind, PV} are:

S+
h,i = fh,i(Sh,i,∆h,i, wh,i) (1)

where Sh,i = (Ph,i, Qh,i) denote active and reactive power, the
subscript + denotes the successor state, wh,i is uncontrollable
input power generated by either wind or solar sources, and
∆h,i is a control input which ensures seamless transmission
from the energy source to the electric network. The battery
dynamics are described by the following difference algebraic
system:

Cb,i(SoC+
i − SoCi) =− 1

Rb,i
(V (SoCi)− Vb,i), (2a)

Vb,iV (SoCi) =
1

Rb,i
V 2
b,i + gb,i(Sb,i), (2b)

where the state is (SoCi, Vb,i) are the SoC and battery DC
voltage; V (SoC) is the battery output voltage that is SoC
dependent; Rb,i is the internal resistance; and Cb,i is the battery
capacity in [A h]. The nonlinear function gb,i(·, ·) determines
the power electronic steady-state behavior in terms of desired
active and reactive desired power Sb,i = (Pb,i, Qb,i) which we
consider as inputs. The power electronic components from all
renewable sources exhibit faster dynamic behavior, therefore we
can consider each node operating in a quasi stationary operation
[22]. The algebraic constraint in (2) yields a condition to ensure
the existence of a solution to the DAE system which relates
input power and SoC.

V (SoCi)2 ≥ 4Rb,iPb,i (3)
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Fig. 1. Power sources comprising node i; local energy sources together with
local loads are connected to PCC.

The overall state for each node can be summarised in xi =
({Sh,i}h∈H, SoCi), with control inputs ui = ({∆w,i}h, Sb,i).
Each DER is subject to exogenous inputs wg,i = {wh,i}h∈H
corresponding to powers injected by renewable sources. In
addition, local loads connected to node i draw an a-priori
unknown active and reactive power Sl,i = (Pl,i, Ql,i) ∈ R2;
however, the system has access to preview information, i.e.,
forecasts for loads and renewable power sources which satisfy
the following Assumption:

Assumption 1 (Information available to the controller). 1)
The state xi(k) and exogenous input wi(k) =
({wh,i(k)}h∈H, Sl,i(k)) are known exactly at time k;
future external inputs are not known exactly but satisfy
wi(k + n) ∈ Di for n ∈ N.

2) At any time step k, a prediction, di = {di(k)}k∈N0:N−1
,

of N future exogenous inputs1, over a finite horizon of
time, is available.

Note that we do not assume anything about the accuracy
of the predictions, and in fact will allow these to vary over
time (this implicitly implies that previous predictions were not
accurate). In practice, these sequences can be obtained in form
of forecasts of loads and renewable sources. The states and
inputs of each node are restricted to satisfy constraints xi ∈ Xi
and ui ∈ Ui where

Assumption 2 (Constraints). For each i ∈ VI , the sets Xi and
Di are C-sets. The set Ui is a PC-set.

The output of each node yi = (Po,i, Qo,i) is given by its
power balance equations

yi =
∑
h∈H

Sh,i + Sb,i − Sl,i, (4)

which following Assumption 2 is bounded for all time k ∈ N.
2) Network model: The network topology is characterized

by the set of edges E such that each e ∈ E defines the existence
of a physical link between two nodes. The network topology
allows us to define the set of neighbours of each i ∈ V,

Ni = {j ∈ V : (i, j) ∈ E}. (5)

1Na:b = {a, a+ 1, . . . , b− 1, b} for a, b ∈ N and a < b.

Similarly, we can define Ei ⊆ E collecting all those edges
emanating or terminating in i ∈ V, i.e.,

Ei = {e ∈ E : e = (i, j) or e = (j, i), j ∈ V}.

For each i ∈ V, the current delivered by node i is:

ii =
vi
Zii

+
∑

(i,j)∈Ei

vi − vj
Zij

, (6)

The admittance Z−1
ij = Gij − jBij ∈ C corresponds to the

line connecting the ith and jth nodes. The current drawn from
each node i ∈ VI can be described in terms of Si = (Pi, Qi),
i.e., active and reactive power, as2

ii = hi(vi, Si) =
1

|vi|2
(
Pivi −QiJ2vi

)
(7)

Furthermore, the node-edge incidence matrix can be partitioned
into B = [B0 BI ] corresponding to the utility grid and
renewable nodes respectively. The current balance (6) for each
i ∈ VI can be rewritten as

hI(vI , SI)− (YI + LI)vI −B>I YEB0v0 = 0, (8)

where LI = B>I YEBI with YE = diag{Z−1
ij : (i, j) ∈ E}

the admittance of each line and YI the shunt admittance of
each node in VI . The vector vI = [vi]i∈VI ∈ R2|VI | collects
all generator node voltages, similarly SI captures the power
injected by each node, and hI(vI , SI) = [hi(vi, Si))]i∈VI ∈
R|VI |. The grid voltage is given by v0 ∈ R2 and can be
characterized by following relation:

−(Y0 + L0)v0 + Y0E0 −B>0 YEBIvI = 0. (9)

Similarly to the previous case, Y0 is a local admittance, and
L0 = B>0 YEB0. The voltage E0 is generated at the network
connection point; the nature of this quantity varies according
to the operation mode: stiff grid E0 = (220

√
2, 0), a weak

grid when its magnitude and angle are power dependent, or
E0 = (0, 0) in case of an islanded system. The network states
are given by node voltages y = (v0, vI) lying in a constraint
set V = R2×

∏
i∈VI Vi where each set Vi with i ∈ VI satisfies

Assumption 3. The set Vi ⊂ R2 is a PC-set.

Similarly, if the currents flowing through the lines iE =
YEBy are also constrained to a PC-set IE =

∏
e∈E Ie, i.e.,

bounds on each RMS current, these induce constraints on
voltages by virtue of the algebraic relation iE = B0v0 +BIvI .
Following (9), the closed form of these constraints are:

vI ∈ Ã−1(−B̃E0 ⊕ IE),

where Ã = YE(BI − B0(Y0 + L0)−1B>0 YEBI) and B̃ =
YEB0(Y0 + L0)−1Y0. The overall voltage constraint set is

VI = Ã−1(−B̃E0 ⊕ IE) ∩
∏
i∈VI

Vi. (10)

This set, by virtue of Assumption 2 is a PC-set.

2The matrix J2 =

[
0 −1
1 0

]
is a complex structure on R2. Any complex

number a+ ib can be written as a 2× 2 matrix or a vector in R2 as

a+ ib ⇐⇒
[
a
b

]
⇐⇒

[
a −b
b a

]
= a

[
1 0
0 1

]
+ b

[
0 −1
1 0

]
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Fig. 2. Each unit is interfaced via inductive lines to a distribution network
which may have a meshed topology.

3) Control Objective: The objective is twofold: find a suit-
able sequence of pairs (x, u) depending on external renewable
injections d(k) for k ∈ {0, 1, . . .} that minimizes the infinite
horizon criteria

J(x0, v0, d) =
∞∑
k=0

`k(x(k), u(k), d(k)) (11)

where `k is a time-varying stage cost comprising generation
costs. And second, to derive a suitable stage cost `k(·, ·) that
captures energy pricing mechanisms allowing for maximum
profit at each node in terms of the exogenous inputs (load
consumption and renewable injection) and available battery
storage.

III. PEER-2-PEER FRAMEWORK

A. OCP for energy system

To achieve our control objectives, consider the finite horizon
criteria for each i ∈ VI that employs exogenous predictions of
Assumption 1:

JNi (x̄i,ui,di) =
N−1∑
k=0

γ(ui, xi) + λk,i(yi)︸ ︷︷ ︸
`k,i(xi,ui,di)

(12)

the stage cost `i,k(xi, ui, di) is composed by two terms
capturing the cost of generating electricity from solar or
aeolian energy given by γi(·), and a time-varying term λk,i(·)
reflecting the price of purchasing or selling energy from and
to the electric network. The former has usually a quadratic
nature, see [23], with coefficients that are constant in case
of PV panels and WTs and a function of the state of charge
for the batteries. The latter function is determined from the
market, see Section III-B. The performance criteria arguments
are sequences of states xi = {xi(0), . . . xi(N)} and controls
ui = {ui(0), . . . ui(N − 1)}. Both of these sequences depend
on exogenous inputs di = {di(0), . . . , di(N − 1)}; each di(k)
comprises predicted renewable injections {wh,i(k)}h∈H, load
consumption Sl,i(k), and neighboring voltages {vj(k)}j∈Ni .

The resulting optimal control problem for each node for
z̄i = (x̄i, v̄i) and available predictions di is

Pi(z̄i,di) : min{JNi (x̄i,ui,di) : ui ∈ UNi (z̄i,di)}. (13)

The constraint set UNi (z̄i,di) is defined by

(xi(0), vi(0)) = z̄i, (14a)

x+
h,i = fi(xi, ui, di), (14b)

xi ∈ Xi, ui ∈ Ui, vi ∈ VI(di), (14c)

hi(vi, yi) = Livi + L̂idi. (14d)

The prediction model (14b) differs from its counterpart (1)–
(3) in the nature of the exogenous inputs used; the former
employs sequences of forecasts while the later uses the
“true” values. This optimization problem is subject to coupled
constraints (14c) and (14d) with respect to network voltages.
The set VI(di) represents a “slice” of VI corresponding to
node i for given fixed values of neighboring voltages; The
matrix L̂i maps di to the current balance for node i, i.e.,
forming the ith row of (8) representing the power flow for node
i. The solution of Pi(z̄i,di) is a sequence of optimal control
inputs u0

i . Suppose at time k, each node i measures (xi, vi),
exchanges voltage prediction sequences, obtains forecasts for
renewable injections and load demands such that di(k) is
available; then apply the first element of the optimal solution
u0
i of (13) to the system. At the next sampling time, we

discard the existing sequence, measure the plant, and obtain
new forecasts, then solve (13) with the updated information.
This process is repeated ad infinitum. A standard Assumption
on the stage cost for regularity purposes is

Assumption 4 (Positive definite stage cost). λi,k : Xi×R2 →
R and γi : Ui × Xi → R are, for each i ∈ M and k ∈ N,
continuous positive definite functions.

B. Market negotiation

For this section, we propose an agent based approach to
handle the market layer involving negotiations to choose
adequate pricing policies. The market layer of our approach
aims to handle power deficits and surpluses at each node i ∈ VI ;
a power surplus in one node may help alleviate deficits in other
nodes. The time-varying component of the cost (12), λi,k(·),
weighs this output power and is the tool used to interface
both an energy trading scheme with the lower control levels.
According to the sign of the output power, it is possible to
partition VI into two disjoint sets of sellers VI,S when yi > 0,
and of buyers VI,B for yi < 0. In our approach, we propose
the choice of a pricing policy for exporting and importing
power as opposed to the traditional linear pricing used in the
literature [24], [25]. This results in a negotiation framework
where the participating nodes decide upon a policy which
provides a mechanism to take predicted battery storage levels
into account.

This negotiation framework can be cast a game, with a leader
when the network is connected, or leaderless when operating in
islanded mode. The set of players is given by the nodes VI∪V0;
the set of actions for each i ∈ VI is the set of functions Ai =
{λi ∈ L2[Yi,R] : λi(yi) ≥ 0} with Yi the output constraint set
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which by Assumption 1 and 2 is compact. The action set for V0

is given by A0 = {(λ0,s, λ0,b) ∈ R2 : ηs ≤ λ0,s < b0,b ≤ ηb} 
which represents selling and buying prices for each network 
node that are upper and lower bounded by ηs > 0 and ηb > 0 
respectively. The total average network revenue is3

R =
∑
i∈VI

1

µ(Yi)

∫
Yi

λi(σ)dµ (15)

where each pricing policy is averaged over a set Yi = (yi +
Smax
b [−SoC, 1−SoC])∩Yi reflecting the available power with

respect to current storage levels SoC and µ is the Lebesgue
measure for Yi. On the other hand, the power purchased by
each i ∈ VI acting as a buyer at a given time is

ξi(λi, λ−i, y) =
λi(−σ(−yi))∑

∈Ncom
i ∪{i}

λj(−σ(−yj))
∑

j∈Ncom
i ∪{i}

σ(yj)

(16)
which depends on the neighbouring available power y =
(y1, . . . , y|VI |); it is worth stressing that the only information
needed is that of the communication neighbours. Each node
behaves as a prosumer and it has attached to it a utility
functional ri : Ai ×A−i → R, which also depends on current
available predictions on both storage and output power, defined
as

ri(λi, λ−i) =
N−1∑
k=0

(
λ0,bξi(λi, λ−i, y(k))

− λi(ξi(λi, λ−i, y(k)))

+ log(1 + γi(λ0,s, b
max
i )bi)

+ γiR(k)
σ(yi(k))

1 +
∑
i∈Vi σ(yi(k))

)
.

(17)

This utility functional measures revenue and satisfaction of each
node with its current pricing policy, see [21] and [24]. There are
two prominent parts: the first two terms represent the cost of
purchasing with respect to the price set by the utility grid λ0,b >
0 which the agent seeks to minimise; the remaining terms
correspond to the advantages of selling available power,the
effect of available storage, and the trade-off between increasing
prices and loss of revenue. This trade-off is characterised by the
gain γi which depends on selling prices λ0,s and the maximum
allowable price bmax

i . The function σ(·) is a key component
of this cost, depending on the output power sign, two terms
will vanish implying that each node is either maximising profit
or minimising costs but never both; this synergizes with our
piece-wise definition of pricing policy. This formulation avoids
unwanted saddle or conservative behaviour when optimising.
This approach naturally partitions the set VI into buyers and
sellers.

The set A−i ,
∏
j∈Ncom

i
Aj collects the actions of the

neighbours in the communication network which are used
to compute the total revenue R(k) known by the utility grid
agent, characterises the negotiation framework communication
properties, and is defined as an unweighted graph characterised
by a set of edges Ecom ⊂ V × V which generates a set of

3The function σ(x) = xeαx

eαx+1
for a fixed α > 0 is a smooth approximation

of max(0, x). As α→∞, σ(·)→ max(0, ·).

neighbours Ncom
i ⊂ V similar to (5). The particularity of this

network is that for all i ∈ VI , the utility grid, if present, satisfies
0 ∈ Ni implying each negotiating agent can communicate with
the utility grid. In the following we describe the proposed
framework for the grid connected and islanded cases: In the
former case V0 6= ∅, and the utility grid solves the following
optimisation problem:

Pcom
0 : max

λ0∈A0

{r0(λ0, λ−0) : λ−0 ∈
∏
j∈N0

Rj(λ−j)} (18)

where the best reply map associated with λ−j is Rj(λ−j) =
{λj ∈ Aj : rj(λj , λ−j) ≤ rj(λ̃j , λ−j), ∀λ̃j ∈ Aj}. The
associated utility functional is

r0(λ0, λ−0) =λ0,s

∑
i∈VI

σ(yi) + λ0,b

∑
i∈VI

σ(−yi)

−
∑
i∈VI

λi(σ(yi))

In this way, the utility grid agent sets the price according to the
best response of the network members given by VI . Similarly,
for each i ∈ VI the corresponding optimisation problem is

Pcom
i (λ−j) : max

λi∈Ai
ri(λi, λ−i) (19)

For the islanded case, V0 = ∅ and the negotiation framework
occurs only by solving (19) for each i ∈ VI . An important
feature of the presented approach and its relation to peer-to-
peer networks lies in the way revenue of energy transactions is
obtained. After the agents are split into groups of buyers and
sellers, the total revenue gained from a transaction is shared
among the agents selling power. A method to establish direct
contracts or bilateral negotiation schemes is the subject of
ongoing research.

Tractable reformulation: The negotiation framework as
stated in the previous section may be prohibitively difficult to
solve. The action spaces for each i ∈ VI are infinite dimen-
sional spaces, and to exacerbate the problem, the optimisation
problem (18) has equilibrium constraints. We propose a method
to simplify this problem to make it computationally tractable
for both utility and network elements. Our first step towards
this goal is to invoke the following:

Assumption 5. Each node updates its pricing policy with a
period kn ∈ N; the utility grid updates prices every Hkn ∈ N
for some H � 0.

This Assumption may refer to the common practice of
setting a day ahead price based on existing consumption and
is common in leader follower games as mentioned in [26].
Furthermore, Assumption 5 ensures that the utility grid agent
to be able to react only to the best replies from each network
element. Another potential bottleneck, from an implementation
point of view, is that of the action space infinite dimensionality
Ai ⊆ L2[Yi,R]. To overcome this hurdle, we propose to
reduce the action space to a class of parameterised functions.
The starting point is the traditional linear pricing policies, i.e.,
−λ0,byi and λ0,syi for purchase and sale respectively. From
Assumption 2, the output power is constrained to a bounded set.
We seek a piece-wise smooth such that λi(−ymax

i ) = λ0,by
max
i ,
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λi(0) = 0, and λi(yimax) = λ0,byi
max. Clearly, it is always 

possible to find a  q uadratic f unction fitting th e positive part, 
and another fitting the negative one. The parameter we introduce 
is the deviation from a linear pricing: a way to measure this 
is to consider the area in between curves such that

bi =

∫ ymax
i

0

λ0,syidy −
∫ ymax

i

0

λidy

=

∫ 0

−ymax
i

−λ0,byidy −
∫ 0

−ymax
i

λidy.

Solving the above conditions yield the desired parameterised
piece-wise smooth convex parameterisation. The missing
ingredient is to satisfy Assumption 4, This can be done by
suitably constraining the available values for bi ∈ [0, bmax

i ] such
that λi(yi, bmax

i ) ≥ 0 for all yi ∈ Yi. This allows us to assign
a correspondence between real positive numbers and Ai such
that bi 7→ λi(·). Injectivity of this map follows naturally from
construction; surjectivity, however, is not ensured since the
image of the real numbers is not Ai but only a strict subset.
This discrepancy is because of the inequality condition used
to parameterise desired positive definite functions. In this way
and owing to the continuity of b 7→ λi(·), the problem of
optimising over function spaces is reduced to optimising over
R|VI |.

Following Assumption 5, the game can be played in two
stages. The initialisation part corresponds to the utility grid
agent choosing λ0 = (ηs, ηb). Then sequentially, following a
best reply type updating, each node agent updates its desired
pricing policy until they reach an equilibrium. This negotiation
process occurs every kn steps and takes into account the
availability of both power forecasts for renewable sources and
storage predictions at the given sampling time; the utility grid
updates their prices H ∗ kn steps for H ≥ 0. The utility grid
updates its decision variables in response to optimal pricing
profiles obtained by network agents. The negotiation between
network and utility grid agents occurs on top of the control
layer described in Section III-A.

IV. STABILITY AND CONVERGENCE ANALYSIS

In this section, we analyse the theoretical properties of the
proposed pricing approach.We divide our analysis into two main
parts: market negotiation convergence, and recursive feasibility.
We finish this Section with remarks on how both market and
control layers interact.

A. Negotiation Convergence

In this Section, we aim to make precise the notion of how
all i ∈ VI play the game defining their pricing policy. We pay
close attention to the convergence properties of this game in
the sense of Stackelberg, in the grid connected case, and Nash,
in the islanded one, equilibrium. We begin this part of the
analysis by defining equilibrium concepts that will be used:

Definition 1 (Nash equilibrium). An action profile λ0 =
(λ0

1, . . . , λ
0
|VI |) is said to be a Nash equilibrium of the game(

VI , {Ai}i∈VI , {ri}i∈VI
)

if, for all i ∈ VI ,

ri(λ
0
i , λ

0
−i) = min

λi∈Ai
ri(λi, λ

0
−i). (20)

The set of Nash equilibrium points for VI parameterised
by λ0 ∈ A0 are NE(λ0) ⊂

∏
i∈VI Ai, this set represents the

best network response to the prices set by the utility grid. This
concept leads us to the other equilibrium concept we leverage
on:

Definition 2 (Stackelberg equilibrium). An action profile a∗ =
(a∗0, . . . , a

∗
M ) is said to be an Stackelberg equilibrium of the

1 leader, M−follower game
(
V, {Ai}i∈V, {ri}i∈V

)
if for all

i ∈ V

sup
λ−0∈NE(λ0

0)

ri(λ
0
0, λ−0) ≤ sup

λ−0∈NE(λ0)

ri(λ0, λ−0) (21)

The Stackelberg equilibrium complements that of the Nash
equilibrium and essentially leads to an optimal response from
the utility grid side in response to the best possible actions
from the network side. Following Assumption 5, it is possible
to solve these two problems independently with the caveat that
it leads to a problem with equilibrium constraints, see [27] for
an in-depth study of this type of problems.

Given the utility functionals ri naturally partition the set of
nodes, it is possible without loss of generality to choose the
buyer nodes to play first. Owing to the parameterisation of the
pricing policy, bi 7→ λi(·), is convex by construction.

Our first result considers the case when yi < 0, i.e., node i
is purchasing power.

Lemma 1. Suppose yi < 0, then the purchased power in (16)
is a concave function with respect bi ∈ [0, bmax

i ].

Proof. By construction, ∀i ∈ VI λi(yi, bi) ≥ 0 and since
the parameterisation is a linear problem, the policy is linear
with respect to the parameter. Indeed, the conditions defined
in Section IV-A for the negative part of the policy λi(yi) =
a2y

2
i + a1yi are

a2(ymax
i )2 − a1y

max
i = λ0,by

max
i

1

2
λ0,b(y

max
i )2 +

1

3
a2(ymax

i )3 +
1

2
a1(ymax

i )2 = bi

This yields a policy

λi(yi, bi) =
6bi

(ymax
i )3

y2
i +

6bi − λ0,b(y
max
i )2

(ymax
i )2

yi.

This implies that the policy is concave on bi. To prove the
purchased power concavity, it is enough to check its derivatives.
A direct calculation shows that

∂2ξi
∂b2i

= −2

∑
l σ(yl)

∑
l 6=i λl(yl, bl)

(
∂λi
∂bi

)2
(
∑
j∈Ncom

i ∪{i}
λj(yj))3

< 0

is negative definite.

Lemma 2. Suppose bi ∈ [0, bmax
i ] for all i ∈ VI , then

ri(λi, λ−i) is a concave function with respect to bi and b−i.

Proof. The proof proceeds by cases: i) yi ≥ 0. In this case,
the first two terms of ri(·, ·) vanish. The total revenue is by
construction a linear function of bi and b−i and the logarithmic
term is concave with respect to its domain. The resulting
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i

function which is a sum of concave functions is therefore 
concave.
ii) yi < 0. In this case only the first t wo t erms o f ri(·, ·) 

contribute, the later vanish. Following Lemma 1, the purchased 
energy is a concave function of bi. The argument follows, 
mutatis mutandis, that of Lemma 1 to obtain the negativity of 
the second derivative within the range [0, bmax].

These two Lemmas lead to our first result, the proof of
which follows from an application of [28, Theorem 4.3]

Theorem 3 (Network nash equilibrium). The game
(VI , {Ai}i∈VI , {ri}i∈VI ) admits a Nash equilibrium.

Theorem 3 implies that all network nodes operate optimally
with respect to the values given by the utility grid. The move
played by the grid agent satisfies λ0

0 = arg max r0(λ0, λ−0)
which is by construction a linear problem over a compact set.
A consequence of this fact is the existence of a Stackelberg
equilibrium between network and utility grid.

B. Recursive feasibility

From Assumption 1 and 3, the exogenous information avail-
able to the controller is contained within a PC-set di(k) ∈ Di
for all k ≥ 0. The set DN

i =
∏N−1
k=0 Di contains all sequences

of length N . The challenge arises as a consequence of the
receding horizon implementation of the control action: if
Pi(zi,di) is feasible and yields a solution sequence u0

i (zi,di),
then its first element, which defines an implicit control law
κNi (zi,di)) = u0

i (0; zi,di), is applied to the system resulting
in the state evolution z+ = (x+

i , v
+
i ) obtained as a solution

of the difference algebraic model (1), (2), and (6). At this
sampling instant a new sequence of information is available to
the controller, i.e., d+

i ∈ DN
i , and the problem to be solved

is now Pi(z+
i ,d

+
i ). In this Section, we seek an answer to

the question: What are the conditions necessary to ensure
Pi(z+

i ,d
+
i ) has a solution when di changes (perhaps arbitrarily)

to d+
i ?

We begin by defining recursive feasibility, and some useful
terminology in the analysis:

Definition 3 (Recursive feasibility). For each i ∈ V, the OCP
Pi(zi,di) is said to be recursively feasible if UNi (zi,di) 6= ∅,
then for a successor state z+

i = (x+
i , v

+
i ), and d+

i ∈ DN
i , the

constraint set UNi (z+
i ,d

+
i ) 6= ∅.

For a disturbance sequence at time k, di =
{di(0), . . . , di(N −1)}, its associated k̃th tail for time k+ 1 is
d̃k̃(di) = {di(1) . . . , di(k̃ − 1), di(k̃ − 1), di(k̃), . . . , di(N −
1)}. It is clear that both di and d̃(di) belong to the set Di;
the notion of the tail allows us to quantify the change in
information that a controller is subject to, for two sequences
d, e ∈ DN

i , the distance ρ(d, e) = |d̃(d) − e| is a metric on
the sequence space DN

i .
A system is said to be locally controllable at a point z0 ∈ Z0

if for every ε > 0, H ∈ N and z̄ such that |z − z0| ≤ ε, there
exists a finite sequence of controls {u(0), . . . , u(H − 1)} such
that its solution satisfies |z(k) − z0| < ε for all j ∈ N0:H−1

with z(0) = z0 and z(H) = z̄. The set of feasible states is
ZNi (di) = {zi : UNi (zi,di) 6= ∅} defines the region in the state

space such that the OCP is feasible. The first of our results
is concerned when the exogenous information is unchanging,
i.e., the future information is taken to be the tail of the initial
sequence.

Theorem 4. Let di ∈ DN
i and suppose each node is locally

controllable with respect to di. If d+
i = d̃k̃(di), then (xi, vi) ∈

ZNi (di) implies (x+
i , v

+
i ) ∈ ZNi (d+

i ).

Proof. Given (xi, vi) ∈ ZNi (di), then an opti-
mal sequence of control actions u0

i (zi,di) =
{u0

i (0; zi,di), u
0
i (1; zi,di), . . . , u

0
i (N − 1; zi,di)} exists

and generates a sequence of states and voltages x0
i =

{x0
i (0), . . . , x0

i (N)} and v0
i = {v0

i (0), . . . , v0
i (N − 1)} for a

given information di ∈ DN
i . Now, we construct a sequence

of control actions ũi = {ũ(0), . . . , ũ(N − 1)} ∈ UNi (z+
i ,d

+
i ).

Using the definition of a disturbance tail, the first k̃
elements of d+

i satisfy d+
i (k) = di(k + 1) implying that

ũi(k) = u0
i (k+ 1; zi,di) for all k ∈ {0, . . . , k̃− 1}. The state

evolution is governed by a set of difference algebraic equations
Fi(zi, ui, di, z

+
i ) = 0 composed of C1 dynamics (1)– (3) and

(8). Using the implicit function theorem, it is possible to locally
define a function ξV (·, ·, ·) such that z+

i = ξV (zi, ui, di)
and ensure the existence of neighbourhoods V and Z such
that for (zi, ui, di) ∈ V , (zi, ui, di, ξV (zi, ui, di)) ∈ Z
and Fi(zi, ui, di, ξV (zi, ui, di)) = 0. Consider the initial
state to be z̃i(0) = (x0

i (1), v0
i (1)), the subsequent states,

following ξV , satisfy z̃i(k) = (x0
i (k + 1), v0

i (k + 1))
for all k ∈ {0, . . . , k̃}. The next element satisfies
z̃i(k̃+ 1) = ξV (z̃i(k̃), ũi, di(k̃)) for some ũi ∈ Ui. Since each
node is locally controllable with respect to di, there exists a
control action ũi ∈ Ui such that ξV (zi, ũi, di) ∈ Xi × VI(di).
Similarly, there exists a control law û ∈ Ui such that
z̃i(k̃ + 2) = z0

i (k̃ + 2) = ξV (zi(k̃ + 1), û, di(k̃ + 1)). The
resulting sequence satisfies

ũi ={u0
i (1), . . . , u0

i (k̃), ũi,

ûi, u
0
i (k̃ + 2), . . . , u0

i (N − 1)} ∈ U(z+
i ,d

+
i ).

Once recursive feasibility of the tail is achieved, we allow
the information to vary (perhaps arbitrarily). To study this case,
we turn to the continuity properties of both value function
and constraints which depend on exogenous inputs and initial
states. The set

ΓNi = {(zi,di) : zi ∈ ZNi (di), di ∈ DN
i }

is the graph gr ZNi of the set-valued map corresponding to the
feasible set ZNi : DN

i → 2Xi .

Definition 4 (Upper semicontinuity for set-valued maps). A
set Φ: U → 2X is upper semicontinous at ξ0 ∈ U if for an
open neighbourhood VU ⊂ U of ξ0, then for all ξ ∈ VU
Φ(ξ) ⊂ VX for an open neighbourhood VX ⊂ X .

Proposition 1. Suppose Assumption 1– 4 hold and the
dynamics are continuous. Then the set valued map ZNI (·) is
upper semicontinuous.

Proof. The constraints given by (14), by Assumptions 2 and
3 together with the continuity of each node’s dynamics, have

Incorporating forecasting and peer-to-peer negotiation frameworks into a distributed model predictive control approach for meshed electric networks
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a structure UiN (z̄i, di) = {ui : Gi(ui, z̄i, di) ∈ K} for a fixed 
compact set K and a continuous function G(·, ·, ·). This implies 
that the graph of UiN (·, ·) is a compact set; since the underlying
space is finite d imensional, t here i s a  c ompact neighbourhood
VΦ such that gr UiN ⊂ VΦ. If the set ΓiN is closed and Xi × 
VI (di) is compact then by [29, Lemma 4.3] our result follows. 
Consider a converging sequence {z̄i,k, di,k} ⊂ ΓiN ; to prove 
our result, we need to ensure that the limit point (z̄i, di) belongs
to Γi

N . Using the definition o f ΓiN ,  t here e xists u i,k such 
that Gi(ui,k, z̄i,k, di,k) ∈ K which by continuity of Gi(·, ·, ·) 
yields ui,k → ūi and Gi(z̄i, ū, di) ∈ K. The closedness of 
Γi
N follows.

The feasible map ZiN (·) is the domain of the constraint map 
Ui
N (·). The proof of proposition 1 shows the close relation 

between the set defining c onstraints a nd t he f easible region; 
moreover, this results implicitly states that for small deviation 
in the exogenous inputs di, the resulting optimisation problems 
associated to the feasible sets have a solution.

The following result builds on the previous ones:

Proposition 2 (Value function continuity). Suppose Assump-
tion 1– 4 hold continuous dynamics, and the set of optimisers
of PNi (z̄i,di) is compact. Then the value function

νN,0i (z̄,di) = min{JNi (x̄i,ui,di) : uNi ∈ UNi (z̄i,di)} (22)

is continuous.

Proof. The proof is an adaptation of [29, Proposition 4.4] to our
setting. The continuity of the value function depends on the up-
per semicontiuity of the constraint set, which holds by Proposi-
tion 1, and the existence of neighbourhoods of the set of optimis-
ers of (13), which is guaranteed since these form a compact set
by assumption. The compactness of implies that there exists a
finite open covering of {(z̄i,di)}×S(z̄i,di) ⊂ VZ×VU , where
S(z̄i,di) = arg min{JNi (x̄i,ui,di) : uNi ∈ UNi (z̄i,di)}. In
this neighbourhood, the “almost” optimal points that satisfy
Ji(x̃i,ui, d̃i) ≤ νN,0i (z̄i,di) + ε for all (z̃, d̃i,ui) ∈ VZ ×VU .
Since the neighbourhood VU contains an optimal point which
belongs to a closed set, the intersection VU ∩ UNi (z̃i, d̃i) 6= ∅
which yields: νN,0i (z̃i, d̃i) ≤ νN,0i (z̄i,di) + ε.

On the other hand, νN,0i (z̄i,di)− ε ≤ Ji(x̄i,ui,di) holds
for all ui ∈ UNi (z̄i,di). From the proof of Proposition 1, the
set UNi (·, ·) is upper semicontinuous and there exists neigh-
bourhoods VU ′ and VZ′ such that for all (z̃i, d̃i) ∈ VZ′ and
ui ∈ VU ′ ∩UNi (z̃i, d̃i), νN,0i (z̄i,di)−ε ≤ Ji(x̃i, ũi, d̃i) holds.
Since ε > 0 is arbitrary, then νN,0i (z̄i,di)− ε ≤ νN,0i (z̃i, d̃i).
Continuity of ν0

i (·) follows.

The continuity of the value function is a crucial property
for our objective. Consider a subset Ωi,β = {(zi,di) ∈
ΓNi : νN,0i ((zi,di)) ≤ β} for β > 0.

Assumption 6. The exogenous input sequence evolves as d+
i =

d̃k̃(di) + ∆di where ∆di = d+ − d̃k̃(di) ∈ ∆DN
i . The set

∆DN
i is chosen such that4 λi = diamDN

i
∆DN

i satisfies

λi ≤ σ−1
ν,i ((id− γi)(αi))

4For a set A ⊂ B, its diameter with respect to B is diamBA = max{|x−
y| : x, y ∈ B, x− y ∈ A}.

where γi is a K−function, and αi > 0 such that Ωi,α ⊂ ΓNi .

The overall dynamics for both states and disturbance satisfy

Fi(zi, κ
N
i (zi,di), di, z

+
i ) = 0 (23a)

d+
i ∈ d̃k̃(di) + ∆DN

i (23b)

We claim that a subset Ωρ ⊂ Ωβ is a positive invariant set.
The implications of this assertion is that the evolution of (23)
is contained within one of this level sets. This is a nonlinear
generalisation to the one presented in [20].

Theorem 5. Suppose Assumptions 1– 4, 6 hold and for all
i ∈ VI (zi(0)di(0)) ∈ Ωi,β ⊂ ΓNi for some β ≥ α. The set
Ωi,β is positively invariant for the composite system (23).

Proof. Consider (zi,di) ∈ Ωi,β , from Theorem 4, the optimi-
sation problem remains feasible when the available exogenous
sequence assumes the k̃th−tail. Following classical results from
the MPC literature, feasibility of the optimisation problem
implies stability. A consequence of this is that the value function
is a Lyapunov function, i.e., νN,0i (z+

i , d̃k̃(di)) ≤ νN,0i (zi,di)−
θ3,i(|zi|) and θ1,i(|zi|) ≤ νN,0i (zi,di) ≤ θ2,i(|zi|) for some
θ3,i, θ2,i, θ1,i ∈ K. On the other hand, the continuity of νN,0i

over a compact set implies that is uniformly continuous on
that set. From [30, Lemma 1], there exists a K∞−function
ασν,i such that

νN,0i (z+
i ,d

+
i ) ≤ νN,0i (zi,di)− θi(|zi|) + σν,i(|d+

i − d̃k̃(di)|)

Using Assumption 6, we obtain

νN,0i (z+
i ,d

+
i ) ≤ νN,0i (zi,di)− θ3,i(|zi|) + (ρi − γi)(αi)
≤ (id− θ3,i ◦ θ−1

2,i )ν
N,0
i (zi,di) + (ρi − γi)(βi)

≤ (id− θ3,i ◦ θ−1
2,i )(βi) + (ρi − γi)(βi)

Taking γi = id− θ3,i ◦ θ−1
2,i yields νN,0i (z+

i ,d
+
i ) ≤ βi which

implies that (z+
i ,d

+
i ) ∈ Ωi,β

The main assertion of this section is a consequence of the
above theorem

Corollary 1 (Recursive Feasibility). If zi(0) ∈ {zi : (zi,di) ∈
Ωi,β} ⊂ ZNi (di), then zi(k) ∈ ZNi (di(k)) provided the
exogenous inputs update rate is limited.

Recursive feasibility is obtained then as a consequence
of the stability properties of the predictive controllers. The
negotiation framework modifies the cost according to the
change in exogenous inputs, a variation in load demand or
renewable injection will result in a potential update in the
pricing policy. If Assumption 6 holds, then the controller can
handle variations in its cost criteria. On the other hand, the
sources of potentially large variations arise from sudden load
demands; renewable injections can be kept within prescribed
variation using the available inputs ∆i and local storage.

V. TESTING AND EVALUATION ENVIRONMENT

A. Physical Deployment and Testing Environment

The digital extension of the DER unit was designed with
the intention of integrating intelligent control and market

Incorporating forecasting and peer-to-peer negotiation frameworks into a distributed model predictive control approach for meshed electric networks
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Fig. 3. Data Flow Diagram of the Extended DER Components

negotiation into the existing system. The requirements of the
systems and its extension needs were evaluated based on the
framework published in [31]. The technical requirements and
implementation details of the digital extension are shown in
[32]. The extension was built by reviewing the requirements
of each field against the existing state of the art. To bridge the
protocol and technology gap a messaging system and broker
based solution is proposed that translates messages from the
various systems.

An overview of the data that is being passed from one digital
component to another can be seen in Fig. 3. This deployment
showcases a fully decentralised implementation where each
component can be deployed in various location depending
on system specifications. This allows local markets and fully
functioning systems to be made available to remote regions
of a sparse DERs and scale from a few units to hundreds
in which case the messaging system can be expanded in a
clustered deployment.

B. Date Sources and Scenario Generation

The scenarios are generated so that they cover a wide
range of DER configurations. The primary parameter that is
iterated through is the time of year which varies between
[Summer, Spring−Autumn, Summer]. This influences the
week selection in the PV panels and sets the week for the
consumption and wind turbine as well. The size of the panels
varies between [15.4m2, 45.6m2, 85.2m2]. The wind turbine
selects a value in the time of the year that matches one of
the 4 identified patterns in the data. The battery sizes vary
between [5kWh, 13.5kWh, 25kWh]. The number of units in
each scenario vary between [3, 6, 9].

C. Scenario Evaluation and Results

The variation of the prices and cost that an individual
received based on the type of forecast that was used can be
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Fig. 4. The effect of forecasting on the price of a Single DER
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Fig. 5. The behaviour of the price of a single DER based on its Energy
Balance, Battery SOC and Peers

seen in Fig. 4.

The behaviour of the DER and it’s energy price variation
with respect to its peers and it’s battery SOC can be seen in
Fig. 5.

An overview of how the Cost of Energy Changed for each
unit in all the scenarios as compared to the their generation and
consumption balance can be seen in Fig. 6. The three different
markers denote the results from the the three types of runs
where the green hexagon represents a perfect forecasting; the
blue square represents the SARIMA based forecasting and the
red triangle is the naive forecasting scenario.[Details Pending
Full Data for Plots].

We conclude this section illustrating the convergence prop-
erties of the market framework.
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M Number of Rounds Average Utility
Mean SD Mean SD

2 1.257 0.786 0.750 0.326
3 2.037 1.026 0.747 0.306
4 2.916 1.176 0.785 0.247
5 3.679 1.392 0.796 0.244
6 4.561 1.487 0.822 0.219
7 5.519 1.552 0.835 0.193
8 6.452 1.575 0.841 0.189
9 7.290 1.808 0.866 0.164

10 8.101 1.773 0.879 0.147

TABLE I
PERFORMANCE OF AGENT NEGOTIATION WITH DIFFERENT NUMBER OF

AGENTS

VI. CONCLUSIONS AND FUTURE WORK

We proposed a distributed predictive controller capable of
handling coupled constraints which optimises generation costs.
These costs are obtained via a negotiation framework based
on a MAS. The subject of the negotiation was done over
policies rather than fixed prices such that it is possible to
contemplate multiple scenarios given the availability of storage.
Both control and market layers are subject to exogenous inputs
dictating the interaction of the system with its environment. A
rigorous analysis of the properties, existence of game theoretic
equilibrium points for the market layer and recursive feasibility
for the control layer, was given. The controller is proven to be
recursively feasible in presence of time-varying information,
both voltages form neighbouring nodes and forecasts. We have
developed a testing and evaluation environment to assess the
performance of our controller. We explored the effects of
varying forecast accuracy in the controller performance and
the pricing policies. The proposed system is a scalable solution
to the problem of pricing and control.
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