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ABSTRACT: This paper presents a system matrices identification approach directly from the real-time 
measured structural responses. Based on the experimental modal analysis, the identified system matrices 
are expected to represent the system behaviours as same as the experimentally measured ones. Due to 
the fact that the system matrices, i.e. the mass, stiffness, and damping matrices, are the direct reflection 
of the inherent properties of the structure, they can be naturally served as the indicator of structural 
damages. The identification approach utilizes the state space representation for the equation development 
to construct the system matrices using the complex modes (i.e. the complex eigenvalues and 
eigenvectors). The complex modes, however, requires a calibration process to enforce the so-called 
properness condition, which is not generally fulfilled by the modes because of the inevitable experimental 
noise. An efficient method based on the Riccati equation is proposed to calibrate the complex 
eigenvectors so that they can be safely used to construct the system matrices. A scalar quantity based on 
the norm of the matrices is defined as the indicator for structural health monitoring. The overall approach 
is performed on a numerical model of a structure with controllable modifications (i.e. artificial damages). 
The difference between the identified matrices of the original and modified structures clearly 
demonstrates the approach’s feasibility in structural health monitoring. 

1. INTRODUCTION
The modern structure systems in civil and
mechanical engineering are designed to meet
long-term requirements related to structural
safety, robustness, and durability. Structural
health monitoring (SHM) is continuously a
critical issue to monitor, control, and maintain the
physical properties of the structure during its
overall life-cycle.

The vibration-based damage detection is one 
of the classical SHM techniques, which follows 
the principle that the damages would lead to the 
change of the structural response during the 
vibration test. The change of the structural 
response can occur in time, frequency, and modal 
domains (Carden and Fanning 2004). 
Consequently, the vast literature on vibration-

based SHM can be classified according to which 
output feature is investigated as the damage 
indicator. For example, the direct response in time 
domain of a situ bridge is investigated via the 
singular spectrum analysis with the band-pass 
filter technique to extract the bridge frequencies 
(Yang et al. 2013). It is more popular to 
investigate the features in frequency and modal 
domains, e.g. the frequency response function 
(FRF), natural frequencies, and modal shapes. A 
substructure-based FRF approach is proposed by 
Lin et al. to not only detect but also locate the 
damage of civil buildings. For the application of 
modal parameters, Chang and Kim propose to 
employ multiple modal assurance criteria (MAC) 
and coordinate MAC values during SHM for a 
real-scale steel truss bridge. 
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No matter what kind of feature is investigated 
in SHM, it is important to make sure that this 
investigated feature is sensitive to the potential 
damage. However, the commonly utilized nature 
frequency, modal shape, and FRFs are not 
generally sensitive to all damages. In this work, a 
system matrix identification approach is proposed 
to identify (i.e. reconstruct) the mass, stiffness, 
and damping matrices based on the real-time 
measured FRFs. The structural system matrices 
are expected to represent the inherent properties 
of the structures, and thus can be naturally 
proposed as the damage indicator during SHM. 

The matrix identification procedure contains 
a series of modal analysis techniques. First, the 
structural dynamic eigenvalue problem is 
presented by the state space representation, where 
the inverse procedure from the complex modes 
(eigenvalues and eigenvectors) to the system 
matrices are developed. Second, the inverse 
procedure is valid only if the so-called properness 
condition (Balmès 1997; Bi et al. 2017) of the 
complex modes is fulfilled. Hence a calibration 
process of the modes is required prior to utilizing 
the modes to reconstruct the system matrices. 
Finally, a scalar quantity assessing the steadiness 
of the system matrices is defined to be served as 
the SHM indicator. 

A finite element (FE) model of a free-free 
conditional beam is utilized in the example part, 
where a specially designed artificial damage is 
applied to the FE model. The FRFs and natural 
frequencies are found to be insensitive to the 
artificial damage, while the feasibility of the 
proposed indicator based on the system matrices 
is demonstrated. 

2. THEORIES AND METHODS 

2.1. Inverse procedure for matrix identification 
The identification of the system matrix starting 
from the complex modes (eigenvalues and 
eigenvectors) is termed as the “inverse 
procedure”, since it contrasts with the normal 
“forward procedure” to calculate the complex 
modes using the existing matrices. The forward 

procedure is essentially a second order eigenvalue 
problem expressed as 

(𝐌𝜆𝑖
2 + 𝐂𝜆𝑖 + 𝐊)𝛗𝑖 = 0, 𝑖 = 1, 2, … , 𝑛, (1) 

where M, C, and K are the mass, damping, and 
stiffness matrices of the structural system, respectively; 
𝜆𝑖  and 𝛗𝑖  are respectively the i-th eigenvalue and 
eigenvector; n is the number of modes. 

Considering the state space representation, 
let 𝐔 = [

𝐂 𝐌
𝐌 𝟎

] , 𝐀 = [
−𝐊 𝟎
𝟎 𝐌

] , 𝛔𝑖 = [
𝛗𝑖

𝛗𝑖𝜆𝑖
] . 

The state space representation of Eq. (1) is 
  (𝐔𝜆𝑖 − 𝐀)𝛔𝑖 = 0; 

 (𝐔𝜆𝑖 − 𝐀)𝛔𝑖 = 0. (2) 

where ∎ is the conjugation of the complex modes. Put 
these total n modes into a uniform matrix, and one gets 

a diagonal eigenvalue matrix 𝚲 = [
⋱   
𝜆𝑖

   ⋱
]  and a 

eigenvector matrix 𝚽 = [𝛗1 𝛗2  ⋯ 𝛗𝑛] . iim ilar as 
M, C, and K, 𝚲 and 𝚽 can also be assembled into the 
state space representation using the following matrices 

 𝚼 = [
𝚲 𝟎

𝟎 𝚲
], 𝚺 = [ 𝚽 𝚽

𝚽𝚲 𝚽𝚲
]. (3) 

Then the matrix form of the second-order 
eigenvalue problem is expressed as 

 𝐔𝚺𝚼 − 𝐀𝚺 = 𝟎. (4) 
Considering the orthogonality among each 

eigenvector, a diagonal matrix with 2n arbitrary 

real values 𝚵 = [
⋱   
𝜉𝑖

    ⋱
], 𝑖 = 1,⋯ , 2𝑛, is necessary 

to rewrite Eq. (4) as  

 𝚺𝑇𝐔𝚺 = 𝚵, 

 𝚺𝑇𝐀𝚺 = 𝚵𝚼. (5) 
iinc e 𝚵  is an arbitrary matrix, without loss of 
generality, the identify matrix I can be proposed to 
instead 𝚵 in Eq. (5), and thus the following expresses 
are obtained: 

 𝐔−𝟏 = 𝚺𝚺𝑇, 

 𝐀−𝟏 = 𝚺𝚼−𝟏𝚺𝑇. (6) 
Transfer the 2n Degree of Freedom (DoF) 

state space representation back to the n-DoF 

Identification of system matrices based on experimental modal analysis and its application in structural health monitoring 



13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13 
Seoul, South Korea, May 26-30, 2019 

 3 

physical system presentation, Eq. (6) is rewritten 
as 

[
𝐂 𝐌
𝐌 0

]
−1

= [ 𝚽𝚽𝑻 𝚽𝚲𝚽𝑻

𝚽𝚲𝚽𝑻 𝚽𝚲𝟐𝚽𝑻], 

 [
−𝐊 0
0 𝐌

]
−1

= [𝚽𝚲−𝟏𝚽𝑻 𝚽𝚽𝑻

𝚽𝚽𝑻 𝚽𝚲𝚽𝑻] (7) 

The expressions of M, C, and K can be easily 
extracted as 

 {

𝐌 = [𝚽𝚲𝚽𝑻]−1

𝐂 = −[𝐌(𝚽𝚲𝟐𝚽𝑻)𝐌]

𝐊 = −[𝚽𝚲−𝟏𝚽𝑻]−1

. (8) 

Eq. (8) is the so-called inverse procedure, 
where the mass, damping, and stiffness matrices 
are exclusively determined by the complex 
eigenvalues and eigenvectors. Note that, the 
conjugations of the modes in Eqs. (7) and (8) have 
been omitted for layout clarity. However, these 
conjugation parts should not be ignored during the 
practical evaluation of both the inverse procedure 
and the following properness condition 
enforcement procedure.  

2.2. Properness condition enforcement 
The previous subsection presents the inverse 
procedure to reconstruct the system matrices 
using the complex modes. However, an 
importance pre-condition must be first fulfilled by 
the modes, before they can be utilized in the 
inverse procedure. From Eq. (7), this pre-
condition can be easily extracted as 

 𝚽𝚽𝑻 = 0. (9) 
This pre-condition is first denominated as 

“properness condition” by Balmès, however, this 
concept has been investigated with various 
terminologies in the literatures (Bernal and Gunes 
2000; Lancaster and Prells 2005; Zhang and 
Lallement 1987). In the ideal case when there is 
no noise, the theoretically exact modes can fulfil 
the properness condition automatically. However, 
since the experimental noise and uncertainty are 
inevitable, the experimentally identified modes 
generally cannot fulfill this condition, leading the 
directly constructed system matrices far from the 

physical ones. Hence, a critical step for matrix 
identification is to enforce the properness 
condition of the modes, before they can be safely 
utilized in the inverse procedure.  

The properness condition enforcement 
process can be expressed as an optimization 
problem, where the optimal object is an 
approximate �̃�; the objective function is g(𝚽) =

‖�̃� − 𝚽‖ ; and the constraint is �̃��̃�𝑻 = 𝟎 . A 
direct solution of this problem is difficult, since 
the optimal object �̃�  is a matrix with complex 
value for each element leading to a large number 
of optimal parameters, and subsequently a huge 
calculation cost. Alternatively, Balmès proposed 
another technique to solve this problem by 
determining the Lagrange multiple matrix 𝛅 
within the Riccati equation 
 𝚽𝚽𝑻 − 𝛅�̅�𝚽𝑻 − 𝛅𝚽�̅�𝑻 + 𝛅�̅��̅�𝑻𝛅 = 𝟎. (10) 
After 𝛅  is obtained, the approximate �̃�  can be 
calculated following  

 �̃� = [𝐈 − 𝛅�̅�]−𝟏[𝚽 − 𝛅�̅�]. (11) 
Compared with the optimization approach, 

the technique using Eqs. (10) and (11) is more 
efficient with significantly reduced calculated 
cost. After the properness condition enforcement, 
however, the approximate eigenvector �̃�  can 
only be utilized to construct the mass and stiffness 
matrix. The damping matrix obtained from Eq. (8) 
is still far from the physical one, because of its 
high sensitivity to the noise and uncertainty in 
both eigenvalues and eigenvectors. For the further 
treatment of the damping identification within this 
inverse procedure, the readers are suggested to 
refer to (Bi et al. 2018) for a probabilistic 
approach to deal with this challenging damping 
identification with the consideration of 
experimental uncertainty. Nevertheless, the 
stiffness and mass matrices are enough for the 
current application to reveal the damage of the 
structural system, as long as these properties are 
precisely identified. 

2.3. Assessment of matrix change for SHM 
Since the mass and stiffness matrices are directly 
identified from the real-time measured system 
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behaviors, the matrices are sensitive to any 
change of the structure properties, and 
consequently they can be used to indicate the 
structure fatigue and failure. The change of the 
matrix can be quantified using the 2-norm of the 
matrix: 

𝑖 =
‖�̂� − 𝐀‖

‖𝐀‖
× 100                  (12) 

where A is the mass or stiffness matrix identified 
from the original undamaged structure; �̂� is the 
matrix identified from the real-time measured 
response of the structure under serving condition. 
When the structural system is undamaged, the 
SHM index i is close to zero; when fatigue or 
damage occurs, the SHM index i would increase. 
The performance of this proposed SHM index is 
demonstrated in the following example part. 

3. EXAMPLE  

3.1. Problem description 
A simulated example is proposed in this section 
employing a numerical model of an aluminium 

beam with periodic thickness and a free-free 
condition. The FE model of the beam as well as 
its geometry details is shown in Figure 1. A 
harmonic excitation with uniform load is added on 
the right top to simulate the practical vibration 
test. Five measurement points (corresponding to 
sensors in real experiment) are assigned 
distributing along the centre line of the bean, 
denoted as measurement points #1-#6 in Figure 1. 
The distances from the left top to these 
measurement points are 28 mm, 281 mm, 431 
mm, 581 mm, 781 mm, and 1066 mm, 
respectively. A real experimental setup has been 
utilized by (Bi et al. 2018). However, the current 
work only employs the simulated model with the 
purpose for an explicit control of the artificial 
damage on this beam. For the damaged case, two 
modification points are applied to the FE model 
on the elements associating to measurement 
points #2 and #5. 

 

 

 
 

Figure 1 The geometry details and the FE model of the beam 
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The general strategy in this simulated example is 
explained as follows. 
1. Run a FE analysis using the original beam 

model, and obtain the original FRFs; 
2. Identify the complex modes from the original 

FRFs, and construct the system matrices 
following the inverse procedure as described 
in Section 2.1; 

3. Apply the modifications to FE model on the 
certain elements; that is to say, add artificial 
damage on the beam; 

4. Repeat Steps 1 and 2 to obtain the modified 
system matrices, and check the differences 
between the two sets of matrices using the 
assessment indicator defined in Section 2.3. 
In the following context, the two sets of data 

(i.e. the FRFs, complex modes, and system 
matrices) before and after adding damage are 
designated after Original and Modified, 
respectively. The original and modified properties 
of the FE model are detailed in Table 1. In the 
following section, a detailed comparison between 
the original and modified data is presented to 
assess how much the final system matrices can be 
changed by the artificial damage. 
Table 1 Parameters of the original model and two 
modification points of the modified model 

 Original  Modified 
  Point #1  Point #2  

E (1010 Pa) 7 9 5 
ρ (103 Kg/m3) 2.7 3.47 1.93 

 

3.2. Comparison of the natural frequencies and 
FRFs  

The natural frequencies before and after the 
modification are listed in Table 2. It is interesting 
to found that, although significant modifications 
are applied to the beam, its natural frequencies are 
not obviously changed. The absolute mean error 
of the frequencies of the modified beam, 
according to the original ones, is only 0.656%, 
implying the natural frequencies are insensitive to 
the artificial damage. 

Table 2 The natural frequencies of the original and 
modified beams  

Natural 
frequency (Hz) 

Original  Modified* 

f1 6.949 6.879 (-1.00) 
f2 19.41 19.13 (-1.46) 
f3 38.50 38.33 (-0.42) 
f4 64.45 64.44 (-0.02) 
f5 97.54 96.84 (-0.71) 
f6 138.9 138.4 (-0.32) 

Absolute mean error 0.656% 
*percent error according to the original data in 
the parentheses 

Besides the natural frequencies, the FRFs are 
typically employed to indicate the property 
change of the structures in the literation. 
However, as shown in Figure 2 and Figure 3, the 
FRFs keep unchanged after the modifications are 
applied to the beam. The nearly identical FRF 
curves in the figures and the extremely small error 
in Table 2 demonstrate that neither the FRF nor 
the natural frequency is capable of monitoring the 
artificial damage in this example. Alternatively, 
the performance of the reconstructed system 
matrices is assessed in the following subsection. 

 
Figure 2 The FRFs at measurement point #1 before 

and after the modifications 
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Figure 3 The FRFs at measurement point #6 before 

and after the modifications 

3.3. Comparison of the system matrices 
After the inverse procedure and properness 
enforcement, the reconstructed system matrices 
are utilized in this subsection to indicate the 
property change of the structure. The stiffness 
matrices before and after the modification, K𝑜𝑟𝑖𝑔 
and K𝑚𝑜𝑑𝑖, are listed as follows. 

K𝑜𝑟𝑖𝑔 =

[
 
 
 
 
 
606 614
614 990

   
303 291
179 449

   
227 17.9
418 118

303 179
291 449

   
462 4.95
4.95 537

  
151 33.9
332 205

227 418
17.9 118

   
151 332
33.9 205

    
721 301
301 230]

 
 
 
 
 

 

K𝑚𝑜𝑑𝑖 =

[
 
 
 
 
 
657 726
726 1233

   
292 342
163 554

   
229 18.8
432 122

292 163
342 554

   
458 −9.7
−9.7 588

  
120 22.3
322 203

229 432
18.8 122

    
120 322
22.3 203

    
600 262
262 216]

 
 
 
 
 

 

The SHM index i of the stiffness matrix is 

calculated as 𝑖𝑘 =
‖K𝑚𝑜𝑑𝑖−K𝑜𝑟𝑖𝑔‖

‖K𝑜𝑟𝑖𝑔‖
× 100 = 16.6%. 

Similarly, the SHM indices of the mass matrix is 
7.43%. The system matrices of the modified FE 
model are clearly different from the ones of the 
original FE model, implying the identified system 
matrices can serve as an effective indicator of the 
artificial damage in this example.  

4. CONCLUSION  
This work presents an inverse procedure to 
identify the system matrix from the real-time 
measured response of the structural system. The 
properness enforcement method is utilized to 
calibrated the complex modes, such that the 
identified matrices can represent the system 
behaviours as same as the experimentally 
measured ones.  

Since the identified matrices directly reflect 
the inherent properties of the structure, they can 
be naturally served as effective indices in SHM. 
In the simulated example, a specially designed 
artificial damage is applied on the FE model of a 
free-free conditional beam. The natural 
frequencies and FRFs are proved to be insensitive 
to the artificial damage, although the property of 
beam has been significantly changed. On the 
contrary, the identified system matrices are 
demonstrated to be capable of indicating the 
change of the structural properties, and thus they 
can be served as effective SHM indices in some 
special situation where the natural frequencies 
and FRFs are insensitive.  
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