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ABSTRACT: Two challenges may exist in the reliability analysis of highly reliable structures in, e.g., 
aerospace engineering. The first one is that, the failure probability may be extremely small (typically, 
smaller than 1e-6), which commonly prevents us from generating accurate estimation with acceptable 
computational costs by using the available methods. The second one is that, the available information for 
the input variables may be subject to incompleteness (e.g., sparse data) and/or imprecision (e.g., 
measuring error), which, makes it impossible to generate precise probability models for the input 
variables. To address the above two challenges, this work proposes two effective algorithms based on 
combining the sampling techniques (i.e., extended Monte Carlo simulation and subset simulation), active 
learning techniques and high-dimensional model representation decomposition. The proposed methods 
can effectively estimate the failure probability function w.r.t. the uncertain distribution parameters of the 
input variables with small number of training samples even when the failure event is extremely rare. A 
numerical test example is introduced to illustrate the proposed methods. 

In structural engineering, evaluating the reliability 
of structures with the consideration of 
uncertainties has been a common and necessary 
task. However, two challenges commonly prevent 
us from learning the true values of the reliability. 
The first one is due to limited computational 
resources. With the increment of complexity of 
structural systems, large-scale computational 
models need to be developed to simulate their 
behavior, making each call of the computational 

models being time-consuming. Further, due to the 
requirement of high reliability for complex 
products such as aircraft, the structural failure 
events are commonly very rare. Both the time-
consuming models and rare failure events lead to 
high computational cost when performing the 
reliability analysis with the traditional methods 
such as subset simulation (SS) (Au and Beck, 
2001). The second challenge results from the 
limited information of the structural inputs such 
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as dimension sizes, material properties and loads. 
For correctly learning the degree of structural 
reliability, the amount of data for input parameters 
should also be large and accurate enough so as to 
learn their true probability distribution densities 
(PDFs). However, in real applications especially 
the design stage, the available information is 
commonly incomplete and/or imprecise. In this 
situation, the epistemic uncertainty emerges and 
prevents us from generating the true PDFs. The 
mixed uncertainties are commonly characterized 
by imprecise probability models such as p-box 
model (Sun et al., 2012), fuzzy probability model 
(Beer et al., 2013) and evidence theory (Sentz and 
Ferson, 2002). This work aims at developing 
effective methods for meeting the above two 
challenges based on the parameterized imprecise 
probability models.  

Reliability analysis based on imprecise 
probability models has attracted wide attentions, 
and many traditional reliability analysis methods, 
such as first-order reliability method (FORM) 
(Zhang et al., 2015) and SS (Alvarez et al., 2018), 
have been extended to meet this requirement. 
There are also specific methods developed for 
uncertainty propagation of imprecise probability 
models, and the two popular ones are the extended 
Monte Carlo simulation (EMCS) (Wei et al., 2014) 
and Interval Monte Carlo simulation (IMCS) 
(Zhang et al., 2013). The EMCS is a non-intrusive 
sampling technique for efficiently propagating the 
imprecise probability models through any black-
box computational models, while the IMCS 
method is an intrusive method which needs 
interval finite element analysis for each interval 
sample, thus, generally, the EMCS method has 
wider application. However, the current version 
of EMCS method cannot meet the two above-
mentioned challenges which are common in 
practical applications. 

In this work, we develop efficient algorithms 
for analyzing rare failure events subjected to 
parameterized imprecise probability models, by 
improving the EMCS methods with high-
dimensional model representation (HDMR) 
decomposition, SS and active learning procedures. 

The proposed methods can substantially improve 
the accuracy and efficiency of the EMCS method 
by adaptively generating a set of intermediate 
failure surfaces, and present the errors of 
estimations. The proposed method is 
demonstrated by a numerical test example.  

1. A BRIEF REVIEW OF THE EMCS 
METHOD 

Before the introduction of the methods, we firstly 
introduce some terminologies. Let  y g x  

indicate the limit state function, where 

 1 2, , ,
T

nx x xx   refers to the n-dimensional 

uncertain input variables, and y indicates the 
performance variable of structure. Commonly, x 
are random variables characterized by precise 
probability models due to aleatory uncertainty. 
However, due to the incompleteness and/or 
imprecision of the available data, their 
distribution functions can not be precisely 
generated, and in this situation, the imprecise 
probability models such as p-box model and fuzzy 
probability model, are commonly introduced. In 
this work, we only consider the parametric 
imprecise probability models, which means that 
the epistemic uncertainty of one input variable is 
characterized by its distribution parameters. Let 

 ;fX x θ  denote the joint PDF of x, where 

 1 2, , ,
T

d  θ   refers to the uncertain 

distribution parameters. If the fuzzy probability 
model is used, θ  is a fuzzy vector; while the 
parametric p-box model is applied, it is 
characterized by interval/convex models; if the 
second-order probability model is utilized, θ  is a 
subjective random vector.  Let  f θΘ  denote the 

attributed joint PDF of  θ , and it is assumed that 
the distribution parameters are independent, i.e., 

   
1 i

d
ii

f f 
θΘ , where  

i if   refers to 

the marginal PDF of i . One should note that the 

PDF of θ  is just attributed for developing the new 
methods, but does not mean that θ  have specific 
probability distributions. 
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The failure event is indicated by y<0. Thus, 
the failure domain is represented by

  : 0F g x x , and the indicator function of 

F is defined by  
   

  
1 if

0 elseF

F
I


 


x
x   (1) 

Then the failure probability function  fP θ  is 

expressed as: 

      P ; df FI f  Xθ x x θ x   (2) 

The EMCS method for estimating the above 
failure probability is inspired by the importance 
sampling, and the EMCS estimator is  

     
   

  
  
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




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X

x θ
θ x x θ x

x θ

x θ
x

x θ

  (3) 

where *θ  refers to a pre-specified values for 

generating the sampling PDF   *;fX x θ  and 
 kx  ( 1,2, ,k N  ) are a set of MCS samples 

generated from  *;fX x θ . The EMCS estimator 

in Eq. (3) is simple and easy to implement, but it 
has several disadvantages. For rare failure events, 
tremendous function calls are needed, making the 
implementation of the method computationally 
impractical. For problems with many uncertain 
distribution parameters (e.g., d>6), the variance of 
the estimator may be too large. In the next section, 
we introduce several techniques to overcome the 
above shortcomings.  

2. THE METHODS 
The estimators in Eq.(3) is unbiased, but for 
problems with many uncertain distribution 
parameters, the variance of the estimator may be 
too large, due to the large diversity of the samples 

of       *; ;FI f fX Xx x θ x θ . However, the 

failure probability function is generally governed 
by low-order component functions, and high order 
(≥3) interactions are usually non-influential. Thus, 

we firstly propose to approximate the failure 
probability function with HDMR decomposition. 
Generally, there are two kinds of HDMR 
decomposition, i.e., the cut-HDMR (Li and Wang, 
2001) and RS (Random sampling)-HDMR (Li et 
al., 2002). In this work, the cut-HDMR is utilized. 

2.1. The cut-HDMR decomposition 
The HDMR decomposition of the failure 

probability function is expressed as (Li and Wang, 
2001): 

     
 

0
1 1

12

P P P P

P

d

f f fi i fij ij
i i j d

f d


   

  

 

 θ θ

θ
  (4) 

where ijθ  indicates the 2-dimensional vector 

consists of i  and j , for cut-HDMR 

decomposition, the component functions on the 
right side of Eq. (4) are formulated as: 

 

 
   
       

*
cut0

*
cut cut0

*
cut cut cut cut0

P P

P P , P

P P , P P P

f f

f i i f i i f

f ij ij f ij ij f i i f j j f

 

 





 

  

    



θ

θ

θ θ θ



 

 (5) 
where iθ  indicates the (d-1)-dimensional vector 

containing all the components of θ  but i , and 
*θ  refers to the expansion points around which 

one would like to decompose the failure 
probability function. In this work, we will 
estimate the HDMR component functions with 
advanced EMCS method, thus *θ  in Eq. (3) and 
Eq.(5) should be the same. Commonly, the former 
two order component functions are accurately 
enough for approximating the failure probability 
function, thus we need only to estimate the 
constant, first order and second order components 
in Eq. (5).  

Given a set of samples  kx  ( 1,2, ,k N  ) 

generated from  *;fX x θ , the EMCS estimators 

Rare failure event analysis of structures under mixed uncertainties



13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13 
Seoul, South Korea, May 26-30, 2019 

 4

for the former two order cut-HDMR component 
functions can be derived as: 

 

 
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where  
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 (7) 
Obviously, the above estimators are unbiased, and 
have smaller variances since only one or two 
distribution parameters vary. The variances of the 
estimators in Eq. (7) can be easily derived, and we 
don’t give more details.  
   Both the component functions in Eq.(5) and 
their estimators in Eq. (6) possess the vanishing 
property, which means that, if any parameter 

ai
  

contained in the component  
1 2 1 2cut ,E

s syi i i i i iθ   is 

fixed at the expansion point *

ai
 , then this 

component function equals to zero. The 
computational cost of the estimators in Eq.(6) is 
still unacceptable for real applications. In the next 
subsection, we improve the EMCS estimators 
with SS technique. 

2.2. Extended subset simulation 
The extended subset simulation (ESS) for 
estimating the component functions in Eq. (5) is 
directly derived from the classical SS procedure. 
Suppose now we need to estimate the constant 

component cut0Pf .Let p0 denotes the intermediate 

probability (commonly specified as 0.1~0.3), and 
N indicates the size of samples used for generating 
the intermediate failure thresholds. Based on this 
setting, we can perform the classical SS procedure 
for estimating cut0Pf . Suppose we obtain m 

intermediate failure surfaces, and the 
corresponding failure thresholds are denoted as 

1 2 0mb b b    , and the Monte Carlo (MC) 

or Markov Chain Monte Carlo (MCMC)  sample 
set for specifying the jth failure threshold is 

denoted as      , : 1, 2, ,k k
j j jy k N xS  , then 

the ESS estimators for the former two order 
component functions are derived as: 

 

  
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 (8) 
The statistical properties of the above estimators 
are analogous to the classical SS estimator, one 
can refer to Au and Beck (2001) or our subsequent 
full-length paper for details.  Obviously, the 
estimators in Eq. (8) also possess the vanishing 
property.  The total number of function calls of the 
above ESS procedure is mN, which is the same as 
the classical SS procedure. This cost is still too 
high for complex structures. In the next 
subsection, we further improve the ESS method 
with active learning procedure.  

2.3. The AK-ESS methods  
The active learning procedure, e.g., the AK-

MCS method (Echard et al., 2011), has drawn the 
most attentions around these years in the area of 
structural reliability analysis due to their high 
efficiency. We use it here to further improve the 
ESS method, and we denote the new method as 
“AK-ESS”. The steps for implementing the 
method is briefly summarized as follows. 
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Step 1: Generate a set of MC samples 
  1 1 : 1, 2, ,k k N xS   from  *;fX x θ . 

Randomly generate N0 (e.g., N0=12) samples 
from S1, compute the corresponding limit 
state function values, and attribute these N0 
initial training data to the set ST. Let q=1.  

Step 2: Train a Kriging surrogate model with ST. 
Step 3: Predict the limit state function values for 

each non-training sample, and compute or 
update the value of bq for the qth intermediate 
failure domain. If  bq <0, let bq =0. 

Step 4: Compute the U value for each non-
training sample by 

     k k
k g q gU b  x x , where 

  k
g x  and   k

g x  indicate the Kriging 

prediction at the point  kx  as well as the 
corresponding mean square error (MSE). If 

0min kU U , go to Step 5; else, find the non-

training sample in q TS S  with the minimum 

U value, compute the corresponding limit 
state function value, attribute this point to the 
training data set ST, and turn to Step 2. 

Step 5: If bq =0, turn to Step 6. If bq>0, let q=q+1, 
and generate a conditional sample set 

  : 1, 2, ,k
q q k N xS   following 

conditional PDF  *
1| ,X qf F x θ  based on 

any MCMC algorithm (Papaioannou et al., 
2015) by calling the Kriging surrogate model. 
Specify the value of bq. If bq<0, let bq =0, and 
compute the U value for each non-training 
sample contained in q TS S . If 0min kU U , 

turn to the beginning of this step, else find the 
non-training sample with the minimum U 
value, compute the corresponding limit state 
function value, add this point to the training 
data set, and turn to Step 2. 

Step 6: Let m=q, and estimate the cut-HDMR 
component functions by the estimators in Eq. 
(8) with the sign of the limit state function 
value for each input sample is estimated by 
the Kriging surrogate models. 

In Step 4 and 5, the U0 is commonly set to be 2, 
which is similar to the classical AK-MCS 
procedure, and the principle 0min kU U  

promise that the probability of correctly 
predicting the sign of the limit state function for 
each non-training sample is no less than  2 , 

where     is the distribution function of 

standard normal distribution.  
In the above procedure, the intermediate 

probability p0 can be set to a very small one (e.g., 
1e-3) by setting the sample size N to a large one 
(e.g. 1e5). Thus the number of intermediate 
failure surfaces is much less than the ESS 
procedure. Further, each intermediate failure 
surface is approximated by the surrogate model 
produced by the active learning procedure, thus 
only small number of function calls are needed. 
As the sign of the limit state function for each 
sample in each intermediate failure domain is 
promised by the principle 0min kU U , the AK-

ESS procedure is also accurate.  

2.4. Test example 
Consider a two-dimensional toy test example 

with limit state function represented by: 

      2 3

1 21 1
1

25 36

x x
y g

 
   x   (9) 

where x1 and x2 are two normal variables with 
mean parameters (denoted as 1  and 2 ) 

bounded in [-0.2, 0.2] and standard deviations 
(SDs) (denoted as 1  and 2 ) bounded in [0.8, 

1.2].  
   For ESS procedure, p0 and N are set to be 0.1 
and 1e4 respectively, while for AK-ESS 
procedure, these two parameters are set to be 1e-
3 and 1e5 respectively. The ESS procedure 
produces five intermediate failure surfaces with 
failure thresholds being 0.8285, 0.5895, 0.3573, 
0.1175 and 0, thus the total number of function 
calls is 5e4. The AK-ESS procedure adaptively 
produces two intermediate failure surfaces with 
failure thresholds being 0.3488 and 0, and the total 
number of function calls for learning these two 
failure surfaces are 22 and 11 respectively, thus 
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the total number of function calls is 33, much less 
than that of the ESS method. The constant cut-
HDMR term estimated by the ESS and AK-ESS 
methods are 3.928e-5 and 4.029e-5, and the SDs 
of these two estimates are 2.4e-6 and 4.1e-6 
respectively. The reference solution estimated by 
the crude MCS procedure is 4.230e-05 with SD 
being 2.06e-06. Thus, the constant components 
are accurately estimated by both methods.   

The first-order component functions are then 
estimated by the ESS and AK-ESS methods with 
the same sets of samples used for computing the 
constant components, and the results are shown in 
Figure 1, together with the results computed by 
crude MCS procedure for comparison. As can be 
seen, all the four first order component functions 
are accurately estimated by both methods.  

 

 
Figure 1: Results of the first order component 
functions. 

 
Figure 2: Results of the two influential second order 
component functions, where the surfaces with mesh 
indicate the results obtained by ESS, and those without 
mesh refer to the results obtained by AK-ESS.  

 
It is also shown that the component functions 

of 1  and 2  are not influential, and for 

formulating the failure probability functions, 
these two components can be neglected. 
Qualitative measure of the importance of each 
component function can be achieved using global 
sensitivity analysis technique (Wei et al., 2015), 
which will be comprehensively investigated in the 
full-length paper.  

There are totally six second order component 
functions, but only two of them are influential, 
which are displayed in Figure 2. It is shown that 
these two component functions computed by the 
two proposed methods match well, and their SDs 
are small enough. Since the estimators are 
asymptotically unbiased, it is believed both 
methods correctly estimate the second order 
component functions. Then the failure probability 
function can be approximated by  

 
     

   
cut0 cut3 1 cut4 2

cut12 1 1 cut34 2 2

ˆ ˆ ˆ ˆP P P P

ˆ ˆP , P ,

f f f f

f f

 

   

  

 

θ
  (10) 
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3. CONCLUSIONS 
This paper presents two efficient algorithms for 
estimating the structural failure probability 
function for structures with input variables being 
characterized by any parameterized imprecise 
probability models. The proposed methods 
combine the advantages of EMCS, cut-HDMR, 
SS and AK-MCS procedures, and are especially 
useful for structures with rare failure events. 
These methods are shown to have excellent local 
performance. In the future work, these methods 
will be extended to the non-parameterized 
imprecise probability models.  The proposed 
methods are significantly useful for estimating the 
degree of reliability especially at the design stage 
when the available information is sufficient. The 
proposed methods also provide a solid foundation 
for further research on, e.g., sensitivity analysis 
and uncertainty-based design optimization, under 
mixed uncertain environments.  
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