4D porosity evolution during pressure-solution of NaCl in the presence of phyllosilicates
Macente, Alice and Fusseis, Florian and Butler, Ian B. and Tudisco, Erika and Hall, Stephen A. and Andò, Edward (2018) 4D porosity evolution during pressure-solution of NaCl in the presence of phyllosilicates. Earth and Planetary Science Letters, 502. pp. 115-125. ISSN 0012-821X (https://doi.org/10.1016/j.epsl.2018.08.032)
Preview |
Text.
Filename: Macente_etal_EPSL_2018_4D_porosity_evolution_during_pressure_solution.pdf
Accepted Author Manuscript License: Download (3MB)| Preview |
Abstract
Pressure-solution creep is one of the most common crustal deformation mechanisms, inducing changes in the porosity and permeability of rocks. For a variety of rock types undergoing pressure solution, it has been shown that the presence of phyllosilicates may significantly enhance the rate of the pressure-solution process. In this experimental investigation, we present 4-dimensional (three dimensions + time) X-ray microtomographic data that contrast deformation by pressure-solution of a pure NaCl aggregate with that of a mixture of NaCl and biotite. The results show that for mixed samples (NaCl+biotite), phyllosilicates induce a marked reduction in porosity and pore connectivity and contribute to an increase in the local strain rates by an order of magnitude over pure NaCl samples. At the same time, phyllosilicates do not induce strain localization in the sample. We discuss various possible explanations for these observations including a possible positive feedback between the porosity distribution and pressure solution. Our study yields novel insights into the local effects of phyllosilicates during pressure-solution creep and provides full 4-dimensional imaging and characterization of the coupled evolution of porosity and pore connectivity over previously unprecedented experimental time scales.
-
-
Item type: Article ID code: 79671 Dates: DateEvent15 November 2018Published13 September 2018Published Online19 August 2018AcceptedSubjects: Technology > Engineering (General). Civil engineering (General) Department: Faculty of Engineering > Civil and Environmental Engineering Depositing user: Pure Administrator Date deposited: 18 Feb 2022 16:03 Last modified: 31 Jul 2024 15:31 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/79671