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Anyon braiding on a fractal lattice with a local Hamiltonian

Sourav Manna,1,2 Callum W. Duncan ,1,3 Carrie A. Weidner,4 Jacob F. Sherson,4 and Anne E. B. Nielsen1,4

1Max-Planck-Institut für Physik Komplexer Systeme, D-01187 Dresden, Germany
2Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel

3Department of Physics, SUPA and University of Strathclyde, Glasgow G4 0NG, United Kingdom
4Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark

(Received 24 August 2021; accepted 31 January 2022; published 18 February 2022)

There is a growing interest in searching for topology in fractal dimensions with the aim of finding different
properties and advantages compared to the integer dimensional case. Here we construct a local Hamiltonian on
a fractal lattice whose ground state exhibits topological braiding properties. The fractal lattice is obtained from a
second-generation Sierpinski carpet with Hausdorff dimension 1.89. We use local potentials to trap and exchange
anyons in the model, and the numerically obtained results for the exchange statistics of the anyons are close to
the ideal statistics for quasiholes in a bosonic Laughlin state at half filling. For the considered system size, the
energy gap is about three times larger for the fractal lattice than for a two-dimensional square lattice, and we find
that the braiding results obtained on the fractal lattice are more robust against disorder. We propose a scheme to
implement both fractal lattices and our proposed local Hamiltonian with ultracold atoms in optical lattices.
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Topologically ordered quantum systems harbor fraction-
alized excitations that are neither fermions nor bosons, but
anyons [1,2]. Phases hosting anyons have been realized ex-
perimentally in solid-state systems in strong magnetic fields
displaying the fractional quantum Hall effect [3–6]. Frac-
tional quantum Hall phases also exist in systems defined on
two-dimensional lattices, where the physical magnetic field is
replaced by an artificial magnetic field, which can be much
stronger [7–11]. Due to their unique degree of tunability, real-
izing fractional quantum Hall physics with ultracold atoms in
optical lattices would give unique possibilities for investigat-
ing the effect in great detail, and there are currently several
efforts towards achieving this for systems with few atoms
[12–16]. The key components of artificial magnetic fields and
topological band structures have already been prepared in
several experiments [17].

Topological phases are mainly studied in systems with
spatial (and Hausdorff) dimension one, two, and three, but
recently interest has grown in studying topological models
on fractal lattices with noninteger Hausdorff dimension. The
Hausdorff dimension is a generalization of the dimension of a
vector space and can provide a measure of how the details of
a system change at different scales. While much of the knowl-
edge generated in condensed-matter physics relies on the
presence of an underlying Bravais lattice, fractal lattices do
not fit into this framework and can hence give rise to different
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physics. Most of the studies of topological quantum models on
fractal lattices so far have considered noninteracting systems
[18–21], and those have, indeed, revealed new and interesting
properties, including modifications of the Hofstadter butterfly
and the presence of inner edge states. Much less is currently
known about how fractal lattices affect the properties of topo-
logically ordered phases of interacting systems. Initial steps
have been taken by constructing Laughlin and Moore-Read
trial states on fractal lattices [22,23], but the derived parent
Hamiltonians of these states are nonlocal and involve many
different types of interactions, making them difficult to real-
ize. The study of models on fractal lattices is also motivated
by experimental developments, such as the preparation of
fractal models in molecules on surfaces [24,25]. It is desirable
to realize fractal models of matter with ultracold atoms due
to their ability to reach the regime of strongly interacting
quantum systems and achieve single-site resolution [26,27].

Here we show that a system with only nearest-neighbor
complex hopping and hardcore interactions on a finite-
generation fractal lattice can give rise to anyonic braiding
properties, and we propose a scheme to implement the Hamil-
tonian experimentally with ultracold atoms in optical lattices.
We use local potentials to trap anyons in the model, and we
study their braiding properties under adiabatic time evolution.
We find that the considered system with relatively few sites
and particles is already enough to get braiding statistics close
to the ideal value for quasiholes in a bosonic Laughlin state
at half filling and to produce interesting differences compared
to a corresponding model on a two-dimensional lattice with
the same number of sites and particles. In particular, the
gap between the ground state and the first excited state is
approximately three times larger for the considered model on
the fractal lattice. We also observe that the phase acquired by
the wave function due to braiding is more robust with respect
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FIG. 1. (a) The model is defined on a second-generation Sierpinski carpet (red squares). The lattice sites are marked by circles, and the
bonds connecting the sites illustrate the hopping terms. A magnetic flux goes through each lattice site in the direction perpendicular to the
plane. (b, c) Anyons trapped on the square and fractal lattices. The anyon density profiles ρ(zi ) from (5) when the anyon trapping potentials are
on the sites marked by diamonds are shown with colors (gray scale). The sites with ρ(zi ) > 0 are additionally marked with plus signs, while
the sites with ρ(zi ) � 0 are not marked. It is seen that the anyons are screened. The dashed lines encircle the regions that we sum over when
we compute the anyon charges. The arrows show the considered braiding path. We compute the Aharonov-Bohm phase by placing one of the
anyons on the site marked by a cross while the other anyon follows the marked path.

to disorder on the fractal lattice, and the anyons are better
screened. This robustness could be advantageous in future
applications that utilize anyons, including the experimental
proposal considered here, and the relatively small system size
is also an advantage for implementations in ultracold atoms.

The proposed protocol to implement the Hamiltonian in-
volves single-site addressing [28] and laser-assisted hopping
tuned to achieve the desired phase factors [29]. We expect
that the setup could also be used to generate integer quantum
Hall phases on fractal lattices. The main challenge in realizing
fractional quantum Hall phases in ultracold atoms in optical
lattices is to reach the ground state, and the larger gap for
the fractal lattice is hence an advantage. Generating optical,
fractal lattices as described below also opens the door for
studying various phenomena of quantum systems on fractal
lattices.

Model. Typical ingredients required to obtain fractional
quantum Hall physics include interactions and a magnetic
field perpendicular to the plane. In lattice systems the mag-
netic field is often translated into corresponding complex
hopping terms through the Peierls substitution [30], as we
shall also do below. We start from a second-generation Sier-
pinski carpet [Fig. 1(a)] and obtain the considered fractal
lattice by putting a lattice site in the center of each of the small
squares. We denote the positions of the N = 64 lattice sites
in the complex plane by z j with j ∈ {1, . . . , N} and consider
M = 4 bosons on the lattice. The Hamiltonian

H = −J
∑
〈 jk〉

c†
j ckeiφ jk + U

∑
l

nl (nl − 1), U � J, (1)

consists of complex, nearest-neighbor hopping terms of
strength J and an on-site interaction term of strength U . The
operator ck annihilates a boson on the kth lattice site, nk =
c†

kck , and φ jk is the phase the wave function acquires when a
particle hops from zk to z j . In the computations below, which
are all done using exact diagonalization, we assume that U/J
is so large that one can neglect the possibility to have more
than one boson on a site, i.e., we work with hardcore bosons.

The particular form of φ jk is determined from the chosen
magnetic field. In two-dimensional fractional quantum Hall
models, the magnetic field is often either uniform or only
penetrates the lattice sites. For a fractal lattice, it is similarly
natural to let the magnetic field only penetrate the lattice sites,
since then the pattern of magnetic flux also forms a fractal. We
hence choose the magnetic field to be �B(z) = α

∑
l δ(z − zl )ẑ,

where α is the flux penetrating one lattice site measured in
terms of the magnetic flux unit, δ is the Dirac δ function,
and ẑ is a unit vector perpendicular to the plane. This field
configuration gives rise to the vector potential

�A(z) =
∑

l

αθ̂l

|z − zl | , (2)

where θ̂l is a unit vector in the plane rotated by π/2 compared
to z − zl . From this we obtain

φ jk =
∫ z j

zk

�A(r) · �dl = α
∑

l ( �= j �=k)

Im

[
ln

(
z j − zl

zk − zl

)]
, (3)

where �dl is an infinitesimal vector along the hopping direc-
tion. Below we take M/(αN ) = 1/2, where M is the number
of particles. If the system is topological, we hence expect it to
be in a bosonic Laughlin phase with quasiholes of charge 1/2.

The model described above can also be defined on a square
lattice, which we will do for comparison. We will consider the
8 × 8 quadratic lattice to allow for a proper comparison to the
fractal lattice. We will consider open boundary conditions for
both the square and fractal lattice for appropriate comparison.
Note, periodic boundary conditions are not consistent with the
fractal retaining its scaling nature.

Energy gap. The energy gap, δE , between the ground state
and the first excited state is an important property of the
model. This is due to the gap’s relation to the state’s stability,
both in terms of robustness to disorder and feasibility of exper-
imental implementations. We find that the size of the energy
gap varies substantially with the number of particles and is
particularly large for the fractal lattice with four particles.
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For four particles we find that the energy gap is about three
times larger for the fractal lattice than for the square lattice.
Specifically, the gap is δE = 0.313J for the fractal lattice and
δE = 0.105J for the square lattice.

Creation of anyons. Quasiholes give rise to local reductions
of the particle density, and therefore local potentials tend to
trap them [31]. To obtain anyons in our model, we hence add
local trapping potentials of the form

HV = V nl + V nm, l �= m, U � V � J, (4)

to the Hamiltonian H and simultaneously remove one particle.
If the model is in a topological phase, we expect the potentials
to trap one anyon at site l and one anyon at site m. The anyons
have a finite spread and hence also modify the densities on
nearby sites. To show that anyons are indeed formed, we
compute the charge and statistics of the anyons.

The anyon density profile,

ρ(zi ) = 〈ni〉H+HV ,M−1 − 〈ni〉H,M , (5)

is the difference between the particle density for the ground
state of H + HV with M − 1 particles and the particle density
for the ground state of H with M particles. We sum this
quantity over a local region σk around the position of the kth
potential to obtain the change in the number of particles within
σk . The region should be large enough to enclose the complete
anyon, and here we take σk to be the sites inside the dashed
circles in Figs. 1(b) and 1(c). Taking the charge of a particle
to be −1, the anyon charges

Qk = −
∑
zi∈σk

ρ(zi ), k ∈ {1, 2}, (6)

evaluate to 0.466 for the square lattice and 0.480 for the fractal
lattice, which are close to the expected value 1/2. Note that
Q1 = Q2 in both cases due to symmetry. That the charges
are close to 1/2 shows that there is some screening in the
system, but this can happen also in the absence of topology.
We therefore now turn to computing the exchange statistics.

Fractional statistics. We now calculate the anyon exchange
statistics to further characterize the type of anyons present
in the system. We do this by adiabatically exchanging two
anyons in the counterclockwise direction. This exchange re-
sults in the ground state |	〉 of the Hamiltonian H + HV

acquiring a Berry phase exp(iπθ ), defined by

θ = i
∮
C
〈	|∇w|	〉dw + c.c., (7)

where w parametrizes the exchange path C. There are two
contributions to consider in θ : the Aharonov-Bohm phase θAB,
since anyons circulate around the magnetic fluxes, and the
statistical phase θs of the anyons themselves. Therefore we
have θ = θAB + θs. The value of θAB is obtained by circulating
one anyon and keeping the other anyon fixed at a position
sufficiently outside the moving anyon’s path. The particular
value of θs ( �= [0, 1]) characterizes the type of anyons present
in a given topological order.

To adiabatically move a trapping potential from the site l
to the nearby site l ′, we follow the procedure in Ref. [31] and
consider the Hamiltonian

HT = H + (1 − γ )V nl + γV nl ′ + V nm. (8)

FIG. 2. The energy gap δE/J between the ground state and the
first excited state of the Hamiltonian (10) as a function of the disorder
strength h/J for the models on the square and fractal lattices with 64
sites and 4 particles. We average over 400 statistically independent
disorder realizations for each h to ensure convergence. The error bar
is of order 10−3 for all data points. The energy gap is seen to be
significantly larger for the model on the fractal lattice.

We vary γ from 0 to 1, following the ramp

γ = δr

r
− 1

2π
sin

(
2πδr

r

)
, (9)

with r a number of steps sufficiently large to maintain adia-
baticity and δr ∈ [0, 1, . . . , r] as the individual step. We move
one anyon at a time while keeping the other anyon fixed at
its position to minimize overlap during the driving. The exact
diagonalization used to obtain the ground state in each step
does not fix the global phase factor of the state. We hence
need to fix the global phase factor relative to the state at the
beginning of the adiabatic evolution. We do this by choosing
the global phase factor of the ground state in a given step such
that its overlap with the ground state at the previous step is
real.

We choose the exchange path for the square and fractal
lattices shown in Fig. 1. The statistical phase of the anyons
is found to be θs = 0.4589 on the square lattice and θs =
0.5089 on the Sierpinski carpet fractal lattice. These numbers
are close to the expected value θs = 1/2 for quasiholes in a
bosonic Laughlin state at half filling. Therefore we conclude
that the local Hamiltonian proposed here hosts anyons dis-
playing Laughlin-type braiding statistics. We also note that
if we instead choose a uniform magnetic field on the fractal
lattice, we do not obtain a statistical phase close to 1/2.

Effect of disorder. We next study the robustness of the
braiding properties of the models with respect to weak dis-
order. We add a disordered potential at each lattice site and
write the Hamiltonian as

H ′ = H +
∑

i

hini, (10)

where hi ∈ [−h, h] is drawn from a uniform random distribu-
tion with h the disorder strength.

We plot in Fig. 2 the energy gap δE/J , averaged over
random disorder realizations, between the ground state and
the first excited state as a function of h/J for both the models
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TABLE I. Exchange phases for a single disorder realization on
the square and fractal lattices. Overlap between the charge distri-
butions of the two anyons leads to deviations from the ideal value
θs = 1/2. The two numbers provided for disorder strength h/J = 1
correspond to two different disorder realizations.

Disorder θs on square lattice θs on fractal lattice

h/J = 0 0.4589 0.5089
h/J = 0.25 0.0570 0.4803
h/J = 0.5 0.2615 0.5034
h/J = 1 0.0977; 0.0994 0.5171; 0.5479

on the square lattice and on the fractal lattice with 64 sites
and four particles. The model acquires a larger gap on the
fractal lattice than that on the square lattice, which could
be significant for its realization. This gap reduces with the
introduction of disorder but is still substantially larger than
that of the square lattice over large ranges of disorder.

Evaluating the braiding statistics of the anyons is a com-
putationally expensive task. Therefore we consider the case
of h = 0 and three h �= 0 values where we take a single or
two disorder realizations. We find that the statistics of the
anyons are approximately θs = 1/2 on the fractal lattice for
the considered disorder strengths, see Table I. For the square
lattice, however, we find that the anyon statistics is destroyed
already for h/J = 0.25. Inspecting the anyon density profiles
along the trajectory, we find that the anyons are not well
separated at all times. Thus, for the square lattice we are
hence not able to draw conclusions about the statistics without
considering a larger lattice. In the fractal lattice the anyons are
better screened, which allows for robust braiding in a smaller
system.

Proposal for implementing the Hamiltonian. An experi-
mental demonstration of the Sierpinski carpet fractal lattice in
a cold-atom system requires two components: efficient prepa-
ration of the lattice system with the desired filling factor and
generation of the required site-to-site hopping phases. For the
former, we assume that we start by loading a single plane of a
three-dimensional cubic lattice in a conventional quantum-gas
microscopy system [26,27] capable of imaging atoms with
single-site resolution using a high-numerical-aperture (NA)
microscope objective. Using spin-addressing techniques, a set
number of atoms can be loaded into the lattice [28].

We now discuss the problem of generating the desired
site-to-site hopping magnitudes and phases via light-assisted
tunneling [29,32]. In general, tunneling is inhibited in the
system if there exists an energy gradient along x and y giving
rise to a bias � between each adjacent site. Light-assisted
tunneling between adjacent sites can be restored if a pair of
running-wave beams is added to the system. Given that the
frequency difference between the running waves satisfies the
relation ω = ω1 − ω2 = ±�/h̄, atoms are again allowed to
tunnel between adjacent sites. The two light fields need only
be present where the Wannier functions overlap significantly
(that is, between adjacent lattice sites) [33]. Therefore we can

control the magnitude of the effective tunneling parameter
through control of the amplitudes of the two running waves we
project onto the system. In Refs. [29,32], the hopping phases
were controlled via the relative directions of the two running
waves. Here, however, we propose to control the amplitude
and phase of the tunneling parameter by locally shaping one
of these two running waves using a spatial light modulator
(SLM) [34,35].

The required tunneling phases are controlled via projec-
tion of two counterpropagating light potentials from the top
and bottom of the lattice, respectively, with both beams run-
ning orthogonal to the lattice axes. The first laser acts as a
light sheet onto the atoms from one direction and does not
require high-resolution capabilities. Then, through the high-
resolution objective, one can project a second light-based
potential with a phase and amplitude pattern mapped onto
it via a SLM [35]. In this way one can engineer the local
tunneling properties by carefully configuring the system so
that light is present only between the adjacent lattice sites
where tunneling is desired. If the resolution of the objective
is high enough such that the point-spread function of the pro-
jection system is comparable to (or smaller than) the distance
between lattice sites (see, e.g., the system in Ref. [36]), one
can project these light potentials onto the lattice with minimal
crosstalk between sites. Even in the presence of small amounts
of crosstalk, the SLM-generated light field can readily be
modified such that the desired field amplitudes and phases
are generated at each lattice site. Finally, given that crosstalk
is small, SLMs can also be used to project (again through
the high-resolution objective) the local trapping potentials
required for anyon generation and exchange.

Conclusions. We have constructed a local Hamiltonian
that shows topological braiding on both the Sierpinski car-
pet, which is itself a fractal lattice, and a square lattice. The
proposed Hamiltonian is found to lead to a larger energy gap
between the topological ground state and the first excited state
on the fractal lattice with 64 sites and 4 particles than that on
a square lattice of the same size. We have also found that the
fractal lattice enhances the robustness of the braiding proper-
ties of the topological state against the effects of disorder. We
hypothesize that this enhancement is due to the different non-
integer scaling dimension that characterizes the fractal lattice,
and future research in this direction is warranted. We have pro-
posed an experimental implementation of the local model in-
troduced here with ultracold atoms in optical lattices. The ex-
perimental realization of the local model studied allows for the
consideration of different geometries of the lattice, including
different fractal lattices that could support topological order.
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