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Ieva Čepaitė1 · Brian Coyle2 · Elham Kashefi2,3

Received: 5 May 2021 / Accepted: 15 January 2022
© The Author(s) 2022

Abstract
Generative modelling has become a promising use case for near-term quantum computers. Due to the fundamentally
probabilistic nature of quantum mechanics, quantum computers naturally model and learn probability distributions, perhaps
more efficiently than can be achieved classically. The quantum circuit Born machine is an example of such a model, easily
implemented on near-term quantum computers. However, the Born machine was originally defined to naturally represent
discrete distributions. Since probability distributions of a continuous nature are commonplace in the world, it is essential
to have a model which can efficiently represent them. Some proposals have been made in the literature to supplement the
discrete Born machine with extra features to more easily learn continuous distributions; however, all invariably increase
the resources required. In this work, we discuss the continuous variable Born machine, built on the alternative architecture
of continuous variable quantum computing, which is much more suitable for modelling such distributions in a resource-
minimal way. We provide numerical results indicating the model’s ability to learn both quantum and classical continuous
distributions, including in the presence of noise.

Keywords Continuous variable · Quantum information · Born machine · Generative modelling ·
Continuous probability distributions

1 Introduction

With the dawn of the noisy intermediate-scale quantum
(NISQ) (Preskill 2018) device era comes a possibility
of performing useful and large-scale computations that
implement quantum information processing. While NISQ
technologies do not entail fault-tolerance or large numbers
of qubits (generally in the range of about 50–200) which
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we expect to be necessary for obtaining useful processing
power, they do provide avenues for brand new methods of
exploiting quantum information. One type of framework
which can utilise the restricted architectures of NISQ
devices is that of hybrid quantum-classical (HQC) methods,
which have found many applications recently in fields like
quantum chemistry (Peruzzo et al. 2014) and quantum
machine learning (QML) (Benedetti et al. 2019). These
depend on dividing an algorithm into several parts which
can be delegated to either quantum and classical servers,
reducing the amount of quantum resources required to
generate a solution.

In the field of quantum machine learning (QML) (Bia-
monte et al. 2017; Dunjko and Briegel 2018; Ciliberto et al.
2018; Benedetti et al. 2019; Lamata 2020), the benefits
of HQC are key in approaches that employ parameterized
quantum circuits (PQC) (also referred to as a quantum neu-
ral networks), which act as an ansatz solution to some
particular problem that can be optimised classically. QML
has employed PQCs for several problems, including classi-
fication (Farhi and Neven 2018; Schuld and Killoran 2019;
Havlı́ček et al. 2019; Schuld et al. 2018; LaRose and Coyle
2020), generative modelling (Benedetti et al. 2019; Liu and
Wang 2018; Verdon et al. 2017; Romero and Aspuru-Guzik
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2019; Zoufal et al. 2019), and problems in quantum infor-
mation and computation themselves (Morales et al. 2018;
Cincio et al. 2018; Khatri et al. 2019; Cerezo et al. 2020;
LaRose et al. 2019; Romero et al. 2017). The ‘learnabil-
ity’ and expressive power of these models have been also
been studied (Schuld et al. 2020; Gil Vidal and Theis 2020;
LaRose and Coyle 2020; Coyle et al. 2020; Du et al. 2020).
One can, for example, use quantum states as sources of
probability distributions, with measurement playing the role
of random sampling. These quantum states are obtained via
PQCs which are composed of a number of tunable quantum
gates with parameters that can be optimised using a classi-
cal subroutine. The process is typically iterative, requiring
smaller quantum circuits with less depth to be run sev-
eral times, thus decreasing information loss and quantum
resource requirements. Alternatively, one could use coher-
ent quantum training procedures (Verdon et al. 2018) which
may in fact be necessary to see quantum advantages in
certain cases (Wright et al. 2020).

QML is not restricted to a specific quantum computing
paradigm and several models have shown potential in recent
years, often divided into two broad categories: discrete-
and continuous-variable (Lloyd and Braunstein 1999) (DV
and CV) systems. DV systems allow for individually
addressable states that are finite, often preferred for their
analogous nature to classical computers. CV systems,
on the other hand, deal with quantum states which
behave as bosonic quantum modes (and are therefore
referred to commonly as qumodes) which effectively have
infinite eigenstates with an added difficulty in addressing
each individual state. This challenge notwithstanding, CV
quantum computers allow for a far more effective manner
of dealing with problems which require continuous values,
making them a perfect candidate for modelling continuous
distributions. Furthermore, much progress has been made
in the field of QML using continuous variables, with
software packages specifically created to deal with such
scenarios (Killoran et al. 2018).

In this work, we use the CV model to study the Born
machine (BM) (Cheng et al. 2018; Benedetti et al. 2019;
Liu and Wang 2018), a mathematical model which generates
statistics from a probability distribution p(x) according to
the fundamental randomness of quantum mechanics, i.e.
Born’s measurement rule (see Section 3). We can generate
samples of a distribution defined according to Born’s rule
via the measurement of some quantum state, making this
a generative QML method. Most commonly, a quantum
circuit Born machine (QCBM) is implemented, meaning
the quantum state is prepared as by a PQC, although other
definitions are possible, for example the parameterisation of
density matrices via a combination of classical and quantum
resources (Verdon et al. 2019; Liu et al. 2020; Martyn
2019). The output distribution is then altered via a classical

optimisation of the PQC’s parameters in order to match the
distribution of some target data. The target distribution may
be the output of a quantum system—such as a quantum
computer or an experimental measurement—making the
quantum generative model naturally suited for learning it.
Furthermore, Born machines are promising candidates for
models which could demonstrate a quantum advantage in
machine learning in the near term (Du et al. 2020; Coyle
et al. 2020; Alcazar et al. 2020; Sweke et al. 2020; Liu et al.
2020).

2 Continuous variable quantum computing

Here, we give a brief overview of the nature of CV quantum
computing as is pertinent to the rest of the work. For a
full treatment of the topic, please refer to Weedbrook et al.
(2012) and Braunstein and van Loock (2005). CV states can
be represented in both phase space and Fock space (Moyal
1949; Goldstein et al. 2002; Curtright and Zachos 2011),
owing to the wave-particle duality of quantum mechanics.
Importantly, both formulations give equivalent predictions
about the behaviour of quantum systems. Owing to the
discrete nature of the Fock space formulation, in this work,
we focus on the phase space approach in order to extract the
benefits of continuous variables from CV systems.

In the phase space formulation, any state of a single
qumode can be represented as a real-valued function
F(x, p), (x, p) ∈ R

2 in phase space called the Wigner
quasi-probability function (Wigner 1932; Killoran et al.
2019; Curtright and Zachos 2011). The two axes of
phase space are then the quadrature variables governed by
quadrature operators x̂ and p̂ which have a continuous and
infinite basis with eigenstates |x〉 and |p〉 and eigenvalues
ψ(x) and φ(p). The marginals of the Wigner function
are the probability distributions of each of the quadrature
variables, |ψ(x)|2 and |φ(p)|2.

The Hamiltonian H governing the evolution of such
systems can be seen as a polynomial function of the
quadrature operators H = H(x̂, p̂) with arbitrary but
fixed degree. This Hamiltonian can be decomposed into a
series of CV quantum gates (see Table 1) in order to be
implemented in a quantum circuit setting.These are known
as either Gaussian, which are generally easy to implement
on quantum devices and to simulate, or non-Gaussian,
which present problems in both areas. For a more in-depth
discussion of these properties, please see Appendix 1.

3 Continuous variable Bornmachine

Having defined the CV model, we can now construct a
continuous variable Born machine (CVBM). As discussed
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Table 1 A table of the most common Gaussian and several non-
Gaussian transformations in the CV quantum computing model. n̂ =
â†â is the photon number operator (where â and â† are the canonical
creation and annihilation operators)

Gate Operators

R(φ) exp
[
iφn̂

]

D(α) exp
[
αâ† − α∗â

]

S(ζ ) exp
[

1
2

(
ζ ∗â2 − ζ â†2

)]

BS(θ) exp
[
θ

(
â†â − ââ†

)]

V (γ ) exp
[
i

γ
6 x̂3

]

K(κ) exp
[
iκn̂2

]

in the “Introduction”, the Born machine can generate
statistics sampled from a probability distribution according
to Born’s measurement rule:

p(x) = |〈x|ψ(θ)〉|2 (1)

The state |ψ(θ)〉 is generated by evolving the vacuum
state |0〉 according to a Hamiltonian H that is constructed
from CV gates given in Table 1. These gates form a PQC
which is parameterised by the variables governing each gate
(indicated in Eq. 1 by θ ). These parameters should be easily
tunable and allow for an evolution to any state that can serve
as the solution to the given problem.

Taking the distribution associated to the state, |ψ(θ)〉 we
can utilise it as a generative model, which when measured
in some pre-determined basis will generate samples of a
distribution of interest. This model is parameterised by θ ,
which defines an n-qumode quantum circuit U(θ) made up
of a set of quantum gates such that:

|ψ(θ)〉 = U(θ)|0〉⊗n (2)

The final ingredient is the measurement of this parame-
terised state to extract samples. This is key to the resource
efficiency of the model. Here, a sample from a single
qumode (either its position, x, or momentum, p) is extracted
by measuring the corresponding quadrature using the infi-
nite basis of operators in a homodyne measurement (see
Appendix 2).

The parameters of these gates then need to be trained
to solve the problem at hand. This generally involves
a so-called cost function whose value depends on the
output of the model as well as some training data
samples which needs to be minimised by varying the
parameters of the circuit U(θ). In practice, we usually
cannot compute this cost function exactly, and optimising
an estimator of it from samples is referred to as empirical
risk minimisation (Vapnik 1992). Suitable cost functions are
problem-dependent, and there is rarely a unique choice for
a suitable cost, with different options varying in efficiency

and accuracy. The choice of ansatz circuit, in the naive
case, may be problem-agnostic or if we have further prior
information about the problem, the ansatz may problem-
dependent. Both of these choices have advantages and
disadvantages. Once the value of the cost function converges
to a minimum, if it is suitably faithful, the CVBM has
the capacity to generate samples that emulate those of a
target distribution. Importantly, the purpose of the CVBM
is not to simply memorise and exactly reproduce the
samples that were fed into it during the training, but
rather to generalise to the entire distribution. This target
distribution may originate from a classical source, in which
case the CVBM can act as an alternative to a classical
generative model. As a simple and obvious example of
how the CVBM may represent classical distributions, we
can examine the canonical Gaussian distribution. Indeed,
a Gaussian distribution Eq. 11 is parameterised in a way
that has direct correspondence with the Squeezing S(ζ )

and Displacement D(α) gates (see Table 1) via its standard
deviation and mean respectively. Thus, a CVBM circuit
composed of only those two gates is expressive enough
to capture any Gaussian distribution (for multidimensional
Gaussians, we simply need to add a qumode for each new
dimension). Other classical distributions are not necessarily
as straightforward, but we expect that a well-tailored and
sufficiently deep CVBM could be suitably adapted. On
the other hand, if the distribution has a quantum origin,
we may use the CVBM as a means of studying the
underlying quantum system. For example in performing
weak compilation (Coyle et al. 2020), where the target
distribution is generated from another CVBM with fixed
parameters. Alternatively, we may use it as a controllable
proxy to study the characteristics of an unknown quantum
system. In the latter case, we may consider the CVBM to be
a synthetic quantum data generator where the target system
is difficult to reproduce or access.

Now comes the question of quantum advantage in
such a model. Similarly to arguments about the natural
use of quantum computers for the simulation of quantum
systems, we may expect that using the CVBM to learn
(continuous) probability distributions which are quantum
mechanical in nature exhibits a natural advantage. On
the other hand, for certain classical distributions, we may
also hope for an advantage in using a quantum model
over a classical competitor, but this is still an open
question. Evidence to this nature was shown in Sweke
et al. (2020) and Coyle et al. (2020) where a distribution
was constructed which could be learned efficiently by a
quantum model, but by no efficient classical model. The
problem was contrived, but opened the door to a provable
advantage for quantum generative modelling. Matching
such arguments to the limitations of NISQ devices is a major
question of open research. More relevant to the CVBM
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model is the work of Douce et al. (2017), which showed
that an extension of instantaneous quantum computation
(e.g. Bremner et al. 2016) into the continuous variable
regime admitted probability distributions which cannot be
classically emulated. We leave the incorporation of such
complexity theoretic arguments to future work. However,
we stress that the previous discussion only applies to
the representational ability of the CVBM. The ability
to represent a distribution does not imply the ability to
efficiently learn it, when only given a collection of samples.
Indeed, by making the Gaussian-learning problem only
apparently slightly more complex (by moving to a Gaussian
mixture distribution), it is not even known if there exists a
polynomial time algorithm to (agnostically) learn mixtures
of Gaussians in d dimensions (Diakonikolas ) and even
parameter estimation of the mean and variance requires
assumptions (Ashtiani et al. 2018).

3.1 Previous work

The CVBM is introduced as a resource-efficient method of
generating continuous probability distributions. In order to
do so, it is instructive to revisit other attempts to generate
continuous distributions using quantum generators (here we
compare only the sample generation mechanism, and not
specifics of the model or training, which we discuss for
the CVBM in the following sections). As discussed above,
the CVBM allows sample generation via single homodyne
measurements of a particular quadrature, for example the
position x, so an element of a real sample vector is generated
without any post-processing.

Firstly, the work of Liu and Wang (2018) numerically
tested the performance of a QCBM when trained differ-
entiably to learn a continuous distribution composed of a
mixture of Gaussian distributions. This work used 10 qubits
which results in approximating the real distribution using
210 = 1024 basis states without any measurement post-
processing. Similarly, Zoufal et al. (2019) used an adversar-
ially trained Born machine to represent discretised versions
of continuous distributions (specifically log-normal, trian-
gular, and Gaussian). Secondly, the work of Romero and
Aspuru-Guzik (2019) and Anand et al. (2020) explicitly
addresses this question of generating real valued distribu-
tions using a (discrete) Born machine as a generator in an
adversarially trained scenario. Specifically, previous works
utilised a Born machine to generate n-bit binary strings,
x ∈ {0, 1}n by simply taking the measurement result from
measuring (for example) every qubit in the computational
basis, which generates one bit, xi ∈ {0, 1} per qubit. In con-
trast, the innovation of Romero and Aspuru-Guzik (2019)
was to instead evaluate the expectation value (for example)

of the Pauli-Z observable1 from the measurement results to
generate a real value, xi ∈ [−1, 1] for each qubit. More con-
cretely, the final sample is an n bit string, x ∈ R

n generated
by the following process:
{(

xm
1 , xm

2 , . . . , xm
n

)}M

m=1 → x̃ := (〈Z1〉, 〈Z2〉, . . . , 〈Zn〉)
→ f (x̃, φ) := x (3)

The intermediate quantity, x̃, is the vector of expectation
values for each qubit, x̃ ∈ [−1, 1]n, which is fed into a
classical function, f : R

n → R
n. The function could

be, for example, one layer of a classical feedforward
neural network, where φ := (W , b) are the weights
and biases of the network. This method addresses the
continuous distribution problem, but at the expense of
adding O(n/ε2 log δ) extra measurements which must be
evaluated (and hence circuits which must be run) in order
to compute the expectation values, x̃, with sufficiently high
probability (1 − δ) by Hoeffding’s inequality (Hoeffding
1963). Hence, this adds a large overhead to the efficiency
of the model in order to generate a single sample, x ∈
R

n. An alternate approach, intermediate to Liu and Wang
(2018) (using a completely discrete output) and Romero
and Aspuru-Guzik (2019) (which increases the number of
circuit evaluations), is to use a QCBM, with n qubits,
and convert the resulting n bit binary outputs into real
valued numbers with a corresponding precision. Again, this
method is resource intensive as n qubits are required to
generate each vector element in R, and so is less ideal
than our main approach. We illustrate this latter method
numerically in Section 5 to contrast with the efficiency of
the CVBM to learn a Gaussian distribution. Finally, we
mention that one may consider our work as a specification
and implementation of the idea proposed in Killoran et al.
(2019) to use CV quantum circuits to non-linearly transform
probability distributions for generative modelling.

4 Training

In this work, we are specifically interested in training
a CVBM to generate data samples which behave as if
they were sampled from some unknown target continuous
probability distribution. We need to be able to do this while
having access only to some limited number of training
samples from the distribution we wish to learn as well
as samples from the CVBM at any point in the training

1Note that Romero and Aspuru-Guzik (2019) allow measurements
of any single qubit observable, P , which does not have to be the
Pauli Z operator. However, for illustration purposes, we assume the
measurement is done in the computational basis.
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process. The metric we choose to implement in training our
model based on these requirements is the Maximum Mean
Discrepancy (MMD).

4.1 Maximummean discrepancy

The MMD is a suitable metric for our purposes in
several respects, having been used to train discrete Born
machines previously (Liu and Wang 2018; Hamilton et al.
2019; Coyle et al. 2020; Hamilton and Pooser 2020) and
requiring a relatively low number of samples from each
distribution (Sriperumbudur et al. 2009). This minimal
sample complexity enables efficient training at scale via
differentiable methods, in contrast to methods relying on
metrics equipped with exponential sample complexity, such
as the Kullback-Leibler (KL) divergence (Zhu et al. 2019)
or Wasserstein distance (Benedetti et al. 2019).

A key component of the MMD is the kernel function
(defined below) and ML methods which use them are unsur-
prisingly known collectively as ‘kernel methods’ (Gretton
et al. 2007; Hofmann et al. 2008; Schuld and Killoran 2019).
The so-called kernel-trick is useful for comparing data, even
when the underlying feature map may be difficult to com-
pute. They use a similarity measure κ(x, x′) between two
data points x and x′ in order to construct models that capture
the properties and patterns of a data distribution. This mea-
sure of distance is related to the inner products of a feature
space, the idea of which is key to kernel methods.

Kernels are symmetric functions of the form κ : H ×
H → C where H is a Hilbert space, often called a feature
space. One can embed data samples from their original
sample space X into a space H via a mapping φ : X → H.
This is called a feature map and plays the the role of a ‘filter’
for the samples, with the aim to, say, achieve a reduction
in dimensionality or some form of useful restructuring of
the data that might aid in the training procedure. A (positive
definite, real-valued) kernel inner product should also have
the property κ(x, x′) ≥ 0 as well as being symmetric:
κ(x, x′) = κ(x′, x).

A typical example is the so-called Gaussian kernel:

κG(x, y) = e−c||x−y||2/2σ 2
(4)

where x and y are two data points (generally called feature
vectors), || · ||2 is the Euclidean distance between them
and σ is a constant which represents the variance or the
‘bandwidth’ which determines the scale at which the points
are compared. The kernel value decreases with distance
between the two data points and as such is an effective
similarity measure (Gretton et al. 2012).

Quantum kernels One nice consequence of implementing
kernels is that any positive definite kernel can be replaced
by another and this opens up the doors to a brand new

approach of improving ML algorithms. Before moving on to
the MMD itself, we note the fact that quantum states are like
feature vectors themselves in that they also reside in Hilbert
spaces and allow for a very natural definition of a quantum
kernel. If we find an effective way of encoding input data
points x ∈ X into quantum states |φ(x)〉, then we realise
a feature map. Furthermore, the overlap of two quantum
states can then be implemented as a kernel distance, with
increasing orthogonality of two states leading to a decrease
in kernel value.

κ(x, x′) = 〈φ(x)|φ(x〉′)〉 (5)

In order to compute this overlap, one could use CV SWAP-
test like primitives, Chabaud et al. (2018) and Kumar
et al. (2020), but due to the special form of the kernel, it
can be evaluated more simply on NISQ devices (Havlı́ček
et al. 2019) by running a unitary and then its inverse,
each of which parameterised in some manner by the two
data points to be compared. Quantum kernels have already
been explored within the CVQC framework and we refer
to Schuld and Killoran (2019) for further reading. For
the purposes of this work, we employ several different
encodings of classical data samples into CV quantum
kernels to explore their efficiency and effectiveness in
training the CVBM. While determining a good kernel
mapping is a complex and generally problem-dependent
issue, there are grounds for the use of quantum kernels
as they may promise a far more complex mapping than
anything that can be achieved classically and could prove to
be useful in settings involving large datasets and particularly
in terms of high dimensionality or correlation within the
data. Quantum kernels were first investigated in the context
of generative modelling in Coyle et al. (2020) and Kübler
et al. (2019).

MMD estimator The kernel acts as a feature map which
embeds data samples in a Reproducing Kernel Hilbert Space
(RKHS) (Schuld and Killoran 2019) and it can be shown
that the MMD is a metric describing exactly the difference
in mean embeddings between two distributions from which
the samples are collected (Gretton et al. 2007; 2012). With
this, we can define a cost function associated with the metric
for distributions P and Q:

LMMD[P, Q] = E
x∼P,
y∼P

(κ(x, y)) + E
x∼Q,
y∼Q

(κ(x, y))

− 2E
x∼P,
y∼Q

(κ(x, y)), (6)

where x ∼ Q indicates a sample x drawn from distribution
Q and κ is the MMD kernel. Given i.i.d. samples drawn
from each distribution, the MMD can be estimated by
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replacing the expectation values in Eq. 6 by their empirical
values to produce the (unbiased) MMD estimator:

LMMD[P, Q] = 1

M(M − 1)

M∑

i �=j

κ(xi , xj )

+ 1

N(N − 1)

N∑

i �=j

κ(yi , yj ) − 2

MN

M,N∑

i,j

κ(xi , yj ) (7)

with M samples x̃ := (x1, ..., xM) drawn from distribution
P and N samples ỹ := (y1, ..., yN) drawn from Q. Given
a large enough number of samples, Eq. 7 should converge
to the true expectations given in Eq. 6. The MMD is useful
as an estimator due to the relatively low number of samples
it requires to satisfy the above requirement (Sriperumbudur
et al. 2009) (O(ε−2) to reach a precision ε). The estimator
allows for a practical, numerical implementation to train
a model in order to reproduce samples from a target
distribution. In this work, we want to apply it to the CVBM.

4.2 Training the CVBM

The CVBM is parameterised by the operations given in
Table 1 and in order to be able to train it efficiently, we need
to determine a way to quickly navigate the parameter space
of the MMD estimator for any quantum circuit composed
of any of the given operations. A common method used
in many machine learning algorithms is gradient descent,
often implemented in a stochastic fashion, with many
varieties to facilitate a tradeoff between accuracy and
speed (Ruder 2017).

A key component of gradient descent is the calculation
of loss function gradients with respect to each of the
parameters. For each parameter θk , we need to determine
∂θk

LMMD[P(θ), Q] wherein the distribution P(θ) is a
CVBM circuit composed of gates parameterised by θ :=
θ1, ..., θl .

The work of Liu and Wang (2018) shows that in the case
of the discrete Born machine, by measuring an observable
Ô = |x〉〈x|, the gradient of the probability distribution
generated by a QCBM, pθ , with respect to parameter θk is:

∂pθ (x)

θk

= 1

2

(
pθ+

k
(x) − pθ−

k
(x)

)
(8)

Where the parameters θ±
k imply that the gate parameter θk

has been shifted by an amount ±π
2 . In the CVQC case, this

needs to be adapted for CV operators by adding specific
scaling factors and choosing different shift amounts for θ±

k

depending on the circuit gate (see Table 2). We chose to
implement the analytic gradients derived in Schuld et al.
(2019) (also see Mitarai et al. (2018), Crooks (2019), and
Banchi and Crooks (2020)) for the Gaussian gates of Table 1
as well as additional approximations of gradients for the

Table 2 The gradients of the MMD cost function with respect to
the parameters of each possible gate. The expression ∂θk

LMMD is
equivalent to Eq. 9. For the non-Gaussian gates V (γ ) and K(κ),
the gradients are approximations for small enough parameter shifts
t rather than analytic gradients. It should be noted that while these
latter approximations increase in accuracy with decreasing t , there is
an inherent difficulty in implementing such small parameter shifts on
current CV hardware. However, in practice, it is a far more effective
and accurate approach than any finite-difference method even with
such drawbacks

Gate Shift amount MMD estimator gradient

R(φ) φ ± π
2 ∂φLMMD = ∂θk

LMMD

D(α) α ± s, s ∈ R ∂αLMMD = 1
s

× ∂θk
LMMD

S(r, φ) r ± s, s ∈ R ∂rLMMD = 1
sinh(s)

× ∂θk
LMMD

BS(θ, φ) θ, φ ± π
2 ∂θ,φLMMD = ∂θk

LMMD

V (γ ) γ ± t, t � 1 ∂γLMMD = i
t
× ∂θk

LMMD

K(κ) κ ± t, t � 1 ∂κLMMD = i
t
× ∂θk

LMMD

cubic phase gate V (γ ) and Kerr gate K(κ) (see Appendices
3, 4 for details of the approximation and a derivation of the
gradients).

The gradient of the MMD estimator with respect to the
CVBM parameters can be described by:

∂LMMD

θk

≈ 1

RM

R,M∑

i,j

κ(ai , xj ) − 1

SM

S,M∑

i,j

κ(bi , xj )

− 1

RN

R,N∑

i,j

κ(ai , yj ) + 1

SN

S,N∑

i,j

κ(bi , yj ), (9)

where p, q samples ã := {a1, ..., aR}, b̃ := {b1, ..., bS} are
drawn from shifted circuits pθ+

k
(a) and pθ−

k
(b) respectively

while x̃ = {x1, ..., xM } and ỹ = {y1, ..., yN } are drawn
from the CVBM and the target distribution. Using the
above equation and the scaling factors and shift amounts
given in Table 2, we can determine the gradient of the
MMD estimator with respect to any gate from the set
given in Table 1. Note that the error on the gradient for
non-Gaussian gates scales approximately as the small-angle
approximation error sinh(t) ≈ t .

We train the CVBM iteratively by implementing batch
gradient descent for each parameter θk:

θ
(t+1)
k = θ t

k − μ∂θLMMD, (10)

with t representing the iteration number and μ being the
learning rate (Ruder 2017). This is done sequentially for
each θk per iteration of the training in order to update their
values in a way that minimises the MMD estimator Eq. 7.
The training terminates once a set number of iterations has
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Fig. 1 Components of the hybrid quantum-classical CVBM. The
quantum hardware is used to produce measurement samples of the
parameterised circuit U(θk) as well as samples from circuits with
shifted parameter values θ±

k . These samples are then employed to
classically compute the value of the cost function as well as its gra-
dient in order to update the circuit parameters. If the cost function

implements a kernel, this can be a classical function (such as the Gaus-
sian kernel displayed in the figure) or quantum in nature, for example
by running the corresponding encoding circuit Eφ(x), with φ(x) being
a quantum feature encoding for a data point x. In the latter case, the
data and model samples would be fed into the quantum computer in
the ‘quantum kernel circuit’ part of the diagram

been performed or else when the cost function observed to
converge.

In Fig. 1, we emphasise the key ingredients of the
model; a compact data encoding method for continuous
distributions via the CVBM itself, an efficient training
method via the MMD and a potentially classically hard-
to-compute ingredient in the quantum kernel. In the next
section, we validate its efficacy through numerical results
on example classical and quantum distributions.

5 Numerical experiments

Here, we present numerical results demonstrating the per-
formance of the model on both classical and quantum data
sets, as well as the impact of a noise channel and several
different kernels. The simulations are implemented using
Xanadu’s Strawberry Fields API (Killoran et al. 2018),
which uses the symplectic matrix approach in simulating
Gaussian states (see Eq. A.17) and a truncation of dimen-
sions in Fock space when dealing with non-Gaussianity.
Throughout all experiments, a cutoff dimension of 7 was
used unless explicitly stated otherwise, owing to the fact
that states with higher Fock numbers are likely to have little
impact on the statistics of the single and two-qumode states
that were used.

5.1 A classical distribution

An obvious choice of classical distribution to train the
model on is the canonical Gaussian distribution. The
classical Gaussian probability density function (PDF) is
parameterised by mean μ and standard deviation σ (which
can correspond to the displacement α and squeezing ζ

operators as discussed above). To generate data representing
the (single mode) classical Gaussian PDF, we take M
samples from π , as given by:

y ∼ π(y) = N (μ, σ 2) = 1√
2πσ 2

e
− 1

2

(
y−μ

σ

)2

, (11)

To illustrate the (perhaps obvious) advantage of using
our method (learning a continuous distribution with a
continuously parameterised model), we compare to a
discrete variable Born machine, which outputs binary
strings of length n. From a theoretical perspective, we note
that it is possible to efficiently load a discretised version
of a continuous (but efficiently integrable) distribution
on a quantum computer (Grover and Rudolph 2002), but
this may also not be practical for the near term. As
mentioned in Section 3.1, methods were proposed to do
this approximately using Born machines in Liu and Wang
(2018) and Zoufal et al. (2019). We use a slightly different
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Fig. 2 Comparing a QCBM to our CVBM for learning a simple Gaus-
sian distribution (a) with mean, μ = 0, and standard deviation σ = 1.
In (c), we show the QCBM with increasing numbers of qubits (2, 4,

and 6 qubits respectively, which results in increased precision for each
sample). The QCBM is trained with the Adam optimiser (Kingma and

Ba 2015) using the Sinkhorn divergence (Coyle et al. 2020; Feydy
et al. 2018; Genevay et al. 2017; Genevay et al. 2018). In (b), we show
a single qumode with one parameterised squeezing and displacement
gate for the CVBM, which can produce a much better fit to the data
distribution with significantly fewer resources

method than Liu and Wang (2018) and Zoufal et al. (2019)
here to approximate a continuous distribution with a Born
machine by scaling the precision to which each real-valued
number is represented to. In Fig. 2, we use a discrete
Born machine (QCBM) with 2, 4, and 6 qubits to learn
a Gaussian distribution, N (0, 1), with increasingly higher
precision, and also we use the CVBM with a single qumode
to learn the same distribution. For the QCBM, we simulate
the results using Pyquil (Smith et al. 2016) and for an
ansatz we choose a hardware efficient layered ansatz. Each
layer consists of CZ matching the topology of a sublattice
of the Rigetti Aspen-7 chip, with parameterised Ry(θ)

gates. For the 2, 4, and 6 qubit QCBMs, we use 8, 4, and
6 layers respectively resulting in 64, 16, and 36 trainable
parameters. To convert between the binary outputs of the
QCBM, and the continuous valued data, we use a simple
conversion algorithm described in Kondratyev and Schwarz
(2019). We also mention that the comparisons we make here
are preliminary, and open the door to rigorous comparison
and benchmarking between the CVBM and other models.

5.2 Quantum distributions

Next, we focus on learning quantum distributions, i.e. one
which arises as a result of measurements on a quantum state.
This in some sense is equivalent to learning parameters
which affect a quantum state, and in turn, gives some
information about the parameters of the unitary which
prepared the state, as a form of weak compilation, as
noted by Coyle et al. (2020). We first generate data by
preparing and sampling from a state (a ‘data’ state) with
fixed parameters in the unitaries. We then use a CVBM with

the same unitary gates as those that prepared the data state,
and train the parameters of this independent CVBM. In this
way, the CVBM learn to reproduce the statistics of the data
state. Figure 4 shows the learning process for a Gaussian and
a non-Gaussian state using a classical kernel (4). Figure 3
shows how the quality of the learning is impacted by
the number of samples from the CVBM and its gradient
calculations for both Gaussian and non-Gaussian circuits.

Fig. 3 Effect of sample number on the performance of the CVBM as
measured by comparing the target distribution and CVBM using KL-
divergence (van Erven and Harremoës 2012). We keep the number of
samples from the target distribution fixed at 500 samples and vary the
number of samples that the CVBM produces at each training iteration
(main plot) while keeping the shifted circuit 2 samples at 50. In the
inlaid plot, the shifted circuit sample number is varied while keeping
the target and CVBM samples constant at 500. The Gaussian circuit
(and its target) consists of a squeezing gate and a displacement gate.
In the non-Gaussian case, we investigate a cubic phase gate and a
squeezing gate. The plot is of the best (smallest) KL out of 50 runs
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Fig. 4 Snapshots of the CVBM learning process at iterations 1, 25, and 50 for two single-qumode quantum states. 50 data samples are used for
the CVBM and target distributions respectively with 30 samples from shifted circuits for gradient computation

Since we have access to both the target distribution and
that of the CVBM, we can compare them using Kullback-
Leibler divergence (KL) (van Erven and Harremoës 2012).
Increasing both the number of samples of the CVBM for
each training run and the number of samples for the shifted
circuits may lead to better learning outcomes in the best
possible case.

The slightly larger discrepancy in Fig. 4b is due to a
combination of factors that make learning non-Gaussian
distributions difficult. The cost function landscape has
multiple local minima and the number of samples to
accurately capture the distribution is higher. However,
having more samples is simultaneously not a tactic to get
out of such local minima. This issue calls for a future
investigation into finding better kernel functions for non-
Gaussianity—ones which could capture this behaviour more
effectively and efficiently. In the Gaussian case, however
(Fig. 4a), the model converges to a very good approximation
of the original distribution within less than 25 iterations of
training while requiring only 50 samples (measurements) of
the quantum state. This bodes well for the application of the
method in—for example—characterising experimental data
in the CV setting with very few data samples.

5.3 Quantum kernels

Here, we explore the behaviour of the MMD estimator with
two separate kernel mappings: the cubic phase kernel φV

Eq. 12 and the squeezed kernel Eq. 13 φS . For data point
x = x1, x2, ..., xn, we can implement n modes, applying the
given unitary with strength xi to the qumode indexed by i.

φV : xi → V (γ = xi)|0〉i := |Vxi
〉 (12)

φS : xi → S(φ = xi)|0〉i := |Sxi
〉 (13)

The full feature map is given by the tensor product of each
of these states, for example, with Eq. 12, φV : x →

|Vxi
〉 := ⊗n

i=1 |Vxi
〉. We can then compute the overlap of

two mapped states |Vxi
〉 and |Vx′

i
〉 to extract the kernel as

in Eq. 5. Note that the overlap is computed by expressing
the state in Fock space with a selected dimensional cut-off
dependent on the number of qumodes required to estimate
the kernel. Figure 5 demonstrates the behaviour of the
MMD estimator during training for both of the quantum
kernels as well as the classical Gaussian kernel given in
Eq. 4.

While both quantum kernels exhibit a convergence to
some minimum of the MMD loss, they do not show any
improvement over the classical kernel with regard to the

Fig. 5 A 3-qumode Gaussian CVBM composed of squeezing,
displacement and beamsplitter gates is trained to learn a distribution
generated by another CV circuit made up of the same components in a
different order. The plot illustrates the behaviour of the loss when using
a classical Gaussian kernel Eq. 4, a cubic phase kernel Eq. 12, and a
squeezed kernel Eq. 13. We use 100 data samples each for the CVBM
and the target distribution with 50 samples from shifted circuits to
calculate MMD gradients. The shading around the plots indicates the
standard deviation for each kernel after 5 runs of the training algorithm
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Fig. 6 Plots of MMD loss for single-mode CVBM learning a Gaussian
(a) and non-Gaussian (b) single-qumode state. The CVBM is coupled
to a loss channel with different values of parameter T (as given in
Eq. 14). We use 100 data samples each for the CVBM and the target

distribution with 50 samples from shifted circuits to calculate MMD
gradients as well as the classical Gaussian kernel Eq. 4. The shad-
ing around the plots indicates the standard deviation for 5 runs of the
training algorithm

resulting distributions. The squeezed kernel, while more
erratic, gives a better final result while the cubic kernel is
very poor for this task (note the cut-off dimension used in
simulating Fock space for both kernels was 15). This is by
no means a reason to discount the use of quantum kernels in
such algorithms, but does indicate that more analysis needs
to be done for which types of data might benefit more from
particular mappings.

5.4 Noise

Finally, we investigate the effect of a simple noise model
on the training of the CVBM. In general, noise in quantum
systems can be modelled using a completely positive
trace preserving (CPTP) map, N , which can equivalently
be expressed in an operator-sum (Nielsen and Chuang
2011) formalism, decomposed into Kraus operators. For
the CVBM, we choose a simple noise model available in
Strawberry Fields (Killoran et al. 2018), in order to study
the effect of loss, whose Kraus representation, acting on a
state, ρ, is modelled by:

N T (ρ) =
∞∑

n=0

En(T )ρEn(T )†, (14)

where

En(T ) =
(

1 − T

T

)n/2
ân

√
n!

(√
T

)â†â

. (15)

This has the effect of coupling a mode â to another mode in
the vacuum state b̂ via the transformation:

â −→ √
T â + √

1 − T b̂ (16)

which is then traced out. The noise parameter T represents
energy transmissivity and T = 1 represents the identity
map. For T = 0, the state is mapped to a vacuum state.
Figure 6 shows the effect of noise on the CVBM learning
process for both Gaussian and non-Gaussian quantum
states.

As might be expected, the Gaussian state is significantly
more robust to noise since the noise channel given by Eq. 14
couples the mode of interest to a vacuum state which is
itself a Gaussian distribution. However, we can see that
in the non-Gaussian case the algorithm adapts to some
level of noise also, lending credence to using a CVBM in
less-than-perfect experimental set-ups. Note that the target
distribution data is assumed to have no noise channel
affecting it as the assumption is that its source is unknown.
However, the CVBM can also be used to determine the
strength of noise on quantum data if its own coupling to a
relevant noise channel can be manipulated.

6 Conclusion

In conclusion, we have presented the continuous variable
Born machine, a generative model suitable for learning
continuous-valued distributions, based on the continuous
variable model of quantum computation. While there is
still much to be explored (in particular, in the areas
of selecting more apt kernels for the MMD estimator—
be they classical or quantum in nature—as well as
optimizing its implementation both on the classical and
quantum hardware), it promises to be an interesting tool in
exploring the relationship between the statistics of quantum
experiments on CV states and the unitaries that ‘compile’
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them. It should be noted that the larger the number of
samples from the target distribution, the more accurate
the CVBM result is in producing relevant samples or
in determining how close its circuit is to reproducing a
particular state, particularly in the case of non-Gaussian
states. It can also be implemented in learning classical
distributions, particularly with high dimensionality, in
cases where their parameterisation is perhaps difficult to
capture with a classical model. Finally, we mention it is
an interesting future direction to study the effects and
mitigation of ‘barren plateaus’ (McClean et al. 2018; Cerezo
et al. 2021) in these models, which present a unique
challenge due to the inherently ‘global’ nature of the
generative modelling problem.

Appendix 1: Gaussian and non-Gaussian
gates

States for which the Hamiltonian is at most quadratic in x̂

and p̂ are called Gaussian (Weedbrook et al. 2012). For the
single qumode, the most common Gaussian quantum gates
are rotation: R(φ), displacement: D(α), and squeezing:
S(r, φ) (see Table 1). The simplest two-mode gate is
the beamsplitter, BS(θ), which is a rotation between
two qumodes. These gates are parameterised accordingly:
φ, θ ∈ [0, 2π ], α ∈ C ∼= R

2, and r ∈ R.
Importantly, Gaussian gates are linear when acting on

quantum states in phase space. On n qumodes, a general
Gaussian operator has the effect (Killoran et al. 2019):
[
x

p

]
�→ M

[
x

p

]
+ β (A.17)

with symplectic matrix M (Weedbrook et al. 2012) and
complex vector β ∈ C

2n. The variables x and p contain
the position and momentum information of each qumode,
and are vectors in C

n. Because of this linearity, Gaussian
states and their operators are so-called easy operations of a
CV quantum computer. They can be efficiently simulated
using classical methods and are generally easy to implement
experimentally (Weedbrook et al. 2012; Killoran et al.
2019).

In order to achieve a notion of universality (Lloyd
and Braunstein 1999) in the CV architecture, we need
the ability to construct a Hamiltonian that can translate
to every possible state in the Hilbert space. This is
done by introducing something called a non-Gaussian
transformation into the toolbox, which is essentially a
non-linear transformation on (x, p). Non-Gaussian gates
involve quadrature operators that have a degree of 3 or
higher. Some examples we consider in this work are the
cubic phase gate V (γ ) and the Kerr interaction K(κ) with
γ, κ ∈ C ∼= R

2. Non-Gaussian gates are generally difficult

to implement and difficult to accurately simulate using a
classical processor, as they cannot be decomposed in the
same fashion as Gaussian gates Eq. A.17. This lack of
decomposition implies that a completely accurate classical
simulation of non-Gaussianity requires access to infinite
matrices, thus requiring a choice of cut-off dimension which
introduces some errors. On a quantum processor, this notion
of infinity is inherent in the native physics of the hardware.

A list of the CV gates used throughout this work as well
as their exponential operator form is presented in Table 1.
Note that the squeezing gate is parameterised by ζ and
encompasses the parameters r (squeezing strength) and φ

(squeezing direction) via the relationship ζ = reiφ .

Appendix 2: Measurement

Classical information can be extracted from CV systems
via three types of measurement: homodyne, heterodyne,
and photon counting. For the purposes of the CVBM, we
are interested largely in homodyne detection, which returns
real, continuous values of the two quadratures of a CV
state. In contrast, a heterodyne measurement allows one to
extract both position and momentum simultaneously from
the state (with a failure probability given by the uncertainty
principle) via the operators |x + ip〉〈x + ip| in a ‘coherent’
basis. Braunstein and van Loock (2005):

|cos(φ)x̂ + sin(φ)p̂〉〈cos(φ)x̂ + sin(φ)p̂| (B.18)

By tuning the angle to φ = 0, we can extract the
position, x, and for φ = π/2, we can get the momentum
p. For this work, we set φ = 0 for all examples, and leave
incorporation of alternative measurement strategies to future
work. A full output sample, x, can then be determined by
measuring all n qumodes.

Appendix 3: Unbiased gradient estimator
of the probability of a CV quantum circuit

Here, we give a derivation for the gradient of the MMD cost
function ∂LMMD with respect to each of the parameters of
the CV gates as given in Table 2. The derivation is largely
based on work done in Liu and Wang (2018) and gradients
for Gaussian gates that were derived in Schuld et al. (2019).
For the cubic phase gate V (γ ) and Kerr gate K(κ), the
partial derivative approximations originated as a part of this
thesis and the derivation are given in Appendix 4.

The form of the maximum mean discrepancy given in Liu
and Wang (2018) is:

LMMD =
∣
∣∣
∣
∣∣
∑

x

pθ(x)φ(x) −
∑

x

π(x)φ(x)

∣
∣∣
∣
∣∣
2

(C.19)
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where pθ(x) and π(x) are two probability distributions,
while φ is a feature mapping, which can be a kernel
function. When written in terms of expectation values of the
samples, the above equation takes the exact same form as
Eq. 6 in the text.

If we then take a partial derivative of Eq. C.19 with
respect to one of the parameters (say θk) that the distribution
pθ(x) depends on, we get:

∂LMMD

θk

=
∑

x,y

κ(x, y)

(
pθ(y)

∂pθ (x)

θk

+ pθ(x)
∂pθ (y)

θk

)

−2
∑

x,y

κ(x, y)
∂pθ (x)

θk

π(y) (C.20)

If we now treat pθ(x) as a Born machine with observable
x, i.e. the distribution we are interested in training, then we
need to determine its derivative with respect to a particular
parameter, ∂pθ/∂θk . Luckily, we can refer to Schuld et al.
(2019) for the derivatives of each of the Gaussian gates with
respect to their parameters as well as to Appendix 4 for
the non-Gaussian ones. For the sake of demonstrating the
method, we choose the displacement gate D(α). In Schuld
et al. (2019), its partial derivative is given as:

∂αD(α) = 1

2s
(D(α + s) − (D(α − s)), s ∈ R (C.21)

According to the same paper, this gradient corresponds
to the gradient of an observable, which in our case would
be the homodyne measurement (B.18). Since the gradient of
the Born machine is parameterised the same way, we arrive
at the partial derivative:

∂pα(x)

α
= 1

2s

(
pα+(x) − pα−(x)

)
(C.22)

Where α± = α ± s, s ∈ R. Substituting Eq. C.22 into
Eq. C.20 we get:

∂LMMD

α
= 1

2s

( ∑

x,y

κ(x, y)pα(y)pα+(x)

−
∑

x,y

κ(x, y)pα(y)pα−(x)

+
∑

x,y

κ(x, y)pα(x)pα+(y)

−
∑

x,y

κ(x, y)pα(x)pα−(y)
)

−1

s

( ∑

x,y

∑

x,y

κ(x, y)pα+(x)π(y)

−
∑

x,y

κ(x, y)pα−(x)π(y)
)

(C.23)

Then, we can use the symmetric condition of the kernel,
κ(x, y) = κ(y, x) to arrive at the form of the gradient given
in Table 2. The same method can be applied to each of the

parameters of each of the CV gates in order to derive the
rest of the gradients given in Table 2.

Appendix 4: Partial derivatives
for non-Gaussian transformations

While in Schuld et al. (2019) the gradients that are
derived for Gaussian gates are analytic and based on their
decomposition into covariance matrices in phase space, no
such simplification was possible for the non-Gaussian gates:

V (γ ) = exp
(
i

γ

3�
x̂3

)
(D.24)

K(κ) = exp(iκn̂2) (D.25)

Luckily, these unitaries exhibit certain properties which
can be exploited in order to derive an approximate gradient.
We take the cubic phase gate V (γ ) as an example.

First, we notice that regardless of what dimension we
choose to truncate the unitary matrix that describes the gate
at, the form of it will always look like:

V (γ ) ≈
⎛

⎝
eiγ x11 eiγ x12 · · ·
eiγ x21 eiγ x22 · · ·
· · · · · · · · ·

⎞

⎠ (D.26)

where the terms (x11...xNN) come from the
N−dimensional matrix of the operator x̂3 =(√

�

2 (â+ â†)
)3

and whose values will vary slightly depend-

ing on the dimension at which we truncate the operators â

and â†. The derivative of the cubic phase gate with respect
to its parameter γ is then of the form:

∂γ V (γ ) ≈ i

⎛

⎝
x11e

iγ x11 x12e
iγ x12 · · ·

x21e
iγ x21 x22e

iγ x22 · · ·
· · · · · · · · ·

⎞

⎠ (D.27)

Now we can use the hyperbolic function identity:

sinh(x) = 1

2
(ex − e−x) (D.28)

And the fact that for x � 1, sinh(x) ≈ x to write out the
partial derivative as a linear combination of the cubic phase
gate with shifted parameters:

∂γ V (γ ) ≈ i

2s
(V (γ + s) − V (γ − s)), s � 1 (D.29)

This is in a form that is well-suited to be implemented
by the gradient of the MMD cost function as shown in
Appendix 3. The error sinh(x) ≈ x scales as O(x3) and so
for sufficiently small values of x the gradient approaches
the exact analytical solution.
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When we turn to the Kerr gate K(κ), we find that we can
write it out in a similar form to the one in Eq. D.26 and thus
we are left with a partial derivative given by:

∂κK(κ) ≈ i

2s
(K(κ + s) − K(κ − s)), s � 1 (D.30)
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Havlı́ček V, Córcoles AD, Temme K, Harrow AW, Kandala

A, Chow JM, Gambetta JM (2019) Nature 567(7747):209.
https://doi.org/10.1038/s41586-019-0980-2

Schuld M, Bocharov A, Svore K, Wiebe N (2018) arXiv:1804.00633.
[quant-ph]

LaRose R, Coyle B (2020) Phys Rev A 102(3):032420.
https://doi.org/10.1103/PhysRevA.102.032420. Publisher: Ameri-
can Physical Society

Benedetti M, Garcia-Pintos D, Perdomo O, Leyton-Ortega V, Nam
Y, Perdomo-Ortiz A (2019) npj Quantum Information 5(1):1.
https://doi.org/10.1038/s41534-019-0157-8

Liu JG, Wang L (2018) arXiv:1804.04168
Verdon G, Broughton M, Biamonte J (2017) arXiv:1712.05304. [cond-

mat, physics:quant-ph]
Romero J, Aspuru-Guzik A (2019) arXiv:1901.00848. [quant-ph]
Zoufal C, Lucchi A, Woerner S (2019) npj Quantum Information

5(1):1. https://doi.org/10.1038/s41534-019-0223-2. Number: 1
Publisher: Nature Publishing Group

Morales MES, Tlyachev T, Biamonte J (2018) Phys Rev A
98(6):062333. https://doi.org/10.1103/PhysRevA.98.062333

Cincio L, Subaşı Y, Sornborger AT, Coles PJ (2018) New
Journal of Physics 20(11):113022. https://doi.org/10.1088/
1367-2630/aae94a. arXiv:1803.04114

Khatri S, LaRose R, Poremba A, Cincio L, Sornborger AT,
Coles PJ (2019) Quantum 3:140. https://doi.org/10.22331/
q-2019-05-13-140. Publisher: Verein zur Förderung des Open
Access Publizierens in den Quantenwissenschaften

Cerezo M, Poremba A, Cincio L, Coles PJ (2020) Quantum 4:248.
https://doi.org/10.22331/q-2020-03-26-248. Publisher: Verein zur
Förderung des Open Access Publizierens in den Quantenwis-
senschaften

LaRose R, Tikku A, O’Neel-Judy É, Cincio L, Coles PJ
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