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Universidade de Lisboa, 1049-001 Lisboa, Portugal

5Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 OQX, United Kingdom
6Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG, United Kingdom

(Received 30 June 2021; accepted 11 October 2021; published 3 December 2021)

We derive a new model for neutrino-plasma interactions in an expanding universe that incorporates the
collective effects of the neutrinos on the plasma constituents. We start from the kinetic description of a
multispecies plasma in the flat Friedmann-Robertson-Walker metric, where the particles are coupled to
neutrinos through the charged- and neutral-current forms of the weak interaction. We then derive the fluid
equations and specialize our model to (a) the lepton epoch, where we consider a pair electron-positron
plasma interacting with electron (anti)neutrinos, and (b) after the electron-positron annihilation, where we
model an electron-proton plasma and take the limit of slow ions and inertialess electrons to obtain a set of
neutrino-electron magnetohydrodynamics equations. In both models, the dynamics of the plasma is
affected by the neutrino motion through a ponderomotive force and, as a result, new terms appear in the
induction equation that can act as a source for magnetic field generation in the early Universe. A brief
discussion on the possible applications of our model is proposed.

DOI: 10.1103/PhysRevD.104.123013

I. INTRODUCTION

Neutrinos play an important role in many astrophysical
contexts [1]: they are produced in abundance in core-
collapse supernovae [2,3], and by thermonuclear reactions
in the interiors of stars [4]; moreover, relic neutrinos that
originated in the early Universe are thought to permeate all
space and can provide valuable information on the cosmol-
ogy of the big bang [5]. Neutrinos interact with other
plasma constituents through the electroweak force and its
associated charged and neutral currents. Even though the
interaction cross section of the neutrinos with matter is
extremely small, the many-body interaction between neu-
trinos and electrons can drive plasma instabilities [6–12]
and generate strong magnetic fields [13–15]. The self-
consistent generation of electromagnetic fields through
collective interactions is of particular relevance to the
problem of cosmic magnetogenesis [16–20], and may offer
a possible solution to the generation of primordial magnetic
fields in the early Universe.
Numerous works have studied previously the collective

interactions between neutrinos and plasma particles, adopt-
ing both quantum and semiclassical neutrino descriptions.
Quantum approaches have focused on the effect of

processes such as the lepton neutrino-antineutrino asym-
metry [21–23] as well as axial-vector coupling [24,25] on
the induction of electric currents in the plasma. Approaches
in the semiclassical limit have modeled the neutrino
population both in a kinetic framework [11,26,27] and
as an ideal fluid [28–30]. In the semiclassical approxima-
tion, the effects of neutrino-electron nonlinear interactions
can be included in magnetohydrodynamic (MHD) models
by making use of the formal analogy between the electro-
magnetic and weak interaction [27]. The resulting
equations differ from standard MHD in that a new ponder-
omotive force, representing the collective force of the
neutrinos on plasma particles, appears in the momentum
and induction equations [15,30]. This additional term
depends on the number density and the velocity of
neutrinos, but not on the magnetic field strength, and
can therefore generate a primordial magnetic seed.
An appropriate framework for the study of cosmic

magnetogenesis through the collective interaction of neu-
trinoswith the plasma, however, should take into account the
expansion of the Universe, captured in the scale factor aðtÞ.
Thus, the main purpose of this paper is to develop simplified
fluid models of neutrino-plasma interactions in comoving
coordinates that can be employed for further analytical or
numerical studies. The plan of the paper is as follows: in
Sec. II, we review the physical model of neutrino-plasma*lmp61@cam.ac.uk
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interactions in the semiclassical limit, recasting it in a form
suitable to our calculations, and introduce our choice of
metric; in Sec. III we derive the equations of a plasma made
of charged particles and neutrinos in an expanding universe
coupled to Maxwell’s equations (Sec. III A). Using con-
formal coordinates, we start with a kinetic framework
(Sec. III B), then take the hydrodynamic limit (Sec. III C).
Finally, we develop a reduced model of an electron-positron
plasma (Sec. IVA) and an electron-proton plasma
(Sec. IV B) interacting with neutrinos, and discuss potential
applications (Sec. V).

II. THEORETICAL PRELIMINARIES

A. Neutrino-plasma interaction

In this work we model the plasma-neutrino interactions
based on a semiclassical treatment of the interaction
Lagrangian between neutrinos and the background particles
[31,32]. The semiclassical approximation discards the
axial-vector contribution in the interaction Lagrangian,
which is associated with the spin of the fermions, and
requires the de Broglie wavelength of the neutrino (λν) to be
much shorter than the plasma skin depth de ¼ c=ωpe, with
ωpe ¼ ð4πnee2=γemeÞ1=2 the electron plasma frequency,
which is the typical length scale of perturbations in the
plasma, ne is the rest number density of the hot electrons,
and γeme is their relativistic mass. We will adopt the
approximation of the neutrino forward scattering on plasma
particles, focusing on the collective, i.e. mean-field, effects
of the neutrino distribution.
The interaction Lagrangian [33] for a single neutrino of

type νwith velocity vν in a background made of particles of
species s (where s refers to electrons, protons, or neutrons)
is [11,32]

LðWÞ
int;νs ¼ −qðWÞ

sν

�
ns −

Ns · vν
c2

�
; ð1Þ

where qðWÞ
νs is the effective charge of the weak interaction,

and ns andNs are the number and current density of species
s in the laboratory frame, respectively. The effective charge
is proportional to the Fermi constant of weak interaction
GF and satisfies the following [15]:

qðWÞ
sν ¼ −qðWÞ

s̄ν ¼ −qðWÞ
sν̄ ¼ qðWÞ

s̄ ν̄ ; ð2Þ

where the bar denotes the corresponding antiparticle. In
particular, for electrons and nucleons the effective charge
takes the following values [28]:

qðWÞ
sν ¼

8>><
>>:

ffiffiffi
2

p
GF; s ¼ e;

0; s ¼ p;

−GF=
ffiffiffi
2

p
; s ¼ n:

ð3Þ

Finally, if heavier ions (made of P protons, N neutrons, and
P − Z electrons) are present in the plasma, the effective
charge becomes instead GF½2ðP − ZÞ − N�= ffiffiffi

2
p

[28].
The semiclassical neutrino-particle interaction

Lagrangian in Eq. (1) is formally identical to that of a
charged particle in the presence of an electromagnetic field
[11] if we define the generalized 4-potential Aα

s ¼
ðns; c−1NsÞ of the “weak” interaction, so that for a flat

spacetime LðWÞ
int;sν can be written as

LðWÞ
int;sν ¼ −

qWsν
c

ηαβAα
s
dxβν
dt

; ð4Þ

with ηαβ ¼ diagð1;−1;−1;−1Þ the Minkowski metric, xαν
the 4-position of the neutrino, and where we used Einstein’s
convention for summation over repeated indices.
In addition to the force induced by the background

electrons on the neutrinos, the neutrino distribution can
itself affect the motion of the electrons through a macro-
scopic ponderomotive force [8–10]. This effect is analogous
to the force exerted by an electromagnetic pulse on the
plasma, as is the case in laser wakefield acceleration [34,35]
(see [36,37] for a general reference). Interestingly, the
interaction of a single particle of species swith a background
of neutrinos can be expressed in terms of aLagrangianwhich
shares the same formal structure as Eq. (4), where the
effective 4-potential Aα

ν is now proportional to the neutrino
number current Aα

ν ¼ ðnν; c−1NνÞ, yielding

LðPÞ
int;sν ¼ −

qWsν
c

ηαβAα
ν
dxβs
dt

; ð5Þ

with xαs now the 4-position of particle s, andwherenν,Nν are
the number and current density of the neutrinos in the
laboratory frame.
We can further exploit the analogy with electromagnetic

interaction, and define the weak field tensor Fμν
s in a similar

fashion to the usual electromagnetic field tensor, i.e.
Fαβ
s ¼ ∂αAβ

s − ∂βAα
s . In the same spirit, we introduce the

effective electric and magnetic fields for the weak force
field interaction, as

Fi0
s ¼ −∇ns − 1

c2
∂Ns

∂t ¼ Es; ð6Þ

Fij
s ¼ −ϵkijð∇ × Ns=cÞk ¼ −ϵkijðBsÞk; ð7Þ

and analogously for the ponderomotive potential Fαβ
ν ¼

∂αAβ
ν − ∂βAα

ν , with the definitions of the effective fields Eν,
Bν as in Eqs. (6) and (7) with the neutrino current replacing
the electron current. As we shall see in Sec. III B, the
introduction of the effective electric and magnetic fields for
the weak and ponderomotive force allows us to extend the
general relativistic Vlasov-Maxwell system of equations to
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take into account neutrino interactions in a very straight-
forward manner.

1. Validity of our model

If we look at the early Universe, we find that the
semiclassical approximation is marginally verified for
T ≳MeV, where the ratio between the neutrino
de Broglie wavelength and the plasma skin depth takes
the simple expression λν=de ≃ 0.95g�eðTÞ1=2, with g�eðTÞ the
effective number of degrees of freedom of the electrons. For
T ≳MeV, g�eðTÞ does not vary significantly with temper-
ature, and thereforewe have λ=de ≃ 1.5–1.6 for awide range
of temperatures from the QCD crossover (T ∼ 100 MeV) to
the end of the lepton epoch (T ∼ 0.5 MeV). After the
electron-positron annihilation, only a small number of
electrons are left, and the electron skin depth becomes
much larger than the neutrino de Broglie wavelength, see
Fig. 1. Through a similar argument, it can be shown that for
T ≳MeV the de Broglie wavelength of the electrons/
positrons is of the same order of the interparticle distance
dn ¼ n−1=3e . While in this regime quantum effects start to
become important, we treat the pair plasma as nondegen-
erate for simplicity.
To formalize the validity of the mean-field approxima-

tion we also compare the force on the electrons due to
collisions with neutrinos Fcoll ∼ σνenνpνc, where σνe is the
scattering cross section and pν the relativistic momentum
of the neutrinos, with the ponderomotive force due to
collective neutrino-electron interactions Fν ∼

ffiffiffi
2

p
GF∇nν.

Assuming that the scale of variation of the neutrino number

density is of the order of the plasma skin depth, the
condition jFcollj ≪ jFνj requires that

λν
dn

≫ 0.032G0
FT

2γ1=2e

�
dn
re

�
1=2

; ð8Þ

where G0
F ¼ GF=ðℏcÞ3, γe is the relativistic Lorentz factor

for the electrons, and re is the classical radius of the
electron. In other words, for the collective effects due to the
ponderomotive force to prevail over particle scattering,
the de Broglie wavelength of the electron has to be greater
than a certain minimum value which depends on temper-
ature and is proportional to the interparticle distance [note,
however, that the right-hand side of Eq. (8) is extremely
small, with values in the range of 10−12 to 10−6 for the
temperatures of interest]. At the QCD transition, when the
electrons and the neutrinos are in thermal equilibrium with
the radiation field, this condition is largely satisfied, and the
collisional force is 10−8 weaker than the ponderomotive
force. After the electron-positron annihilation, the magni-
tude of the collisional forces further decreases (see Fig. 1).

B. The FRW metric

The metric of the spacetime considered in this work is
the spatially flat Friedmann-Robertson-Walker (FRW)
metric

ds2 ¼ dt2 − a2ðtÞ
X

i¼1;2;3

ðdxiÞ2; ð9Þ

with t the cosmological time, xi the comoving spatial
coordinates, aðtÞ the scale factor normalized so that a ¼ 1
at present time, and where we adopted natural units with
c ¼ 1. The metric can be further simplified by introducing
a conformal time coordinate η defined as dη ¼ a−1ðtÞdt, so
that gμν can be recast in the form

gμν ¼ a2ðηÞ × diagð1;−1;−1;−1Þ: ð10Þ

The only nonzero Christoffel symbols of the flat FRW
metric in Eq. (10) are

Γi
0i ¼ Γi

i0 ¼ Γ0
μμ ¼

a0

a
¼ _a; ð11Þ

where the indices can take values of i ¼ 1, 2, 3 and μ ¼ 0, 1,
2, 3, and where we used a prime (dot) to indicate differ-
entiation with respect to conformal (cosmological) time.

III. DERIVATION OF THE MODEL

Our aim is to develop a simplified model for neutrino-
plasma interactions in an expanding spacetime described
by the flat FRW metric, which we assume to be externally
fixed. In order to do so, we proceed by first deriving a

FIG. 1. De Broglie wavelength (λν) of the neutrinos in the early
Universe (solid red line). The shaded area represents the region of
validity of the semiclassical (black dashed line) and mean-field
approximations (black dash-dotted line), while the hatched area
denotes the electron-positron annihilation. Finally, the region
shaded in blue indicates the time of the QCD crossover. Our
model is marginally applicable for T ≳MeV, while for T ≲
10 keV the semiclassical and mean-field approximations are well
respected.
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system of kinetic equations for the ions, electrons, and
neutrinos that are coupled to Maxwell’s equations. We then
integrate the kinetic equations in momentum space to
obtain a set of fluid equations in comoving coordinates.
To avoid confusion, in the next sections we will be careful

to distinguish quantities defined with respect to the FRW
metric in Eq. (10), from those defined in a flat spacetime (the
“laboratory” frame), which will be denoted by carets.

A. Maxwell’s equations

Maxwell’s equations in the FRW metric have been
derived in numerous works before—both in “3þ 1”
split formalism, see, e.g., [38,39], and in covariant
formulation—we will therefore only give a brief summary
below. In covariant form, Maxwell’s equations read

Fμν
;μ ¼ 4πJν; F½αβ;γ� ¼ 0; ð12Þ

where Fμν and Jμ are the electromagnetic field tensor and
the electric 4-current, respectively, the semicolon operator
represents the covariant derivative and where we have used
the antisymmetric tensor notation to express the Gauss-
Faraday law. For the flat FRWmetric in Eq. (10), we obtain

∂
∂η ða

2ÊÞ ¼ ∇ × ða2B̂Þ − 4πða3ĴÞ; ð13Þ

∂
∂η ða

2B̂Þ ¼ −∇ × ða2ÊÞ; ð14Þ

∇ · ða2ÊÞ ¼ 4πða3ρ̂Þ; ∇ · ða2B̂Þ ¼ 0; ð15Þ
where the spatial derivatives are taken with respect to
comoving coordinates, Ê, B̂ are the flat-space electric and
magnetic fields, and ðρ̂; ĴÞ the flat-space electric current
density. As is well known, Eqs. (13)–(15) are formally
identical to the standard electrodynamics equations in
Minkowski space [which they reduce to for aðtÞ ¼ 1] if
we define the following conformal quantities

E¼ a2Ê; B¼ a2B̂; J¼ a3Ĵ; ϱ¼ a3ρ̂: ð16Þ

B. Collisionless kinetic equations

In this section, we derive the kinetic equations for the
ions, electrons, and neutrinos in the flat FRW metric. We
note that a different derivation of the relativistic neutrino
kinetic equations using methods from finite temperature
quantum field theory can be found in Ref. [26] for the
Minkowski spacetime. For a generic particle species s, the
evolution of the single-particle distribution function fs in
the absence of collisions is given by the general relativistic
Liouville’s equation [40,41]

dfs
dτ

¼ gαβ
dxα

dτ
∂fs
∂xβ þ gαβ

dpα

dτ
∂fs
∂pβ

¼ 0; ð17Þ

where τ is the proper time and pα the 4-momentum. In
Eq. (17) dxα=dτ and dpα=dτ are determined through the
equations of motion of the particle, and ensure that we
stay on the hypersurface defined m ¼ const of the eight-
dimensional phase space ðxα; pαÞ [41]. For instance, the
trajectory of a particle with mass m and electric charge q
that moves in a fixed gravitational field in presence of an
electromagnetic field is given by the usual Lorentz-Einstein
equations [41]

dxμ

dτ
¼ pμ

m
;

dpμ

dτ
þ Γμ

λνp
λuν ¼ qgανFμνuα; ð18Þ

where uα ¼ pα=m. Using the formal analogy between the
electromagnetic force and the weak force explored in
Sec. II A, it is straightforward to extend Newton’s law to
account for the neutrino interaction in the equations of
motion by simply adding the term

P
ν q

W
sνgαβF

μβ
ν uαs (where

the sum is over the neutrino/antineutrino flavors and their
corresponding antiparticle) on the right-hand side of
Eq. (18) for the plasma constituents, and replacing the
Lorentz force with

P
s q

W
sνgαβF

μβ
s uαν in the case of neutrinos,

where the sum now runs over the particle species and their
corresponding antiparticle.
In the flat FRW metric, Eqs. (17) and (18) can be

considerably simplified if we introduce the conformal
momentum pα ¼ a2pαð¼ap̂αÞ, which allows us to rewrite
the kinetic equation as

� ∂
∂ηþ v̂ ·∇þ dp

dη
·
∂
∂p

�
fsðx;p; ηÞ ¼ 0; ð19Þ

where the gradient is in comoving coordinates x, and where
we used the chain rule to express the derivative with respect
to the space component of the conformal momentum p in
the kinetic equation. In terms of the new coordinates, the
force acting on the ions/electrons and neutrinos becomes,
respectively,

dp
dη

¼ qsðEþ v̂s ×BÞ þ
X
ν

qWsνðEν þ v̂s ×BνÞ; ð20Þ

dp
dη

¼
X
s

qWsνðEs þ v̂ν ×BsÞ; ð21Þ

with qi ¼ Zie (qe ¼ −e) for the ions (electrons), and where
the conformal effective fields of the weak interaction and of
the ponderomotive force have been introduced analogously
to Eq. (16), i.e. Es ¼ a2Ês, Bs ¼ a2B̂s and so on for Eν,
Bν. We note that in Eqs. (19)–(21), the flat-space velocity
variable v̂ is related to the conformal momentum p by the
relation

v̂ ¼ p
p0

¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2a2ðηÞ

p : ð22Þ
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Without the neutrino interaction terms, Eqs. (19)–(21)
reduce to the equation of motion of a charged particle in
conformal coordinates [42].
Together with Maxwell’s equations derived in Sec. III A,

Eqs. (19)–(21) constitute the relativistic Vlasov-Maxwell
equations for neutrino-plasma interactions, with the system
closed by the definition of the conformal charge and current
density in terms of the single-particle distribution function

ϱ ¼
X
s¼i;e

qs

Z
d3pfs; J ¼

X
s¼i;e

qs

Z
d3p
p0

pfs: ð23Þ

C. Fluid equations

To derive the fluid equations of the plasma and the
neutrino populations, we integrate Eq. (19) in conformal
momentum space, treating ðη; x;pÞ as independent vari-
ables. We therefore define the conformal number density
and stress-energy tensor for the species s as

Nα
s ¼

Z
d3p
p0

pαfs; Tαβ
s ¼

Z
d3p
p0

pαpβfs; ð24Þ

which are related to the corresponding flat-space quantities
as Nα

s ¼ a3N̂α
s and Tαβ

s ¼ a4T̂μν
s . The equations for

number, momentum, and energy conservation for each
particle species can thus be derived by multiplying Eq. (19)
by 1,p, and p0, respectively, and integrating in d3p. Note
that p0, is not an independent variable, but is instead
defined in terms of ðp; ηÞ. Indeed, it is easily shown that

∂p0

∂η ¼ a0p0

a

�
1 −

p2

ðp0Þ2
�
;

∂p0

∂p ¼ p
p0

: ð25Þ

We now assume that the ions, electrons, and neutrinos
can be represented as perfect fluids, ignoring effects due to
viscosity and heat conduction. For a perfect fluid, the
conformal stress-energy tensor takes the simple form [43]

Tαβ ¼ ðeþPÞÛαÛβ −Pηαβ; ð26Þ

where Ûα ¼ ðγ; γûÞ is the hydrodynamic 4-velocity of the
fluid for a flat-space observer (we follow Eckart’s con-
vention for the definition of Ûα), ηαβ is the Minkowski
metric, and where we introduced the total (rest plus
internal) conformal energy density e and the conformal
pressure P in the rest frame of the fluid, which differ from
their ordinary flat-space counterparts by a factor of a4.
Similarly, the conformal current density is expressed in
terms of the hydrodynamic 4-velocity as Nα ¼ nÛα,
where n is the conformal number density in the rest frame
of the fluid.
With these definitions, the continuity, momentum, and

energy equations for the plasma species read

∂ðγsnsÞ
∂η þ∇ · ðγsnsûsÞ ¼ 0; ð27Þ

∂½γ2sðes þPsÞûs�
∂η þ∇ · ½γ2sðes þPsÞûsûs þPs1�

¼ qsγsnsðEþ ûs ×BÞ þ
X
ν

qWsνγsnsðEν þ ûs ×BνÞ;

ð28Þ

∂½γ2sðes þPsû2sÞ�
∂η þ∇ · ½γ2sðes þPsÞûs�

¼ −
a0

a
ð3Ps −esÞ þ qsγsnsûs ·Eþ

X
ν

qWsνγsnsûs ·Eν;

ð29Þ

which reduce to those derived in [42] if we discard the
neutrino interaction terms. The neutrino fluid instead obeys
the following momentum and energy equations:

∂½γ2νðeν þPνÞûν�
∂η þ∇ · ½γ2νðeν þPνÞûνûν þPν1�

¼
X
s

qWsνγνnνðEs þ ûν ×BsÞ; ð30Þ

∂½γ2νðeν þPνû2νÞ�
∂η þ∇ · ½γ2νðeν þPνÞûν�

¼ −
a0

a
ð3Pν − eνÞ þ

X
s

qWsνγνnνûν ·Es; ð31Þ

with the same continuity equation as in Eq. (27). To close
the system of fluid equations, an equation of state that
relates internal energy and pressure is needed for each
species; we will specify an appropriate equation of state for
the fluids in Secs. IVA and IV B. As a last step, we express
the effective fields of the weak and of the ponderomotive
force in terms of conformal quantities. The procedure is
straightforward and yields

Es;ν¼−
1

a2

�
∇ðγs;νns;νÞþ

∂ðγs;νns;νûs;νÞ
∂η −

3a0

a
γs;νns;νûs;ν

�
;

ð32Þ

Bs;ν ¼
1

a2
∇ × ðγs;νns;νûs;νÞ: ð33Þ

Note the presence of an additional term in Eq. (32) which
is proportional to a0=a ¼ Ha, with H the Hubble constant.
This term originates from the conformal time derivative of
the number current N̂ ¼ a−3γnû in the definition of the
effective fields Es;ν, Bs;ν [Eqs. (6) and (7)] and can be
understood as a correction due to the expansion of the
Universe.
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IV. SIMPLIFIED FLUID MODELS OF
NEUTRINO-PLASMA INTERACTIONS

The equations derived thus far allow for a complete
description of neutrino-plasma interactions in the FRW
metric and in the hydrodynamic approximation, treating the
particle species as separate fluids. Starting from the fluid
equations, it is now possible to obtain simplified models
that are suitable for analytical or numerical studies. In
particular, we are interested in describing the effects of
collective neutrino interactions on the generation of mag-
netic fields after the QCD transition and after the electron-
positron annihilation.

A. Neutrino-electron-positron plasma

At the QCD crossover (T ∼ 100 MeV), the quarks and
gluons combine to form baryons and mesons. Soon after
the QCD crossover, nucleons begin to annihilate with their
antiparticles, a process that is completed by the beginning
of the lepton epoch, where the leptons dominated the mass
content of the Universe [44]. As the number density of
these heavier particles rapidly decreases, we can neglect

their effect on the neutrinos and consider a pair plasma
made of electrons and positrons.
We assume that, while the electrons and the positrons are

treated as a relativistic fluid, their bulk velocity satisfies
ûe ≪ c. This is a reasonable approximation insofar as the
individual particle motions are randomly distributed in all
directions. For simplicity, we further assume that electrons
and positrons have the same internal energy and pressure
ee ¼ eē ¼ e=2, Pe ¼ Pē ¼ P=2, with e, P the internal
energy and pressure of the electron-positron fluid. To
describe the evolution of the electron-positron plasma,
we introduce the total number density n and bulk fluid
velocity û,

n ¼ ne þnē; û ¼ neûe þnēûē
ne þnē

: ð34Þ

The electric current generated by the relative motion
between the positive and negative charges is given by
J ¼ eðneûe −nēûēÞ and its evolution is obtained by
combining the momentum equation (28) for the positrons
and electrons in the so-called generalized Ohm’s law

∂
∂η

�
e
mp

ðep þPpÞûp −
e
me

ðee þPeÞûe
�
þ∇ ·

�
e
mp

ðep þPpÞûpûp −
e
me

ðee þPeÞûeûe þ
�
ePp

mp
−
ePe

me

�
δij

�

¼ e2
�
np

mp
þ ne

me

�
Eþ e2

�
npmp þneme

mpme

�
û ×B − e

mp −me

memp
J ×Bþ

X
s¼e;p

X
ν

qWsν
qsns

ms
ðEν þ ûs ×BνÞ; ð35Þ

where we have kept all the terms for later convenience.
For an electron-positron plasma, Eq. (35) simplifies

considerably: in particular, we note that the Biermann
battery terms cancel out following the assumption of equal
pressure for the positrons and the electrons; moreover, the
Hall term (proportional to J ×B) also vanishes identi-
cally for an equal mass pair plasma. Finally, neglecting
the time derivative and the nonlinear terms on the left-hand
side—as is customary in the derivation of the MHD
equations—the generalized Ohm’s law reduces to

E ¼ −û ×Bþ
ffiffiffi
2

p
GF

e
½ðEν −Eν̄Þ

þ û × ðBν −Bν̄Þ�: ð36Þ

Following standard procedure, we obtain the fluid
equations for the pair plasma combining Eqs. (27)–(29)
for the positrons and electrons under the assumption of
quasineutrality (ne ¼ nē) and we use Eq. (36) to eliminate
the electric field. Together with the induction equation, the
fluid equations for the pair-neutrino plasma are

∂n
∂η þ∇ · ðnûÞ ¼ 0; ð37Þ

∂½ðeþPÞû�
∂η þ∇ · ½ðeþPÞû ûþP1�

¼ J ×B −
ffiffiffi
2

p
GF

e
J × ðBν −Bν̄Þ; ð38Þ

∂e
∂ηþ∇ · ½ðeþPÞû�¼J ·E−

ffiffiffi
2

p
GF

e
J ·ðEν−Eν̄Þ; ð39Þ

∂B
∂η ¼ ∇ ×

�
û ×B −

ffiffiffi
2

p
GF

e
ðEν −Eν̄Þ

−
ffiffiffi
2

p
GF

e
û × ðBν −Bν̄Þ

�
; ð40Þ

withJ ¼ ∇ ×B=4π, since the bulk motions of the plasma
is nonrelativistic and thus the displacement current in
Ampère’s law can be neglected. Note that we implicitly
use the ultrarelativistic equation of statePe;ē ¼ ee;ē=3, and
that we have discarded the anisotropic terms in the pressure
tensor.
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In the induction equation (40) new terms have appeared
due to the ponderomotive force exerted by the neutrinos on
the electron-positron plasma (note that the electrostatic part
of the effective potential, proportional to ∇nν, vanishes
identically in the curl). These terms are functions of the
neutrino flux Jν ¼ γνnνûν and are independent of the
value of B, and can thus act as a source for the generation
of a seed magnetic field in the early Universe (see Sec. V
for further discussion).

1. Neutrino equations

The system of Eqs. (37)–(40) is closed by the equations
for the neutrinos, which we rewrite hereafter in terms of the
neutrino flux Jν and of the neutrino chemical potential
μν ≡ ðeν þPνÞ=ðnνaÞ:

∂ðγνnνÞ
∂η þ∇ ·Jν ¼ 0; ð41Þ

∂ðaγνμνĴνÞ
∂η þ∇ · ½aγμνðγνnνÞ−1ĴνĴν þPν1�

¼ �
ffiffiffi
2

p
GFðγνnνðEe −EēÞ þ Ĵν × ðBe −BēÞÞ; ð42Þ

∂ðaγ2νμνnν −PνÞ
∂η þ∇ · ½aγνμνĴν�

¼ −
a0

a
ð4Pν−aμνnνÞ �

ffiffiffi
2

p
GFĴν · ðEe −EēÞ; ð43Þ

where the subscript ν can take values of ν ¼ νe; ν̄e and
where the plus sign (minus sign) refers to electron neutrinos
(antineutrinos).
For T > mν, largely verified before the e − p annihila-

tion, the neutrinos are ultrarelativistic and the appropriate
equation of state Pν ¼ eν=3 ¼ aμνnν=4 can be used to
further simplify the above equations. The opposite limit of
cold neutrinos (T < mν) can be obtained by neglecting
thermal effects (Pν ¼ 0) and replacing γνμν → Eν, where
Eν is the specific energy of the neutrino fluid. Finally, the
equations of an ideal fluid consisting of massless neutrinos
can be retrieved by neglecting the pressure and the trace of
the stress-energy tensor [first term on the right-hand side of
Eq. (43)], and replacing γνμν → Eν throughout.

B. Neutrino-electron MHD

After the electron-positron annihilation (T < 0.5 MeV),
only a small excess of electrons survived and the global
charge of the Universe resides in the electrons and in the
protons [44]. These particles interact with the relativistic
neutrinos and their evolution can be appropriately
described through a magnetohydrodynamic formulation
that treats the protons and electrons as a single fluid, while
the neutrinos are evolved separately, as done in [30] for
neutrino-plasma interactions in a flat metric (see also
[45,46] for MHD models in a FRW metric but without

neutrinos). A simpler approach, which we adopt in this
work, is to neglect the motion of the protons and develop a
model to study the dynamics of electrons and neutrinos
only. This framework, which we call neutrino-electron
MHD (NEMHD), is similar in spirit to electron-MHD
(EMHD) models [47–50], where the ions only form a
neutralizing background and the electron inertia is
neglected. Note that, while in this section we focus mostly
on electron-proton plasmas, we will use the terms “ions”
and “protons” interchangeably to account for the fact that—
as the temperature decreases—the plasma will also contain
heavier elements.
To derive the NEMHD model, we start from the

generalized Ohm’s law assuming nonrelativistic bulk
motion of the ions and electrons. The derivation is
analogous to the previous case of the electron-positron
plasma and the final result is formally identical to Eq. (35)
with the replacement of the subscript p (for positrons) by i
(for ions), and where the ion-electron bulk velocity û and
current density J now are

û ¼ nimiûi þnemeûe
nimi þneme

; J ¼ eðniûi −neûeÞ: ð44Þ

In order to simplify Eq. (35), we assume plasma
quasineutrality (ni ≃ne) and then take the limit of
slow ions ûi ≪ ûe and inertialess electrons. These last
two assumptions define the EMHD approximation,
which is applicable on length scales (l) in the range
c=ωpe ≪ l ≪ c=ωpi, with ωpe;i ¼ ð4πne;ie2=γe;ime;iÞ1=2
the electron (ion) plasma frequency [48,49]. In this regime,
the second-order terms in the divergence and the time
derivative of the generalized Ohm’s law proportional
to the electron velocity can safely be neglected, as they
would introduce a correction of order Oðc2=ω2

pel2Þ in
the induction equation. With these assumptions, û ≃ ûi,
J≃−eγeneûe, and the generalized Ohm’s law simplifies to

E ¼ −
∇Pe

ene
þ ð∇ ×BÞ ×B

4πene

þ
X

ν¼νe;ν̄e

qWeν
e

�
Eν −

ð∇ ×BÞ
4πene

×Bν

�
; ð45Þ

where only electron neutrinos and electron antineutrinos
now contribute to the generation of electric fields as a result
of the EMHD approximation. The limit of slow ions and
inertialess electrons has two further important conse-
quences: (i) the dynamics of the ions is effectively
decoupled from that of the electrons, as they only provide
a neutralizing background for the electron flow, and (ii) the
motion of the electrons is not independent but follows from
the evolution of the magnetic field through the induction
equation, since ûe ¼ −ð4πeneÞ−1∇ ×B. In fact, replacing
ûe in the continuity equation (27), we find that ne remains
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constant in conformal time. As a result, the internal
dynamics of the electrons is entirely determined by the
induction equation (14) and by the internal energy equa-
tion, which we rewrite using Eq. (45) in the limit of a
nonrelativistic gas as follows:

∂ðaPeÞ
∂η þ ûe ·∇ðaPeÞ þ

5

3
aPe∇ · ûe ¼ 0; ð46Þ

where we used the adiabatic equation of state for the elec-
tron gas. Note that Eq. (46) is the conformal counterpart of
the energy equation of an ideal fluid with adiabatic index
equal to 5=3, and is equivalent to stating that the (modified)
entropy density of the electrons se ¼ ln aPen

−5=3
e is a

material invariant. In the same nonrelativistic limit for the
electrons, the leading contribution [up to order Oðû2e=c2Þ]
to the effective fields of the weak interaction equations (32)
and (33) is

Ee ≃ −
1

a2
∇ne; Be ≃ 0: ð47Þ

We remark that, in the case of the positron-electron plasma
analyzed before, the zeroth-order contributions of the
positrons and the electrons to the neutrino equations cancel
out, and thus it was necessary to keep the higher-order
corrections to accurately describe the neutrino-plasma
interaction. For an electron-proton plasma no such can-
cellation occurs and the relativistic corrections can be
neglected.
We are now in position to write the full NEMHD system

for neutrino-electron interaction, which consists of the
following equations:

∂se
∂η ¼ ∇ ×B

4πene
·∇se; ð48Þ

∂ðγνnνÞ
∂η þ∇ ·Jν ¼ 0; ð49Þ

∂ðaγνμνĴνÞ
∂η þ∇ · ½aγμνðγνnνÞ−1ĴνĴν þPν1�

¼ ∓
ffiffiffi
2

p
GFγνnν

a2
∇ne; ð50Þ

∂ðaγ2νμνnν −PνÞ
∂η þ∇ · ½aγνμνĴν�

¼ −
a0

a
ð4Pν − aμνnνÞ ∓

ffiffiffi
2

p
GF

a2
Ĵν ·∇ne; ð51Þ

∂B
∂η ¼ ∇ ×

�∇Pe

ene
−
ð∇ ×BÞ ×B

4πene

þ
ffiffiffi
2

p
GF

ea2

� ∂
∂η −

3a0

a

�
ðJν −Jν̄Þ

þ
ffiffiffi
2

p
GF

ea2
ð∇ ×BÞ
4πene

×∇ × ðJν −Jν̄Þ
�
; ð52Þ

where we expressed the energy equation of the electrons in
terms of the specific entropy, and where the minus sign
(plus sign) now refers to electron neutrinos (antineutrinos).
Note that in the NEMHD equations ne is not a dynamical
variable, but is constant in time (though it may vary in
space), as a result of the electron-MHD approximation.

V. DISCUSSION

An important application of collective neutrino-plasma
interactions is the self-consistent production (or the sub-
sequent amplification) of a primordial magnetic seed. In the
early Universe, magnetic fields can potentially be generated
through a variety of processes, including, but not limited to,
inflationary production [16], first-order phase transitions
[51]—where the Biermann battery [52] is also expected to
operate—and plasma vorticity in the late radiation era [53]
(see, e.g., [54,55] for reviews).
In our model, magnetic fields can be generated if the

difference between the neutrino and antineutrino currents is
nonzero, as we can see from Eqs. (40) and (52). In fact, if
we take Eq. (42) and subtract the corresponding equation
for antineutrinos, the terms proportional to the effective
fields Ee and Be do not cancel out—thanks to Eq. (2)—
but rather add up to produce a difference in the neutrino
fluxes. From a physical point of view, this is the result of
the presence of inhomogeneities in the electron distribution
that push the neutrinos and the antineutrinos away from
each other.
In an electron-positron plasma, however, the contribu-

tions of electrons and positrons act in opposite directions
and self-consistent generation of a seed magnetic field is
possible only in the presence of a local net charge
imbalance ne −nē ≠ 0. This is in fact the case in our
Universe, where at the time of the QCD crossover there was
a small excess of electrons compared to positrons of the
order of 10−9 [56], which resulted in the presence of
leftover electrons in the present day. In such a scenario,
magnetic fields can be generated through a “neutrino
battery” mechanism (in clear reference to the well-known
Biermann battery), whereby, substituting ∂ðJν −Jν̄Þ=∂η
in the equation for the electric field, there appears the
following new term:

E ¼ …
2G2

F

ea3kBT
ðnν þnν̄Þ∇ðne −nēÞ ð53Þ
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(where we assumed for simplicity that neutrinos and
antineutrinos have nonrelativistic bulk motions and the
same energy Eν ≈ kBT), which has a rotational component
if neutrino gradients are misaligned with electron/positron
gradients, and is present even in the case of an initially zero
neutrino flux difference. Contrary to the usual Biermann
term, the neutrino battery does not vanish if the plasma
remains barotropic during the QCD crossover (as one
would expect if the QCD is not, in fact, a first-order phase
transition [57]), since the turbulent fluctuations in the
thermodynamic properties of the plasma generated at the
phase transition will not be perfectly correlated with those
of the neutrino field. The relevance of this result also lies in
the fact that it does not require physics outside of the
Standard Model to explain primordial magnetogenesis,
such as axion-photon coupling [58], or other processes
that break conformal invariance (see, e.g., [55] and refer-
ences therein).
Assuming a lepton asymmetry of the order of ∼10−9ne,

we can estimate the electric field produced by the neu-
trinos as

eE ≃ 10−9a2
�

kBT

ð ffiffiffi
2

p
G0

FÞ−1=2
�

4 kBT
LH=2

; ð54Þ

where LH is the particle horizon, which generates a
magnetic seed at the QCD crossover of BQCD ∼ 10−46 G.
Despite being very small, this initial seed can undergo
significant amplification before being damped by cosmo-
logical expansion through a small-scale dynamo produced
by the turbulence at the QCD. In fact, as suggested by
lattice simulations [59–61], if turbulent velocity fluctua-
tions of the order of δu ∼ 1=

ffiffiffiffiffiffiffi
3g�

p
(with g� the effective

number of degrees of freedom) are excited on scales of
l ∼ 0.1LH, the Reynolds number at the crossover is
expected to be large (Re ≃ δu × l=λmfp;ν ≳ 104, where
λmfp;ν is the neutrino mean free path), and the magnetic
seed grows exponentially on a timescale comparable to the
viscous-scale eddy turnover time ∼Re−1=2tQCD ≪ tQCD,
reaching the equipartition field strength (in comoving units)
with the turbulent energy of ∼0.1 μG [58]. If the magnetic
field is then frozen in in the expanding plasma, this
equipartition value would correspond to a magnetic field
strength at recombination of ∼10−3 nG [58], close to the
5 × 10−3 − 0.1 nG range which results from constraints
from the cosmic microwave background anisotropy and
current magnetic fields in galaxy clusters [62–65]. We
remark that the effectiveness of the small-scale dynamo in
amplifying the small magnetic seed strongly depends on
the turbulent levels at the QCD crossover. Estimates of the
δu based on primordial density fluctuations would put the
plasma at the QCD transition in the highly subsonic regime,
reducing the Reynolds number and slowing down the
magnetic seed amplification [66,67].

The neutrino battery mechanism outlined above can be
understood as a second-order process (i.e. proportional to
G2

F), whereby small inhomogeneities in the electron/posi-
tron distribution create a nonzero net neutrino flux, which
in turn generates an electric field. Alternatively, if a net
neutrino flux is already present at the QCD phase transition
(e.g., as a result of the turbulence at the crossover),
magnetic fields can be generated and amplified through
such terms as a0=aðJν −Jν̄Þ and ∇ × ðJν −Jν̄Þ that are
proportional to GF and therefore constitute first-order
processes. A similar distinction was also made in [15].
We note that the presence of inhomogeneities in the

neutrino distribution are not strictly required for the
production of a magnetic field. In fact, differences between
the number densities of neutrinos and antineutrinos are
sufficient to generate strong magnetic fields. This is likely
to be the case, e.g., in the core of protoneutron stars, where
electron neutrinos are produced in large numbers by
electron capture on nucleons [68,69], or in the early
Universe in the presence of a neutrino asymmetry [70,71].

A. Summary and conclusions

In this paper, we derived a theoretical framework to
study the effect of collective interactions between neutrinos
and the plasma in an expanding universe. Starting from the
relativistic kinetic equations for the particle distribution
function in the FRW metric, we obtained a simplified fluid
model that attempts to capture the main effects of neutrino-
plasma interactions. In particular, we looked at two differ-
ent scenarios where the neutrinos could lead to generation
of a primordial magnetic field, namely (a) the lepton epoch,
where we considered a pair electron-positron plasma
(Sec. IVA), and (b) at the end of electron-positron an-
nihilation (Sec. IV B), where we looked at an electron-
proton plasma in the limit of slow ions and inertialess
electrons. In both scenarios, we identified a promising
mechanism that can generate primordial magnetic fields
based on a neutrino battery process, whereby misaligned
gradients in the number density of the neutrino and electron
populations act as a source term in the induction equation.
Our model differs from that of Brizard et al. [15], who

derived the relativistic fluid equations for collective neu-
trino-plasma interactions through a Lagrangian variational
principle, in that we focused our attention on the effects of
an expanding spacetime on the neutrino-plasma dynamics,
and found that new terms appear in the induction equation
that are proportional to the expansion rate of the Universe.
To our knowledge, this result had not been obtained in the
literature before. On the other hand, for a static universe
(a ¼ 1), Eqs. (27)–(31) reduce to those in [15]. Due to their
simplicity, our equations can thus serve as the basis for
further numerical or analytical studies of magnetic field
generation in the early Universe. A more detailed discus-
sion on the potential applications of our model is left for
future work.
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