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A B S T R A C T   

What drives inequalities in the uptake of low-carbon energy technologies? Research has shown that people on 
higher incomes are significantly more likely to access and benefit from policies designed to boost uptake of clean 
energy technologies than those with lower incomes, revealing a pervasive inequality issue. Yet little is known 
about how these inequalities evolve or interact with factors beyond income alone, understanding of which is 
crucial to designing policies which do not simply replicate or exacerbate existing inequalities going forward. This 
paper thus advances the novel “feed-in-tariff trap” theory, which posits that, rather than income alone, peer 
diffusion and socioeconomic factors compound to widen inequalities in the uptake of low-carbon technologies 
over time. Using a combination of mixed effects and piecewise structural equation modelling, this theory is tested 
on the adoption of 21,206 household-level wind and solar PV installations across 6976 micro-level data-zones in 
Scotland between 2009 and 2020 under the UK government feed-in-tariff. It finds crucially that: (1) household 
solar PV and wind are adopted consistently in higher-income areas, (2) peer diffusion is strongest in higher 
income areas with high early adoption rates, and (3) socioeconomic conditions are extremely temporally stub
born. Combined, this trifecta creates an inequality “trap”, locking the benefits of low-carbon technology subsidies 
into the same higher income areas and widening the gap in uptake between more affluent and deprived com
munities as a result. Recommendations are given on how best to address this, with implications for anyone 
concerned with a “just” transition going forward.   

1. Introduction 

With the “just transition” to net zero now front-and-centre of na
tional and international energy ambitions, understanding who gets to 
access and reap the benefits of clean energy policies across societies is 
crucial to ensuring that this transition is both fair and equitable (Colli, 
2020; European Commission, 2020; Heffron and McCauley, 2018; Jen
kins et al., 2018; McCauley et al., 2019a). Low-carbon technology 
incentive schemes, such as feed-in-tariffs, have been especially effective 
in encouraging citizens to reduce the carbon footprint in their homes 
through installing small-scale, clean energy generation technologies like 
household solar PV and wind turbines (Castaneda et al., 2020; Cher
rington et al., 2013). Feed-in-tariffs incentivise the uptake of these 
technologies by effectively paying people for the clean electricity that 
they generate, which in turn can provide substantive social and eco
nomic benefits for participants (Balta-Ozkan et al., 2015; Curtin et al., 
2018; Grover and Daniels, 2017; Hitaj and Löschel, 2019; Winter and 
Schlesewsky, 2019). Beyond mitigating CO2 emissions, research sug
gests that feed-in-tariffs can provide people with additional income, 

reduce energy bills and help to alleviate fuel poverty, with related 
second-order benefits for health, social capital and wellbeing (Berka 
et al., 2020; Kosugi et al., 2019; Kucher et al., 2020; Richler, 2017; van 
der Waal, 2020). 

For these benefits, however, accessing policies like the feed-in-tariff 
(or any similar grant, subsidy or loan scheme designed to promote the 
uptake of clean energy technologies among citizens) can be expensive in 
time, knowledge and money (Balta-Ozkan et al., 2015; Coffman et al., 
2016; Fikru, 2020; Lukanov and Krieger, 2019; Sunter et al., 2019). 
Making use of such policies generally requires people to own their 
homes, while most still also incur an upfront time and financial cost (Rai 
et al., 2016; Richler, 2017; Sommerfeld et al., 2017). As such, higher 
income groups are distinctly better placed to access and benefit from 
such initiatives than those living on lower incomes or experiencing 
poverty and deprivation, creating a persistent and pervasive issue of 
inequality and energy justice (Lacey-Barnacle, 2020; McCauley et al., 
2019b; Sovacool et al., 2019). Research has confirmed that this 
inequality exists in a number of places, with lower-income groups and 
communities found to be less likely to access and benefit from domestic 
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energy initiatives in the US, Australia, Italy, Tokyo, Switzerland, Swe
den, the UK and others (Coffman et al., 2016; Fikru, 2020; Kucher et al., 
2020; Kwan, 2012; Li and Yi, 2014; Lukanov and Krieger, 2019; Som
merfeld et al., 2017; Sunter et al., 2019; Wolske, 2020). This inequality 
poses a fundamental problem for governments concerned with ensuring 
a just transition: because technologies supported by grants and subsidies 
can have substantive social and economic benefits for users, the con
centration of those benefits within mid- and high-income groups risks 
repeating and further exacerbating existing socioeconomic inequalities. 

Understanding how these inequalities emerge and evolve is thus 
essential to ensure that opt-in grant and subsidy schemes designed to 
promote the uptake of new, low-carbon technologies do not simply 
become mechanism of replicating or exacerbating existing injustices. In 
addition to cost, however, informational barriers also exist around 
accessing grant and subsidy schemes, such as knowing about the policy 
in the first place, how to initiate action, where to find up-front finance if 
required, technical capacity and knowledge of the installation process, 
along with who to approach as trusted installers and intermediaries to 
conduct the work. One way in which these informational barriers can be 
overcome is through peer diffusion. Previous empirical research has 
found consistently that areas with already-high rates of uptake are more 
likely to see new capacity added than places where uptake has not 
previously occurred, through the influence of early adopting peers and 
neighbours who can help to inform others about relevant bureaucratic 
processes, connect them with experienced actors, convey the benefits 
and reduce informational uncertainties (Bach et al., 2020; Bollinger 
et al., 2012; Busic-Sontic and Fuerst, 2018; Carattini et al., 2018; Korcaj 
et al., 2015; Rai et al., 2016; Richter, 2014; Snape, 2016; Thormeyer 
et al., 2020). 

While typically held apart in empirical work, however, it follows that 
peer diffusion can contribute to widening socioeconomic inequalities, 
since higher incomes within a group or area increases the likelihood of 
uptake in the first instance, which in turn creates scope for peer diffusion to 
take place. Combined with socioeconomic circumstances being persis
tent over time, these factors create an environment whereby early in
equalities in grant, loan or subsidy access can be locked in, leaving social 
and economic benefits of these policies concentrated strongly within 
already higher-income groups at the perpetual exclusion of those on 
lower incomes (who arguably also stand to benefit the most from pay
ments or savings). Considering these factors together is essential to 
creating a more complete picture of the social and economic processes 
that cause inequalities to emerge and widen not just in feed-in-tariffs but 
in any opt-in, subsidy or decentralised innovation initiative, to ensure 
policymakers are equipped to create a fully “just” transition going 
forward. 

To help understand this process, this paper thus advances a novel 
“feed-in-tariff trap” theory, which posits that socioeconomic factors and 
peer diffusion combine to effectively “trap” socioeconomic inequalities 
in low-carbon technology uptake over time. Using a combination of 
mixed effects and piecewise structural equation modelling, this theory is 
tested on 21,206 household-level solar PV and wind feed-in-tariff in
stallations across 6976 data-zones in Scotland between 2009 and 2020. 
Analysis shows that (1) household solar PV and wind are adopted 
consistently in higher-income areas, (2) peer diffusion is strongest in 
higher income areas with high early adoption rates, and (3) socioeco
nomic conditions are extremely temporally stubborn. These findings 
lend considerable support to the feed-in-tariff trap theory, revealing that 
that financial and social factors which drive access inequalities are 
interlinked and temporally persistent, with stark implications for 
anyone concerned with ensuring that the design of policies geared to
wards net zero are fair and equitable in future. 

This paper makes two significant contributions to the literature. 
First, it demonstrates that inequalities in feed-in-tariff access are not 
simply a static function of disparate economic or social mechanisms, but 
that these factors are both connected and stubborn. This is important: 
subsidized initiatives which rely on people accessing services themselves 

are vulnerable to this combination of deprivation and diffusion creating 
similar inequality traps, and so understanding this relationship can help 
to avoid such issues in future, particularly as efforts to encourage 
households to install heat pumps and energy efficiency measures are 
increased (UK Government, 2020a). Second, it introduces a novel 
piecewise structural equation approach, which can be a powerful tool 
for more robustly unpacking causal mechanisms and complex theories 
within the wider energy policy field (Lefcheck, 2016a). To the author’s 
knowledge, piecewise structural equation modelling has not yet been 
applied within mainstream energy policy literature, and so this serves as 
an innovative and powerful contribution for promoting novel 
theory-testing approaches that are often found lacking in the discipline 
(Sovacool et al., 2020). 

2. Theory 

Both income and peer diffusion have been found to be separately 
important mechanisms in driving the adoption of household solar PV 
and wind technologies under the feed-in-tariff and similar policies. In
come has been found to be an especially powerful determinant of 
household solar PV uptake in a number of locations. People with higher 
incomes and in higher-income areas have been found to be more likely 
to adopt household solar PV than lower income groups in the US, 
Australia, Italy, Tokyo, Switzerland, Sweden, the UK and others (Coff
man et al., 2016; Fikru, 2020; Kucher et al., 2020; Kwan, 2012; Li and Yi, 
2014; Lukanov and Krieger, 2019; Sommerfeld et al., 2017; Sunter et al., 
2019; Wolske, 2020), revealing a fairly widespread and entrenched so
cioeconomic inequality. Beyond financial means alone (which are of 
course fundamental), this disparity is linked to a number of different 
mechanisms. Lower income groups are less likely to own their homes 
and often live in built-up urban areas, creating issues of capacity for 
installation both legally and physically, while people who live in poverty 
are typically more concerned with more immediate basic needs like 
affording food and housing, in addition to dealing with the psycho-social 
stresses that poverty itself can create (McDonald et al., 2020). Under 
these conditions then, and with the steep up-front costs of installing new 
energy systems, finding the time and resources to navigate administra
tive policy and installation processes can be a monumental challenge 
(Balta-Ozkan et al., 2015; Coffman et al., 2016; Fikru, 2020; Lukanov 
and Krieger, 2019; Sunter et al., 2019). Environmental justice research 
reveals that these inequities also have gendered, racial and health di
mensions (Lukanov and Krieger, 2019). 

Beyond these well-established socioeconomic inequalities, however, 
significant informational barriers also exist in accessing grant and sub
sidy initiatives: people interested in utilising any such policy require 
some degree of political efficacy to know how to initiate action, while 
knowing how to then navigate the installation process, which suppliers 
can be trusted, and who to contact regarding tariffs and payments can be 
unclear in the first instance (Rai et al., 2016). One way in which these 
informational barriers can be overcome is through peer diffusion (Ali
pour et al., 2020; Bach et al., 2020; Balta-Ozkan et al., 2015; Bollinger 
et al., 2012; Busic-Sontic and Fuerst, 2018; Carattini et al., 2018; Korcaj 
et al., 2015; Richter, 2014; Thormeyer et al., 2020). Peer diffusion refers 
to the diffusion of ideas, practices or behaviours through social in
teractions within shared networks and communities (Bollinger et al., 
2012; Wolske et al., 2015). This may be between neighbours, within 
similar social groups and networks of both place and interest, or through 
digital communication (Kloppenburg and Boekelo, 2019). In terms of 
low-carbon technologies, people within similar communities or social 
networks are more likely to install a solar PV system, for instance, where 
neighbours, friends or other members of that network have already done 
the same (Bollinger et al., 2012; Noll et al., 2014; Rai et al., 2016; 
Richter, 2014; Rode and Weber, 2016), or where charities and organi
zations are present and working to actively raise awareness (Balta-Oz
kan et al., 2021). Members of a network, neighbourhood or community 
who have their own systems can stimulate diffusion by reducing 
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uncertainty associated with technical, bureaucratic and financial pro
cesses, helping others within the network to overcome informational 
barriers, while the visible presence of installations within an area can 
also help generate wider interest (Rai et al., 2016; Rode and Weber, 
2016; Wolske et al., 2015). 

Empirical quantitative research into the effects of peer diffusion thus 
finds that previously installed low-carbon technologies or access to 
policies promoting this within in an area is strongly linked to the like
lihood of future installations within the same area (Bollinger et al., 2012; 
Richter, 2014). This has been found consistently at the neighbourhood, 
post-code and county levels across various contexts (Bach et al., 2020; 
Noll et al., 2014; Rai et al., 2016; Thormeyer et al., 2020). While limi
tations exist in explaining diffusion beyond defined spatial units (since 
social networks are rarely confined to single geographical areas), evi
dence suggests that peer diffusion within geographic units is strong and 
persistent (Carattini et al., 2018; Thormeyer et al., 2020). 

2.1. The feed-in-tariff trap 

For this individual importance, however, it makes sense for these two 
factors to be considered together, especially for grant and subsidy 
schemes such as the feed-in-tariff which rely on people opting-in and 
initiating action themselves. Since peer diffusion relies on there being 
people within a neighbourhood or community who have already 
accessed the feed-in-tariff, and since higher income groups are more 
likely to access the feed-in-tariff at higher rates overall, it stands to 
reason that peer diffusion could effectively lock in or even exacerbate 
socioeconomic inequalities in feed-in-tariff access over time. Thought 
about practically, higher incomes/lower levels of poverty and depriva
tion increase the likelihood to access the feed-in-tariff in the first place 
(Coffman et al., 2016; Fikru, 2020; Kucher et al., 2020; Kwan, 2012; Li 
and Yi, 2014; Lukanov and Krieger, 2019; Sommerfeld et al., 2017; 
Sunter et al., 2019; Wolske, 2020), which in turn helps to reduce 
informational barriers within communities and neighbourhoods; create 
a network of trusted installers and intermediaries; reduce technical and 
policy uncertainties and ultimately create the potential for peer diffu
sion to happen (Rai et al., 2016; Rode and Weber, 2016; Wolske et al., 
2015). 

Conversely, in areas of higher poverty and deprivation, the scope for 
adopting new technologies is restricted by issues of ownership, poverty 
stressors and priorities and financial capacity, which means that the 
scope for diffusion to take place in future is also limited as a result: those 
networks are not established, and so informational barriers remain. This 
creates a double disadvantage for groups and areas experiencing higher 
levels of poverty and deprivation, in that two avenues for potential 
uptake are subsequently restricted. It thus follows that areas with lower 
levels of deprivation are more likely to access the feed-in-tariff and in 
turn reduce informational barriers within these areas, compared to areas 
with higher levels of deprivation, low levels of adoption and subse
quently limited scope for diffusion. 

Rather than the independent effects of these mechanisms, then, the 
intrinsic link between the two creates an environment wherein in
equalities can be accelerated. The “feed-in-tariff trap” theory presented 
here thus aims to unpack this relationship (although the feed-in-tariff is 
the example used here, this can apply in principle to any grant, loan, or 
subsidy scheme designed to encourage uptake of low-carbon measures 
at the household-level). In essence, it posits that income and poverty 
levels predominantly determine the likelihood of adoption within a 
given locality, which in turn allows for peer diffusion to take place. If 
inequalities emerge among early adopters, then these inequalities can be 
compounded by peer diffusion. Combined with the temporally enduring 
nature of socioeconomic conditions (i.e. high-income areas tend to 
remain high-income areas while low-income areas tend to remain low- 
income over time), these effects create an inequality “trap”, whereby 
more affluent groups benefit from both socioeconomic capacity and the 
subsequent peer diffusion effects, while deprived groups are limited on 

both fronts, leading to extremely stubborn inequalities in feed-in-tariff 
access over time. Fig. 1 visualises this model more clearly. 

In this figure, the horizontal arrows represent the link between each 
factor and the same factor at the previous time point (KW represents 
installed household energy capacity under the feed-in-tariff within a 
given area). The diagonal line represents the link between income and 
installed capacity. Across all time periods, lower income/higher levels of 
poverty and deprivation are associated with lower likelihood of 
household-level energy being installed under the feed-in-tariff. Previous 
levels of installed capacity then affect the likelihood of adding capacity 
in future through peer effects such as learning and word-of-mouth from 
neighbours, social networks and community members. Socioeconomic 
conditions as represented here by income is then linked to socioeco
nomic conditions within an area at t-1, t-2 and so on. This final link is 
critical: the trap theory does not simply suggest that poverty or income 
and peer diffusion are both important determinants of feed-in-tariff 
access at any time point, but that socioeconomic conditions are also 
extremely stubborn over time. Because of this stubbornness, these in
equalities in access to the feed-in-tariff can deepen and grow. 

These relationships are finally hypothesized as: 

H1. Higher-income areas are likely to have higher levels of domestic 
feed-in-tariff access than more deprived, lower-income areas. 

H2. Areas where installed domestic feed-in-tariff capacity already 
exists are more likely to see new feed-in-tariff installations than areas 
with no prior installations. 

H3. Previous income levels strongly predict future income levels. 

3. Model 

3.1. Piecewise SEM 

To test the feed-in-tariff trap theory, piecewise structural equation 
modelling (SEM) was selected as a method with unique capacity for 
unpacking its component parts. Structural equation modelling is a form 
of path analysis that resolves complex multivariate relationships be
tween variables (Lefcheck, 2016a). In terms of theory-testing, SEM is a 
powerful tool for understanding relationships beyond regression anal
ysis alone (Bollen and Pearl, 2013; Shipley, 2016). This is because var
iables in SEM can take the form of both predictors and responses: SEM 
lends itself especially well to testing cyclical, bidirectional, cascading or 
mediating effects with multiple output variables, where traditional 
models tend towards more straightforward, independent linear analysis 
(Grace, 2008). In the case of the feed-in-tariff trap, relationships are 
expected between the same variables across several timepoints as both 
predictor and response, meaning that linear regression may run into 
issues of collinearity. SEM is thus preferred over a series of basic mul
tiple regressions (although these are also tested for robustness across a 
number of different multi-level specifications, with results included in 
the Appendix). 

Also known as confirmatory path analysis as initially proposed by 
Shipley (2009), Piecewise SEM is a particularly effective and computa
tionally efficient version of SEM where latent variables are not incor
porated (Lefcheck, 2016b; Shipley, 2016; Stenegren et al., 2017), as is 
the case here, and with in-built ability to deal with hierarchical and 
multi-level models. The root of piecewise SEM is a set of linear equations 
representing the individual paths between observed variables within the 
theoretical model, that are then pieced together and assessed for model 
fit within a single causal framework (rather than simply running a series 
of independent or multiple linear regressions on various different 
dependent variables). In this case, the theoretical model is captured in 
the paths outlined in the hypothesized “feed-in-tariff trap” from Fig. 1. 
The equations representing the paths between these models is given in 
section 4.4. 

Within that causal framework, piecewise SEM goodness-of-fit 
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procedures consider the entire model together, rather than solely the 
statistical significance of single variables, meaning that the full theo
retical model is tested for significance, rather than individual variables 
in isolation. That is, piecewise SEM goodness-of-fit measures test for 
significance in all possible directional relationships and pathways be
tween all variables within a model, identifying spurious or “over
saturated” models using d-separation tests, and so models need to be 
carefully specified from robust and considered theory-building pro
cesses in advance (Zur et al., 2018). All specified response variables 
within the model are given coefficients and R2 figures to assess signifi
cance of and variance explained by the specified relationships. Analysis 
was conducted using the piecewiseSEM package in R (Lefcheck, 2019). 

4. Data 

With government bodies such as the Just Transition Commission 
dedicated to ensuring an equitable path to net zero (Scottish Govern
ment, 2019), Scotland is a useful case in which to examine these in
equalities. Through the Community and Renewable Energy Scheme 
(CARES), the Scottish Government have made a concerted effort to 
promote the growth of local, community and small-scale energy systems 
under the feed-in-tariff. The rapid growth in wider local energy systems 
from 204 MW at the start of the decade to over 750 MW installed ca
pacity today is the result of ambitious targets (1 GW installed capacity 
by 2020, 2 GW by 2030) which were extended after the initial target of 
500 MW installed capacity by 2020 was surpassed 5 years early (Energy 
Saving Trust, 2015). For this impressive feat, however, analysis con
ducted in 2013 suggested that income inequalities in access to local- and 
household-level energy were already emerging (Haggett et al., 2013). 
Given the rapid expansion since then in solar PV and given Scotland’s 
vast natural capacity for wind, there is distinct potential for this 
inequality to have grown considerably. 

The Scottish Government also collects highly localised data on 
poverty and multiple deprivation, providing an opportunity to under
stand this relationship in more depth at a high resolution. Two key 
datasets were thus combined for the analysis: the Scottish Indices of 
Multiple Deprivation (SIMD) and OFGEM feed-in-tariff registration 
information. 

4.1. Scottish Indices of Multiple Deprivation 

The SIMD data is collected by the Scottish government every 4 years 
and includes 38 indicators of deprivation across 7 categories of income, 
employment, health, education, crime, housing and access to services 
(Scottish Government, 2020). This data is divided into 6976 data-zones: 
small-scale areas of 500–1000 people, which then fit into electoral 
wards (3–5000 people) and local council areas. Prominent differences 
exist across local authority areas in particular: different councils can 
differ starkly in their geographic and demographic make-up, bureau
cratic process, executive and council partisanship and available funding. 
To account for these unobserved differences, mixed effects were applied 
with the piecewise SEM model using random intercepts on local au
thority areas. Random intercepts were opted for to allow the baseline of 
the model to vary across local authority areas and account for unob
served differences: because it is not anticipated that this variance 

between local authority areas will be uniform, random intercepts allow 
for a summary of the effect rather than an average effect that risks being 
biased in a fixed effects model. This was finally deemed appropriate with 
a Hausman Test. Four waves of the SIMD were combined for use in this 
analysis: 2009 – the year before the feed-in-tariff was introduced, 2012, 
2016 and 2020 – the most recent year available. 

4.2. Feed-in-tariff registration data 

Feed-in-tariff data was collected from OFGEM Feed-in-Tariff regis
trations. Data was scraped using Python from a Renewable Energy 
Foundation (2020) database, which has information on all 
FiT-registered small-scale renewable energy systems below 5 MW in the 
UK. This information includes post code, size of installation, type of 
technology, ownership (domestic, community, industrial, commercial), 
parliamentary constituency and local super output area (LSOA), which 
corresponds to SIMD data zones in the case of Scotland. According to 
Scottish government figures, as of June 2019, there was approximately 
731 MW installed feed-in-tariff capacity in Scotland (Energy Saving 
Trust, 2020). The feed-in-tariff data accounts for 727.4 MW, or 99.9% of 
that in total. Capacity was aggregated first by installation date to 
correspond with the waves of the SIMD. Installations pre-2009 were 
matched to the 2009 wave of the SIMD; capacity installed between 2009 
and 2012 were matched with the 2012 wave; installations between 2012 
and 2016 were matched with the 2016 wave; and all installations 
post-2016 were included as 2020. Capacity was then aggregated and 
merged with the SIMD by data-zone. To give a better idea of how the 
data is combined and the distribution of FiT capacity in Scotland, 
installed capacity (kW) by data-zone across Scotland is mapped in Fig. 2. 

4.3. Included variables 

4.3.1. New capacity added 
The key dependent variable is a binary response indicating whether 

or not new domestic energy capacity was added within a data-zone at a 
given time point. This was chosen predominantly because it is not 
anticipated that the relationship between previous and future levels of 
capacity are strictly linear. Due to the relatively small number of people 
within data-zones themselves, the amount of capacity that can realisti
cally be added as time goes on naturally decays. A binary variable where 
1 = new capacity added and 0 = no new capacity was thus created as a 
more consistent indicator across all time points. 

4.3.2. Income deprivation 
The second key variable within the model is level of income depri

vation within a data-zone, which is measured in the SIMD as the pro
portion of people within a data-zone claiming state benefits, ranging 
from 0 to 60\% of the data-zone population. Income deprivation is 
selected as the main independent variable for two reasons. First, actual 
income is not available consistently in Scottish data at this resolution 
and so income deprivation is the most meaningful measure available. 
Second and more fundamentally, because income deprivation is speci
fied within the SIMD as the proportion of people within a given data- 
zone claiming non-pension state benefits, it more closely corresponds 
with poverty and other measures of deprivation than purely income 

Fig. 1. The feed-in-tariff trap.  

F. Stewart                                                                                                                                                                                                                                         



Energy Policy 163 (2022) 112832

5

alone, meaning that the social impacts outlined in the literature review 
(rather than solely financial aspects) are also somewhat accounted for. 
Through preliminary data exploration, variance inflation factors showed 
income deprivation to absorb a vast majority of the impacts of other 
theoretically interesting deprivation measures. Control variables typi
cally are not included within structural equation models. This is the case 
here. 

4.4. Written equations 

The basic component equations from the feed-in-tariff trap model 
with the inclusion of random intercepts on local authority areas are 
specified as follows. The first equation is a generalized linear mixed 
effects model, where new capacity installed is the key binary dependent 
variable. The second equation is a linear mixed effects regression where 
income deprivation is a contin-uous linear output. PiecewiseSEM has no 
issue handling both logistic and linear regression within the same model 
framework.  

installij,t = βincomeij,t + βinstallij,t− 1 + uj + εij                                    (1) 

Where  

incomeij,t = βincomeij,t− 1 + uj + εij                                                    (2) 

Equation (1), then, uses new installed capacity as the output vari
able. In this equation, installij,t is a binary variable indicating whether or 
not new capacity was added within a data-zone i at time t; βincomeij,t is 
the coefficient on level of income deprivation within a data-zone at time 
t; βinstallij,t− 1 is the coefficient on whether or not a data-zone had new 
installed capacity at the previous time point to capture peer diffusion; uj 
is the random intercept for local authority area j; and εij are finally the 
level-1 residuals, which are assumed to be normally distributed. 

Equation (2) is then a linear mixed effects regression with the same 
basic overview, only with income deprivation as the main dependent 

variable, and income deprivation at the previous time point as the key 
predictor. These models were tested independently as mixed effect re
gressions using the lme4 package., before testing for the full theoretical 
model when pieced together within the feed-tariff-trap framework. 
Piecewise SEM analysis was conducted using the piecewiseSEM package 
in R (Lefcheck, 2019). 

5. Results 

5.1. Descriptive statistics 

Basic descriptive statistics in Fig. 5 give a picture of the distribution 
of installed capacity in Scotland, broken down by technology and 
deprivation groups as of 2020. Within the SIMD, data-zones are ranked 
on their overall deprivation level, which is determined by the combi
nation of all 38 measures from within the SIMD. This deprivation rank is 
divided into deciles for visualization. 

Fig. 3 thus shows a substantial disparity across deprivation deciles 
for both solar PV (left) and wind systems (right), with installed capacity 
concentrated heavily in medium-high income groups. In both cases, the 
very lowest income groups lag significantly behind, revealing a fairly 
stark inequality as anticipated. Also interesting from these descriptive 
statistics is that the share of installed capacity appears to tail off at the 
upper-middle groups, which is consistent with previous analyses 
(Grover and Daniels, 2017; Lukanov and Krieger, 2019). This could be 
for a number of reasons. Given that household wind and solar are often 
cited as something that could potentially save on energy costs, it may be 
that those in the more affluent brackets have a less urgent need. It may 
also be a question of values, although this is not addressed here. 

Fig. 4 then presents the growth in total feed-in-tariff installations 
across each wave of the SIMD, demonstrating how this inequality has 
expanded over time. As is to be expected, there is a considerable spike in 
the growth of FiT installations in the 2012 wave immediately after feed- 

Fig. 2. Installed domestic FiT capacity in Scotland by SIMD data-zone.  
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in-tariff rollout in 2010. While this is the biggest growth spurt of new 
installations, between 2012 and 2016 growth is also considerable, 
particularly in the higher middle groups 7 and 8. Between 2016 and 
2020, the number of new installations then tail-off considerably as the 
policy was wound to a close. 

Table 1 finally shows the results of a basic generalized linear mixed 
effects logistic regression with new capacity installed as the dependent 
variable. For this analysis, random effects were also added on data-zone 
to account for there being repeated observations, and on year to account 
for the decay in uptake over time. From this table, two things are clear. 
First, the R2 (variance explained within the model) is increased sub
stantially with the inclusion of mixed effects on both data-zones and 
across local council areas. This suggests that differences in local council 
areas are substantial and so accounting for these with mixed effects is 
justified. Other model specifications were tested for robustness (no local 
council effects, solar and wind only) and outputs are given in Appendix 
A. The relationship holds across all analyses, with the mixed effects 

Fig. 3. Installed domestic FiT capacity by deprivation decile.  

Fig. 4. MW feed-in-tariff capacity by SIMD wave.  

Table 1 
Mixed effects regression.  

Predictors New installed capacity 

Log-Odds 

(Intercept) − 3.573*** 
Income deprivation − 0.597 *** 
KW capacityt-1 0.563 *** 
Random Effects 
σ2 3.29 
τ00 Data Zone 0.86 
τ00 Council area 1.17 
τ00 year 1.07 
Observations 20922 
Marginal R2 /Conditional R2 0.044/0.253 

*p < 0.05 **p < 0.01 ***p < 0.001. 
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model showing the strongest fit. 
Second, the mixed effects regression output demonstrates that each 

of the key independent variables – income deprivation and lagged 
installed capacity – are statistically significant. This lends tentative 
support to H1 and H2, showing that higher levels of income deprivation 
reduce the likelihood of a new system being installed under the feed-in- 
tariff (H1), and that capacity being installed in an area already increases 
the likelihood (H2), both significant at the p < 0.005 level. While 
independently significant, however, what this model does not demon
strate is how these factors link together over time within the feed-in- 
tariff trap model. For this, we turn to the output of the piecewise SEM. 

5.2. Structural equation model 

The piecewise SEM model was specified using the hypotheses and 
path diagram given in Fig. 1. Accepted model fit measures for piecewise 
SEM are Fisher’s C, which gives local estimation for piecewise SEM 
equivalent to chi-squared (χ2), and the Root Mean Squared Error of 
Approximation (RMSEA) (Lefcheck, 2016a; Shipley, 2016). In the case 
of χ2 and equivalents such as Fisher’s C for assessing model fit, a p-value 
of >0.05 (rather than <0.05 as is typically the case with p-values) in
dicates a good model fit, with a higher p-value generally desirable. For 
RMSEA, the thresholds are <0.08 for an adequate model fit and <0.05 
for a good model fit. In the model presented, the p-value on Fisher’s C is 
0.397 (>0.05) with a RMSEA of 0.011, indicating that the model is a 
good fit overall. 

Fig. 5 gives the full output of the structural equation model. On the 
left of the figure, the greyed out sections represent the 2009 wave of the 
SIMD before the feed-in-tariff came into play in 2010, represented by the 
dotted vertical line. KW_12 is then the 2012 wave of the SIMD, which is 
the first wave after the feed-in-tariff came into play. This has been 
labelled the "early adopter" wave to reflect. Standardized estimates 
rather than unstandardized coefficients are provided to allow us to 
better compare the magnitude of the effects of each independent 
variable. 

From these estimates, there is considerable support for the feed-in- 
tariff trap. As anticipated, levels of income deprivation are consis
tently significant determinants of the likelihood of new installations 

(although somewhat less so prior to FiT rollout), with data-zones with 
high levels of income deprivation being less likely to access the feed-in- 
tariff than less deprived groups at all time points, lending support to H1. 
Installed capacity at $t-1$ is then a strong indicator of the likelihood of 
adding new capacity at $t$, significant at the $p$ < 0.001 level for each 
of the included waves of data. This is true also of deprivation, with 
model coefficients suggesting that previous levels of income deprivation 
are a very strong indicator of future levels, lending support to H2 and H3 
respectively. 

In terms of the magnitude of these effects, some relationships and 
time periods have stronger impacts than others. Of these significant 
causal relationships, the impact of income deprivation on the likelihood 
of installation of new capacity within a given data-zone is consistent 
across each time period, ranging from − 0.25 to − 0.39 respectively, 
showing that areas with higher levels of income deprivation are signif
icantly less likely to have household systems installed under the feed-in- 
tariff than higher income, lower deprivation areas. The relationship 
between previously installed capacity on the likelihood of a new 
installation is also strongly significant, particularly between 2012 >
2016: for this time period, peer diffusion was an even stronger predictor 
than income deprivation (− 0.25 vs. 0.32 respectively). Comparatively, 
the peer effect from 2016 > 2020 is then smaller, although still positive 
and significant. 

Beyond the direct relationships between immediately prior time 
points, the analysis also revealed significant effects from previous time 
points as represented by the dotted lines. Accounting for these effects is 
important since peer effects may not necessarily be tied exclusively to 
capacity installed at the immediately previous time point. In the case of 
installed capacity, significant links were drawn from 2012 > 2016 and 
2012 > 2020. Perhaps surprisingly, it is actually the case that installed 
capacity in 2012 has a stronger effect on the likelihood of new capacity 
in 2020 than installed capacity in 2016. That is, installed capacity in a 
data-zone by the early adopters in the years immediately after the feed- 
in-tariff was first introduced had a strong direct effect on the likeli
hood of installations in both 2016 and 2020. While there is some minor 
effect between the pre-FiT 2009 wave and installations among early 
adopters, the strongest modelled peer effects stem from this early 
adopter wave. This suggests that peer diffusion is most prominent in 

Fig. 5. Output of piecewise structural equation model.  
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those data-zones with high levels of early adoption. 
Finally, Table 2 shows the R2 of each response variable within the 

model; that is, the amount of variance in each response variable 
explained by the predictor variables. Marginal R2 gives the variance in 
each variable explained before mixed effects are included, while con
ditional R2 includes the variance explained with full mixed effects 
applied. From these results, then, we can see that a significant amount of 
variance in the response variables are again accounted for within the 
model. In the case of new capacity being added, deprivation levels and 
previously installed capacity accounts for an average of 23% of variance 
within the data, ranging from 11% in 2020 to as high as 35% in 2016. 
These numbers are significantly higher than the respective marginal R2 

figures (KW12 jumps from 0.07 to 0.23 with the inclusion of mixed ef
fects, for instance), showing that local council areas do account for 
considerable variance within the data. 

More compellingly explained within the model, however, are levels 
of income deprivation, which are almost exclusively explained by 
deprivation levels at the previous time point. At its highest, income 
deprivation in 2016 explains an enormous 95% of the variance in 
deprivation levels in 2020; the lowest figure here from Table 1 is still as 
high as 87%, demonstrating that levels of deprivation are stubborn and 
consistent over time. This finding lends robust support to H3. 

6. Discussion 

This analysis provides strong evidence for the existence of an 
inequality trap in the distribution of FiT installations in Scotland that is 
consistent over time. Inequalities exist and have widened in the adop
tion of household-level energy system along lines of deprivation, with 
more income-deprived communities significantly less likely to adopt 
than areas with lower levels of income deprivation across all timepoints. 
In addition to this, however, peer effects also appear to be significant 
and robust across each time period, suggesting that diffusion within 
data-zones themselves is a strong mechanism in influencing adoption. 
Critically, income deprivation is a strong indicator of adoption in 2012 
immediately after the feed-in-tariff was first introduced, which then has 
strong peer effects at both 2016 and 2020, showing that the inequalities 
that emerged in the immediate years after the feed-in-tariff was intro
duced have been repeating over time, particularly through heightened 
influence of early adopters. Combined within the structural equation 
model, these results suggest that a combination of deprivation levels and 
peer effects have contributed to widening the gap in FiT access across 
socioeconomic groups in Scotland. These results thus point to in
equalities in access to small-scale energy systems being more than 
simply a static function of socioeconomic circumstance alone. Rather, 
income deprivation affects the likelihood of adoption, which in turn 
plants the seed for peer diffusion to take place and lock in those socio
economic inequalities over time. 

Worth noting finally is something that the SEM model output here 
does not show, which is the impact of installed capacity on income 
deprivation. This relationship was tested but produced inconsistent and 
spurious model fit results, suggesting that the relationship is not statis
tically significant. For the feed-in-tariff trap this is significant, however. 
Because installed capacity does not significantly shift the dial on income 
deprivation within data-zones, and because income deprivation is so 

temporally stubborn, this suggests that even in data-zones with high 
levels of installed capacity, those experiencing income deprivation are 
not benefitting directly. This potentially signals a dual inequality gap: 
(1) between deprived and less-deprived data-zones, and (2) between 
deprived and less-deprived households within data-zones as well. 
Because actual income levels are not available at this level in Scotland 
over time, this within data-zone inequality cannot be accounted for, 
although it is broadly supported in findings from household-level studies 
in other contexts and locations (O’Shaughnessy et al., 2020). 

6.1. Limitations 

For these results, there are some elements missing from the analysis 
itself. First and most fundamentally, the proxy used to capture peer ef
fects is just that: a proxy. While useful in lending support to the theorised 
causal relationships, more dedicated, widespread survey research is 
ultimately required to capture actual peer diffusion explicitly. Survey 
research which captures demographic, individual and political infor
mation, while not available in Scotland at this spatial resolution, can 
give a greater depth of understanding not just of the socioeconomic and 
demographic elements of communities but behavioural and individual 
information too, which will also have some part to play. Understanding 
diffusion beyond immediate geography (i.e. through social network 
analysis) or including the location of energy-related community orga
nizations would also glean deeper insights into diffusion across different 
groups and communities. 

Where this analysis considers household-level solar PV and wind 
adoption, it also omits discussion of other types of decentralised system, 
such as community energy projects, or other grant and loan schemes 
which may be theoretically less beholden to financial and informational 
barriers and as such better placed to bring benefit to lower income areas. 
Exploring this empirically would glean valuable comparable insights 
into a potential means for combatting this disparity. There is also a lack 
of connection made between the installation of small-scale energy under 
the feed-in-tariff and the impact this in turn has on income or depriva
tion measures. Given that commonly cited benefits of household-level 
energy include savings on fuel bills, and given that these inequalities 
clearly exist, there is a genuine concern that small-scale energy may also 
make pre-existing income and deprivation inequalities worse. Where 
results here demonstrate the existence of a “feed-in-tariff trap” effect, 
then, how this inequality then affects socioeconomic inequalities re
quires further robust exploration. 

7. Conclusions and policy implications 

These findings have stark implications for energy justice scholars and 
policymakers concerned with the just transition more broadly. Given the 
alleged socioeconomic benefits of household-level low-carbon technol
ogies, the “feed-in-tariff trap” effect uncovers a potential for inequalities 
not only to emerge as a result of low-carbon technology grant and 
subsidy initiatives, but for existing socioeconomic inequalities to be 
further exacerbated as benefits are locked into clusters of higher income, 
early adopter groups. New injustices may arise as a result, or intergen
erational injustices may be replicated as an unintended externality. 
While the feed-in-tariff undoubtedly helped to increase the use of clean 
energy technologies more generally then, its introduction also created a 
significant inequality issue, in part because it is a subsidy which relies on 
individuals opting-in to the scheme and navigating what can be very 
expensive, complex processes. Its winding down by the UK government 
now leaves the Scottish Government with an opportunity to design 
something more deliberately equitable. 

To avoid the trappings of the feed-in-tariff in future, then, policy
makers first need to remain mindful that opt-in schemes designed to 
incentivise low-carbon behaviours and technologies have implications 
not just for those who access them or for wider climate goals, but for 
those who cannot, and so understanding the social elements of those 

Table 2 
Variance explained by SEM model.  

Response variable Marginal R2 Conditional R2 

KW12 0.07 0.23 
KW16 0.09 0.35 
KW20 0.03 0.11 
Income deprivation12 0.94 0.94 
Income deprivation16 0.87 0.87 
Income deprivation20 0.94 0.95  
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inequalities is crucial for a fair and effective distribution of benefits. 
That is not to say that such initiatives should be delayed or eliminated 
altogether – the environmental and social benefits for users are still 
hugely positive – but that a “just” transition will require more targeted 
support, particularly for lower-income groups, as opposed to relying 
solely on individuals to engage the process themselves. This is applicable 
not just to subsidies that require up-front investment but for initiatives 
such as the now-defunct UK government Green Homes Grant (UK Gov
ernment2020b), which briefly provided funding for households looking 
to make their homes more energy efficient. Although the Green Homes 
Grant had in-built priority for lower-income households, for this priority 
to prove meaningful, ensuring that those households are aware of the 
policy and equipped to navigate the process in the first place is 
paramount. 

Dedicated efforts to engage those households and make the process 
as straightforward as possible will thus be key to sharing the benefits of 
net zero under this type of opt-in grant or subsidy initiative. In Scotland, 
an expansion of the current Community and Renewable Energy Scheme 
to include a dedicated service for supporting low-income households in 
accessing various available grants and subsidies could be an effective 
way to leverage existing infrastructure and expertise. Limited Scottish 
and UK Government funding is available for local community groups to 
provide energy-related advice and guidance, although this is extremely 
competitive and often relies on volunteers or already-stretched citizen’s 
advice services to sustain. Funding enough to let advice and advocacy 
outfits professionalise on a larger scale with more visible promotion, 
either in partnership or outwith the existing CARES programme, could 

lead to more effective local targeting of initiatives via people with strong 
local connections. By creating a dedicated outreach and advice service, 
the double disadvantage of income and informational barriers can be 
more effectively overcome. 

Expansion of recent efforts by local authorities and intermediaries to 
coordinate retrofit and low-carbon technology schemes in social housing 
(iPower, 2020) may also provide an innovative jolt to kickstart this 
transition for groups who would typically be excluded (local 
authority-led branches of the Green Homes Grant tentatively had some 
more redistributive success). Policy and regulation which incentivises 
investment in affordable, low-carbon housing may help to limit the need 
for lower-income groups to “opt-in” to subsidies at all. In the absence of 
a feed-in-tariff at the UK government-level then, ambitious incentives 
from the devolved Scottish and local authorities will be crucial to ensure 
that any transition is not only “just”, but that the transition can happen 
on the scale required. 
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Appendix A. Regression model robustness checks  

Predictors Install (no local council) Solar (Mixed effects) Wind (Mixed effects) 

Log-Odds Log-Odds Log-Odds 

(Intercept) − 3.69 *** − 3.90 *** − 4.06 *** 
Income deprivation − 0.43 *** − 0.42 *** − 0.71 *** 
KW capacityt-1 − 1.29 ***   
Solar KW capacity t-1  0.60 ***  
Wind KW capacity t-1   0.26 *** 
Random Effects 
σ2 3.29 3.29 3.29 
τ00 0.96 Data_Zone 0.96 Data_Zone 0.96 Data_Zone  

1.05 year 1.05 year 1.05 year   
0.57 Council_area 3.08 Council_area 

ICC 0.37 0.32 0.51 
N 6976 Data_Zone 32 Council_area 32 Council_area  

3 year 3 year 3 year   
6976 Data_Zone 6976 Data_Zone 

Observations 20922 20922 20922 
Marginal R2 /Conditional R2 0.050/0.106 0.033/0.209 0.066/0.382 

*p < 0.05 **p < 0.01 ***p < 0.001. 

Appendix B. AIC scores  

Model 1 (model included in paper) 5937.8 

Model 2 (no local council effect) 6445.8  
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