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Abstract
Within moments following an earthquake event, observations collected from the affected 
area can be used to define a picture of expected losses and to provide emergency services 
with accurate information. A Bayesian Network framework could be used to update the 
prior loss estimates based on ground-motion prediction equations and fragility curves, con-
sidering various field observations (i.e., evidence). While very appealing in theory, Bayes-
ian Networks pose many challenges when applied to real-world infrastructure systems, 
especially in terms of scalability. The present study explores the applicability of approx-
imate Bayesian inference, based on Monte-Carlo Markov-Chain sampling algorithms, to 
a real-world network of roads and built areas where expected loss metrics pertain to the 
accessibility between damaged areas and hospitals in the region. Observations are gath-
ered either from free-field stations (for updating the ground-motion field) or from struc-
ture-mounted stations (for the updating of the damage states of infrastructure components). 
It is found that the proposed Bayesian approach is able to process a system comprising 
hundreds of components with reasonable accuracy, time and computation cost. Emergency 
managers may readily use the updated loss distributions to make informed decisions.

Keywords Bayesian inference · Critical infrastructure · Seismic risk · Loss updating · Road 
network

1 Introduction

Rapid loss assessment following an earthquake event is of utmost importance for crisis 
managers, in order to quantify the extent of the disaster and localize ‘hot-spots’ before 
planning adequate emergency measures. Therefore, several rapid response systems have 
been developed worldwide, as detailed in the review by Guérin-Marthe et al. (2021). Such 
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tools usually couple shake-maps (i.e., the updated field of ground-motion parameters, 
based on earthquake’s characteristics and recordings from seismic stations) with damage 
and loss assessment models (i.e., fragility or vulnerability functions). While such systems 
are mostly applied to common buildings and the estimation of casualties, the treatment of 
the performance loss of critical infrastructure and its consequences remains mostly over-
looked. Only a few rapid response systems include the damage estimation of infrastructure 
components (e.g., USGS ShakeCast system; Lin et al. 2018), and none of them evaluate 
losses at system level so far. The study by Toma-Danila (2018) proposes an extensive risk 
assessment of the functionality of road networks, with measures of intervention times for 
ambulances and firefighters; however post-earthquake field observations are not taken into 
account. The inherent complexity of infrastructure systems, composed of interdependent 
components of various types, poses extra challenges in terms of modelling and simulation 
time (Franchin 2014).

Moreover, Guérin-Marthe et  al. (2021) introduce a distinction between two types of 
rapid response systems:

• Procedures that do not account for near-real time observations: the characteristics of 
the earthquake (e.g., magnitude, location, style-of-faulting) are just used to generate a 
ground-shaking map from a ground-motion model (GMM). Then, this map is fed into 
damage and loss estimation models in order to generate a very quick overview of the 
situation (TELES, Yeh et al. 2006; QLARM, Trendafiloski et al. 2011).

• Procedures that couple shake-maps of the event with damage and loss estimation mod-
els in order to account for near-real time observations (e.g., USGS PAGER, Wald et al. 
2010; ELER, Zülfikar et al. 2017; Auclair et al. 2014).

In the latter case, integrating strong-motion recordings of the event into the shake-map 
provides more accurate estimates of the intensity measures (IMs) at the vulnerable sites, 
thus leading to more reliable prediction of losses. However, it should be noted that, in most 
cases, only the mean values of the shake-map are used in the loss assessment step, ignoring 
the fact that GMM outcomes describe a full probabilistic distribution of IMs, even when 
conditioned on observations. A rigorous rapid response system should ensure the propaga-
tion of the uncertainties due to the estimation of ground shaking up to loss predictions. 
Therefore, this paper investigates a proof-of-concept rapid response procedure that would 
integrate the following features, in answer to the aforementioned gaps: (1) loss estimation 
for built areas and infrastructure systems, (2) integration of various types of observations 
to constrain the predictions, (3) propagation of all sources of uncertainty, from hazard to 
losses, and (4) ability to treat real-world systems over large areas.

In order to address points (2) and (3), Bayesian Networks (BNs) have emerged as 
a very promising mathematical tool, well adapted to seismic risk analyses that mobi-
lize a probabilistic framework and dependencies between many variables (Bensi et al. 
2011). The inference operations on a BN enable the combination of the initial estimates 
(i.e., prior distribution provided by predictive models) and of field observations (i.e., 
providing evidence at some nodes) in order to generate updated posterior distributions 
of the variables of interest, under Bayes’ rule. Therefore, thanks to their probabilistic 
inference capabilities, BNs constitute an adequate solution for the updating of damage 
and loss estimates in the crisis phase (Bensi et al. 2015). Regarding the ground-shaking 
part, a shake-map algorithm based on Gaussian BNs has also been proposed by Gehl 
et  al. (2017). Bensi et  al. (2013) have demonstrated the application of BN modelling 
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techniques to the seismic risk assessment of infrastructure systems, thus ensuring the 
feasibility of point (1).

However, physical infrastructure components are usually strongly interconnected, 
and most of them contribute to the performance of the system (e.g., sets of bridges con-
tributing to numerous possible routes in a road network). As a result, evaluation of the 
system performance measure (S) based on the combination of the states of n compo-
nents is one typical case of dimensionality curse, as the size of the system node S (i.e., 
linked to the number of parent nodes) grows exponentially with n (i.e., combinatorial 
explosion). Such limitations hinder the application of exact inference algorithms to 
large real-world systems (Cavalieri et al. 2017; Gehl et al. 2018), i.e. point (4).

Bensi et  al. (2013) have explored various strategies based on the BN’s topology in 
order to alleviate the scalability issue: they advocate the grouping of components into 
parallel or series sub-systems through the identification of minimum link sets (MLSs) 
or minimum cut sets, thus limiting the amount of edges converging towards a given 
node. These BN formulations are all based on discrete variables: continuous variables 
(e.g., IM) are discretized into interval sets in order to be combined with variables that 
have discrete states by default (e.g., damage states of a component). More recent efforts 
have focused on solving this issue by improving data structures in discrete BNs and 
reducing memory storage via conditional probability matrices (Byun et al. 2019). This 
matrix-based BN framework has been further generalized by Byun and Song (2021) to 
be applied to multi-state systems. Thanks to the decomposition into minimum link sets 
(MLSs) and the identification of super-components (i.e., sub-sets of components that 
are only in series or parallel), Applegate and Tien (2019) have also proposed a compu-
tationally efficient approach that has the capacity to deal with interdependent infrastruc-
ture systems.

Alternative BN frameworks have also been proposed, such as the use of a compres-
sion algorithm to reduce the memory storage space of the conditional probability table of 
the system node S (Tien et al. 2016, 2017). On the other hand, Pozzi and Der Kiureghian 
(2013) have investigated Gaussian BNs, which consist of continuous variables and have 
therefore the merit of greatly reducing the sizes of (discrete) conditional probability tables 
(CPTs). However, this approach requires all variables to be represented by a Gaussian dis-
tribution, which is not the case of the components’ states (i.e., discrete damage states). This 
strong limitation prevents the use of exact inference algorithms, and approximate inference 
engines, such as importance sampling or Gibbs sampling, have to be used instead.

The aforementioned issues have been identified and characterized by Cavalieri et  al. 
(2017), who examined current challenges posed by the BN modelling of real-world infra-
structure systems, in terms of both computational complexity and level of system analysis 
(i.e., formulation of the system performance measure). These considerations have led to 
the development of an approximate BN approach (Gehl et al. 2018), where an incomplete 
naïve formulation (i.e., a set of component nodes converging towards the system node) is 
learned from off-line stochastic loss scenarios: although less straightforward to implement, 
this method is able to deal with large real-world systems and to estimate elaborate system 
performance measures (i.e., not limited to connectivity analyses). However, this approach 
is based on the sampling of numerous earthquake events in the exposed area, based on the 
regional seismicity, which is not required in a rapid response context where the earthquake 
parameters (location, magnitude) are usually known with reasonable accuracy within min-
utes (Cremen and Galasso 2020). Moreover, the corresponding BN uses discretized vari-
ables in an exact inference scheme, so that the width of the intervals (discrete states) may 
influence the accuracy of the results.
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Most of the aforementioned studies have mostly focused on the component-to-system 
links (e.g., Byun et  al. 2019; Applegate and Tien 2019; Tien et  al. 2016), assuming for 
instance that components are root nodes in the BN, associated with a marginal probability 
of failure, or that a single root node IM points towards all component nodes. However, 
in the context of post-earthquake rapid assessment, the accurate consideration of hazard-
related variables leading to component failure probabilities (and their respective correla-
tion structure) is of utmost importance to reach situation awareness. While the modelling 
of the spatial correlation of seismic IMs has been extensively described by Bensi et  al. 
(2011), its coupling with component and system variables adds yet another layer of com-
plexity. Moreover, seismic responses of components may also be cross-correlated, further 
complicating the structure of the BN. If a discrete BN formulation is adopted, assuming 20 
interval sets for each IM variable (which is not a very accurate description of all possible 
values) may lead to CPT sizes of up to  20n for n vulnerable sites. Strategies to simplify 
the spatial correlation structure, such as Dunnett-Sobel decomposition (Dunnett and Sobel 
1955), may be used; however, they also constitute a form of approximation that becomes 
less accurate for a large number of sites. As an example, the approximate BN approach by 
Gehl et  al. (2018) has partly solved the component-to-system scalability issue; however, 
the computational bottleneck has been moved to the joint estimation of IM at the locations 
of all components in the system.

Therefore, pending the development of ad hoc BN algorithms that are able to address 
some of the scalability issues, it is proposed here to adopt a more pragmatic approach 
based on a sampling inference algorithm (i.e., Monte-Carlo Markov-Chain sampling). This 
procedure, implemented in the OpenBUGS software (Lunn et  al. 2009), has the benefit 
of avoiding some of the scalability issues and of considering different types of variables 
(continuous and discrete). The objective here is not to introduce new inference algorithms, 
but rather to exploit state-of-the-art techniques in order to demonstrate the use of BNs in 
an operational capacity during the rapid response phase. To this end, the following features 
are put forward in the proposed loss updating procedure:

• Joint estimation of the probabilistic distribution of damage to residential buildings and 
connectivity loss of a road network;

• Integration of two types of observations (i.e., evidence), namely the knowledge of the 
IM at some locations of the exposed area (either via accelerometric stations or via mac-
roseismic testimonies) and the estimation of the damage state (DS) of some physical 
components (from structural health monitoring techniques);

• Modelling of the spatial correlation of IMs, as well as the correlation between seismic 
capacities of components;

• Idealization of the road network into a conceptual Super-Network, in order to reduce 
the number of components to process;

• Decomposition of the system into MLSs for connectivity analysis.

 Taken separately, none of the above-listed features constitute original developments; 
however the main novelty resides in their integration under a unique framework in order 
to facilitate the treatment of large real-world systems. Section 2 of this study details the 
proposed BN approach for the loss updating of a road network and a built area. A small 
numerical example is developed in Sect. 3, in order to demonstrate the approach and check 
the accuracy of the sampling scheme. Then, Sect. 4 applies the BN framework to a real-
world area, namely a road network connecting dozens of municipalities in the Pyrenees 
mountain range (France). Finally, results are discussed in Sect. 5, where a sensitivity study 
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is also carried out to investigate the influence of parameters that have been seldom studied, 
such as the correlation between the seismic capacities of the exposed physical components 
(i.e., bridges and building typologies).

2  Proposed approach to update losses from observations

This section describes the procedure that is put forward to update losses in a rapid response 
context, by making use of various types of field observations. First, the main principles 
are outlined, along with the datasets and models that are required for the updating. Then, 
the process to conceptualize the physical road network into an abstract Super-Network is 
detailed. Finally, the implementation of the BN in the OpenBUGS software (Lunn et al. 
2009) is discussed.

2.1  Main principles of the loss updating procedure

The proposed loss updating procedure, summarized in Fig.  1, is articulated around two 
main types of data:

• ‘Static’ data, which includes the conventional models and datasets that are needed to 
perform conventional risk assessment: knowing the characteristics of the earthquake 

Fig. 1  Proof-of-concept of the procedure for the rapid earthquake loss assessment of built areas and infra-
structure systems
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(magnitude and location), a GMM is applied to estimate the IM distributions at the 
locations of the exposed elements, accounting for soil amplification factors. Vulner-
ability models and fragility curves are also used to predict the damage probabilities of 
exposed elements, given the IM distributions. Finally, in the case of a road network, the 
knowledge of the graph topology is also needed in order to access system performance 
measures such as the network connectivity between two points (Argyroudis et al. 2015). 
All these models put together result in the prior distributions of the variables of interest 
(i.e., IM, DS, S).

• ‘Live’ data, which represents the observations (strong-motion recordings and damage 
identification of bridges) that can be entered as evidence in the variables IM and DS. 
The objective is to constrain the prior estimates by generating posterior distributions of 
the variables of interest, given the evidence.

The road network is subjected to a pre-processing step, with the objective of simplifying 
the initial graph topology into an abstract Super-Network that is specifically suited to con-
nectivity analysis. This step has the effect of reducing the network’s size and complexity, 
thus facilitating the identification of MLSs. All the data is then entered in a BN structure, 
which is solved with OpenBUGS: the sampling inference algorithm generates Monte-Carlo 
Markov Chains (MCMCs), which contain numerous samples of all variables, given the evi-
dence. These samples are finally used to build empirical posterior distributions, with the 
effect of improving situational awareness for crisis managers. The loss updating procedure 
is able to generate a wide range of outcomes, such as damage distributions in built areas, 
damage probabilities of bridges or the probability that the road network connectivity is 
lost. The seismic response of bridges may also be updated, given the observations of some 
damaged bridges, so that updated fragility models may be built and applied to subsequent 
earthquakes.

2.2  Road network processing

The proposed BN model currently relies on the estimation of the connectivity loss of the 
network, i.e. whether two given locations along the network are still connected or not 
(binary indicator). Since the analysis is limited to simple connectivity, it is proposed to 
reduce the complexity of the problem by building a conceptual network (i.e., Super-Net-
work) based on the physical one, via the following steps (see Fig. 2):

(a) Starting from a physical network with n nodes and m edges (among which, q bridges 
represent vulnerable edges), only nodes that have a degree equal to 1 (extremities of 
the network) or strictly above 2 (intersections) are kept as nodes of interest.

(b) By virtually removing the q vulnerable edges from the adjacency matrix of the network, 
it is possible to quickly identify all nodes that are accessible from each other without 
crossing a bridge (i.e., the nodes that stay connected with each other in the altered 
adjacency matrix).

(c) These nodes are grouped into a Super-Node: by definition, all nodes belonging to the 
same Super-Node are always connected with each other. If a bridge is used to connect 
two nodes within the same Super-Node, it may be removed from the network (such as 
bridge #4 in Fig. 2). This assumption is only valid when performing a simple connec-
tivity analysis since other performance measures based on travel distance or duration 
would require the knowledge of alternate paths and so on.



Bulletin of Earthquake Engineering 

1 3

(d) The sets of bridges (i.e., vulnerable paths) that are linking two Super-Nodes are iden-
tified: this step is facilitated by the fact that only nodes of degree 2 may constitute 
vulnerable paths (i.e., extremities and intersections are absorbed in Super-Nodes). 
These paths are referred to as Super-Edges, and they represent sub-systems of bridges 
in series. Bridges may be then represented by the coordinates of their centroids.

This step leads to a dramatic reduction of the size of the network: in the example in 
Fig. 2, the initial topology of 15 nodes and 17 edges is simplified into a Super-Network 
of 2 Super-Nodes and 2 Super-Edges.

In order to identify all MLSs, the recursive algorithm proposed by Cavalieri et al. 
(2017) has been implemented. It only considers edges (initially, pipelines in a water 
supply system) as vulnerable components, which is perfectly compatible with the 
notion of Super-Edge (i.e., representing an in-series system of vulnerable bridges). The 
recursion starts with the graph G containing all edges and it identifies the shortest path 
between a predefined origin and destination. Then an edge is removed, and the search 
for the shortest path continues on the reduced graph G*. Each time, the shortest path is 
stored into the list of MLSs, until the whole network has been explored.

2.3  Proposed BN modelling

BNs organize random variables in the form of a directed acyclic graph, where the 
dependencies between the various nodes are represented by conditional probabilities. 
An inference is performed on the BN when one or more nodes are observed (i.e., evi-
dence is entered by specifying a given state) and when the probabilities of the other 
nodes are updated. In the case of a forward analysis, evidence may be entered at the 
root nodes, and the updated distributions can be estimated at the child nodes (e.g., dis-
tribution of infrastructure losses given the occurrence of some natural hazard events). 
Conversely, a backward analysis consists in the inference of the root nodes based on 
the observation of a given child node (e.g., updated distribution of the seismic intensity 
level given the observation of a given loss level).

It is proposed here to build a BN with the OpenBUGS tool (Lunn et  al. 2009), 
which enables the modelling of continuous and discrete variables in the same BN. 
The OpenBUGS library is freely available and integrated in the R (www.r- proje ct. org) 

Fig. 2  Illustration of the construction of a Super-Network from a physical network. a  Initial physical net-
work; b Connectivity without the vulnerable edges; c Creation of Super-Nodes; d Creation of Super-Edges

http://www.r-project.org
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environment (see demonstration script in the Electronic Supplement of the paper). This 
tool has been used in various seismic risk applications, such as the derivation of empiri-
cal fragility functions for residential buildings (Ioannou et  al. 2020), the updating of 
damage models for water pipelines (Gehl et al. 2021), or the integration of various types 
of observations for the identification of structural damage (Tubaldi et  al. 2021). The 
trade-off is the use of approximate inference, via MCMC sampling, instead of exact 
inference such as the junction-tree algorithm (Huang and Darwiche 1996).

For a given earthquake event, the knowledge of epicentre location and magnitude is 
assumed. Then, as shown in Fig. 3, the variables involved in the loss assessment are the 
following:

• The vector IM represents the distribution of the logarithm of the ground-motion 
parameter of interest (e.g., peak ground acceleration, PGA) at the locations i = 1…n 
(for n exposed components) and j = n+1…n+m (for m recordings from seismic sta-
tions). It follows a normal distribution of mean µlogIM and covariance ∑IM.

• The vector C represents the distribution of the logarithm of the seismic response of 
the n components, also expressed in terms of IM. It follows a normal distribution of 
mean µlogC and covariance ∑C.

• The variables DSi represent the binary damage states (0 = failure, 1 = survival) of 
the n components. Each DSi is determined as follows:

• The variables MLSk represent the binary states of the q MLSs. In the case of a road 
network, MLSk = 1 if the MLS route is accessible (i.e., no failed bridges along the 
itinerary, if we assume that bridges constitute the weak link of the transport infra-

(1)
{

DSi = 0 if IMi >Ci

DSi = 1 if IMi ≤ Ci

Fig. 3  Proposed BN formulation for a system decomposed into MLSs and for built areas
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structure), and 0 if not. An MLSk composed of p components follows the Boolean 
rule of an in-series system:

• The variable S represents the performance measure of the system. In the case of a 
road network, it corresponds to the accessibility between two given points A and B 
of the network. Thanks to the MLS decomposition, it follows the Boolean rule of an 
in-parallel system:

With q MLSs, S takes discrete values between 0 and q, thus representing the number of 
possible routes between A and B.

While the left part of the BN in Fig. 3 is relevant for the performance analysis of an 
infrastructure system (such as the connectivity between two locations along a road net-
work), it is also possible to expand the study by considering the damage to common build-
ings. In this case, following the approach detailed in Sedan et al. (2013), built areas are 
represented as polygons (representing building blocks or city districts) of homogeneous 
seismic vulnerability. Then, the distribution of damage states within each built area is 
obtained by applying the semi-empirical vulnerability method by Lagomarsino and Giovi-
nazzi (2006). A vulnerability index V is assigned to each built area, and the mean damage 
grade µD is expressed as a function of the EMS-98 macroseismic intensity IEMS (which is 
obtained from the distribution of IM via ground-motion intensity conversion equations):

 Ultimately, the proportion of damage states in each built area, based on the EMS-98 scale 
(Grünthal 1998), is obtained by applying a discrete beta distribution based on µD (Lago-
marsino and Giovinazzi 2006). Then, by considering a vector V of vulnerability indices, 
of mean µV and covariance ∑V, the BN framework for the damage assessment of common 
buildings may be defined as in the right part of Fig. 3.

The probabilistic variables (IM, C, V) are entered in the OpenBUGS environment, 
along with the mathematical expressions (e.g., Eqs. 1–4) that are needed to define deter-
ministic variables (DS, MLS, S, IEMS, µD). Evidence may be entered for IMj (representing 
ground-motion measurements, as in shake-map procedures), for DSi (the measurement of 
the damage state of some components) and µD (assuming a field inventory of damages in 
some built areas).

The Bayesian inference is performed by initiating several MCMC chains, with dif-
ferent combinations of initial conditions (i.e., starting values of the probabilistic var-
iables). Each chain is built with a Gibbs sampling scheme, where variables are suc-
cessively sampled from the posterior distribution of previous variables: the posterior 
distribution of a variable is obtained from the product of the prior distribution (e.g., the 
initial estimate of IM) and the likelihood function (probability of a given observation 
occurring given the prior distribution).

Within each chain, a large number of samples are generated until convergence is con-
sidered to be reached, by running tests as a calibration step as shown in Sect. 5.1. The 
generated samples are then used to estimate empirical statistics of the variables of inter-
est (i.e., posterior distributions).

(2)MLSk = DS1 ×⋯ × DSp

(3)S = MLS1 +⋯ +MLSq

(4)�D = 2.5

[
1 + tanh

(
IEMS + 6.25V − 13.1

2.3

)]
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2.4  Definition of prior distributions

The prior distributions of the variables that are probabilistically defined (IM, C, V) are 
assumed to follow normal/lognormal distributions, whose parameters are obtained from 
predictive uncertain models.

In the case of IM, the mean of the logarithm of the ground-motion parameter distribu-
tion (µlogIM) is given by a ground-motion model (GMM), based on the earthquake charac-
teristics that are assumed to be known with confidence shortly after the event. The covari-
ance matrix ∑IM is assembled as follows:

 where ση and σξ respectively represent the standard deviations of the inter- and intra-event 
error terms, which are given by the GMM. The term ρij represents the spatial correlation of 
the intra-event error between sites i and j, and it may be defined by available models in the 
literature (e.g., Jayaram and Baker 2009).

The seismic response C of components is provided by fragility curves, where the ele-
ments of µlogC correspond to the median fragility, and the standard deviations of C corre-
spond to the fragility dispersion β. The dispersion term β may be further decomposed into 
βR and βM, which respectively represent the uncertainty due to record-to-record variability 
and the uncertainty due to imperfect knowledge or modelling of the component (Crowley 
et al. 2019). A third type of uncertainty, related to the definition of the damage state thresh-
old, is neglected here for simplification purposes. Therefore, the covariance matrix ∑C is 
expressed as follows:

 The term ρR
ij, representing the correlation of the response due to record-to-record vari-

ability between components i and j, is very difficult to quantify without the knowledge of 
the seismic records used in the derivation of the fragility curves. A qualitative rationale 
may postulate that components i and j – that are spatially very close to each other – may 
experience ground motion inputs with similar characteristics in terms of duration, fre-
quency content, etc. and therefore their record-to-record variability should be fully cor-
related. On the other hand, spatially-distant components are likely to be subjected to dif-
ferent ground motions (e.g., different spectral shapes), and therefore their record-to-record 
variability should be uncorrelated. Such considerations are discussed in Silva (2019), who 
advocates the use of a correlation structure similar to the one that models the spatial cor-
relation of the intra-event error. Although deserving further investigation, this assumption 
is also used here for the characterization of ρR

ij.
The correlation of the component-to-component variability within the same class/typol-

ogy, represented by ρM
ij, also requires more knowledge of how the corresponding fragility 

curves are derived. Therefore, it is proposed to consider the extreme cases in the applica-
tion (see Sect. 4), namely fully correlated or uncorrelated variability, in order to investigate 
the impact of these assumptions on the posterior distributions. The decomposition of the 
dispersion into βR and βM is not always detailed in available fragility models (i.e., only 

(5)Σ
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⎡⎢⎢⎣
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the global dispersion β is specified). Various assumptions regarding this decomposition are 
also tested in the application example.

Finally, the vulnerability indices V of built areas are obtained from a field inventory by 
structural engineers. The standard deviations of the elements of V may be obtained from the 
upper and lower bounds of the vulnerability estimates (e.g., see Table 3 of Lagomarsino and 
Giovinazzi 2006). Regarding the correlation structure, the same issues discussed for the defi-
nition of ∑C hold for ∑V.

3  Numerical verification of the sampling algorithm

This section investigates the accuracy of the OpenBUGS BN on a synthetic test-case. To this 
end, a Gaussian BN is introduced as the reference solution for the small studied system.

3.1  Definition of the synthetic system

The accuracy of the sampling-based inference scheme used in OpenBUGS is firstly investi-
gated on a trivial synthetic system. Two components arranged in-series (e.g., two bridges that 
must be crossed to go from one point to another) are considered: they are respectively 10 and 
15 km away from an earthquake epicentre (with assumed magnitude  Mw 6.3). A PGA obser-
vation is added, located at a site 12.5 km from the epicentre (at an equal distance between the 
two components). Therefore, the corresponding BN is built for a vector IM containing 3 ele-
ments (the first two representing the sites of the components, and the last one the observation), 
and a vector C containing 2 elements (one for each component). The marginal and conditional 
probabilities of all variables involved in this BN are expressed as follows, using the same con-
vention as in Sect. 2.3 (Eq. 1 to 3):

 where φ(∙, µ, Σ) is the multivariate normal probability density function, of mean µ and 
covariance Σ.

 where H(∙) is the Heaviside function, dsi = 0 denotes failure and dsi = 1 denotes survival, 
for i = 1,2.

 where S = 0 denotes disconnection (at least one of the in-series bridges has failed) and S = 
1 denotes accessibility.

(7)
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3.2  Verification method

Such a system is small enough to be solved with a BN using an exact inference algorithm 
such as the junction-tree technique. However, the discretization of all continuous variables 
(IM, C) also represents a challenge that could lead to inaccuracies in the outcome. There-
fore, it is proposed to apply a Gaussian BN to the problem described in Sect. 3.1. A Gauss-
ian BN contains only continuous variables with normal distributions and it also has the 
benefit of being compatible with exact inference algorithms. The Gaussian BN is presented 
in Fig. 4, with the following set of variables and their related distributions:

• Ui, i = 1,2,3: Standard normal variables that are used to model the correlation between 
the IMs.

• Vi, i = 1,2: Standard normal variables that are used to model the correlation between 
the seismic capacities of the components.

• IMi, i = 1,2,3: Logarithm of the IM of interest (here, PGA), which follows a normal 
distribution where the mean is the linear combination of conditioning variables Ui.

In Equation (13), the terms tij are elements of the transformation matrix T, which is used 
to generate a correlated vector Z of standard normal variables by transforming the inde-
pendent variables Ui (assembled into the vector U): Z = TU. The lower triangular matrix 
T results from the Cholesky decomposition of the correlation matrix R, which is obtained 
from the covariance matrix ∑IM in Eq. (5). IM0,i represents the mean GMM estimation of 
IM at location i, and σi is the standard deviation provided by the GMM.

• Cii, = 1,2: Logarithm of the seismic capacity of component i, which follows a normal 
distribution where the mean is the linear combination of conditioning variables Vi.

 

(11)Ui ∼ N(0,1)

(12)Vi ∼ N(0,1)

(13)IMi ∼ N

(
IM0,i + �i

i∑
j=1

tijUj, �
2

)

Fig. 4  Gaussian BN used for 
the numerical verification on 
the synthetic example. Red 
circles represent nodes that are 
evidenced (see Sect. 3.3)
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 In Equation (14), the terms t’ij are elements of the transformation matrix T’, which is 
used to generate a correlated vector Z’ of standard normal variables by transforming the 
independent variables Vi (assembled into the vector V): Z’ = T’V. The lower triangular 
matrix T’ results from the Cholesky decomposition of the correlation matrix R’, which is 
obtained from the covariance matrix ∑C in Eq. (6). C0,i represents the prior mean of the 
seismic capacity of component i, and βi is the standard deviation provided by the fragility 
curve.

• Di, i = 1,2: Damage indicator of component i, which follows a normal distribution 
where the mean is the linear combination of conditioning variables IMi and Ci.

The damage indicator is a continuous variable, however it may be easily interpreted as a 
discrete damage state. If Di is positive, then it means that Ci > IMi, which translates into 
DSi = 1, as defined in Eq.  (1). Conversely, Di being negative implies that DSi = 0 (i.e., 
component failure). Therefore, without breaking the Gaussian assumption in the BN, it is 
possible to access Pf,i, the probability of failure of component i:

 where µDi and σDi are respectively the mean and standard-deviation of variable Di, which 
are obtained when solving the Gaussian BN. Φ represents the standard normal cumulative 
distribution function.

The resulting Gaussian BN in Fig. 4 is implemented in the Bayes Net toolbox (Mur-
phy 2001), which has the ability to apply exact inference (i.e., junction-tree algorithm) 
to continuous Gaussian variables.

With the proposed Gaussian BN, an issue arises when needing to specify that a given 
component i has failed or survived as an evidence. Since such an evidence takes the form 
of an inequality (e.g., Di > 0 for survival), it cannot be entered directly into the BN, which 
can only treat hard evidence (i.e., a scalar value determining a continuous variable). There-
fore it is proposed to decompose the posterior distributions over all possible values of Di, 
given the damage state of the bridge. A similar decomposition framework for the treat-
ment of soft evidence has been introduced by Fayjaloun et al. (2021). Let Y be a variable 
of interest in the BN; then its posterior distribution given the observation of DSi = 1 is 
decomposed as follows:

 P(Di | DSi=1) represents the conditional probability of observing the value Di given the 
damage state of the component: this probability is estimated by using the a priori distribu-
tion of Di and by truncating its probability density function, named ptrunc (i.e., keeping only 
the positive part of the support and normalizing the function):

(14)Ci ∼ N

(
C0,i + �i

i∑
j=1

t�
ij
Vj, �

2

)

(15)Di ∼ N
(
Ci − IMi, �

2
)

(16)Pf ,i = P
(
Di ≤ 0

)
= Φ

(
−

�Di

�Di

)

(17)P
(
Y|DSi = 1

)
=

+∞

∫
−∞

P
(
Y|Di

)
P
(
Di|DSi = 1

)
dDi
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 where Ptrunc represents the cumulative distribution function of Di. If a discretization is 
applied to the continuous variable Di, then the integral may be approximated by summing 
over the discrete intervals [Di,k ; Di,k+1], as shown in Fig. 5.

With a very refined discretization, this approach is able to converge quickly towards 
the exact solution. However, it requires to loop over a large number of BNs (each time 
defined with a different evidence value), and the computations using such an approach 
become intractable when several observations need to be entered. Therefore, this 
method is only used on the trivial synthetic example in order to provide trustworthy 
results that can be compared to the MCMC sampling-based approach.

3.3  Results

The comparison between the Gaussian BN and the OpenBUGS outcomes is detailed in 
Table 1, by considering two evidence scenarios: scenario 1 only considers that log im3 = 
−  0.1; while scenario 2 assumes that an additional type of observation is available, i.e. 
that component #2 has survived (i.e., ds2 = 1). The R script that builds the corresponding 
OpenBUGS BN is provided as an Electronic Supplement of the paper, as a demonstrator of 
the updating procedure. An example of OpenBUGS model is shown in Fig. 6. 

Due to the sampling approximation present in both methods, the posterior values 
cannot be perfectly matched; however, they are in very close agreement, and most dis-
crepancies appear around the 3rd or 4th decimals. Such a level of precision is sufficient 
for seismic risk applications since it appears that the mismatch is negligible in light 
of the much greater uncertainties that usually accompany loss assessment models. This 
numerical test is also an opportunity to verify the soundness of the Bayesian modelling 
assumptions: all variables are updated given the evidence, and their posterior distribu-
tion is shifted in the expected direction (e.g., reduction of the seismic intensity due to 

(18)

P
(
Y|DSi = 1

)
=

+∞

∫
−∞

P
(
Y|Di

)
ptrunc

(
Di

)
dDi ≈

∑
k

P

(
Y|Di =

Di,k+1 + Di,k

2

)[
Ptrunc

(
Di,k+1

)
− Ptrunc

(
Di,k

)]

(a) (b) (c)

Fig. 5  a  Prior distribution of Di; b  Truncated and normalized distribution of Di; c  Discretized weights 
applied to the decomposition
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the observation of a low-intensity im3, better seismic resistance of the components due 
to the observation of the survival of component #2, etc.). It is also worth noting that the 
uncertainty on these variables is gradually reduced as more evidence is entered (i.e., 
smaller standard-deviations in evidence scenario 2).

A more systematic investigation of the updating capabilities of the BN approach is 
shown in Fig. 7, where the values of im3 are gradually increased in evidence scenario 
2. The top plots show the evolution of the posterior distributions of variables IM2 and 
C2, in terms of 16th, 50th and 84th percentiles, obtained with the OpenBUGS approach. 
The bottom plots show the evolution of the error between the Gaussian BN (GBN) and 
OpenBUGS (OBN) estimates, which is defined as follows:

On the right plots of Fig. 7, evidence scenario 2 is modified in order to consider the 
case where the failure of component #2 is observed.

From Fig. 7, the following points may be noted:

• In the case that DS2 = 1 is observed, C2 is well above IM2 for low values of im3 
and the gap narrows as im3 increases. IM2 is influenced by the evidence of IM3 and 
tends to increase, which has the effect of forcing C2 to increase even more in order 
to respect the condition DS2 = 1. It has also been found that the correlation between 
IM2 and C2 increases, reflecting the higher constraints that are applied by large val-
ues of im3.

• In the case that DS2 = 0 is observed, low values of im3 induce low values of IM2 as 
well, forcing C2 to be reduced dramatically. As im3 increases, the constraints become 
more relaxed, and IM2 increases enough so that C2 deviates less from its prior distribu-
tion.

(19)Err =
E[Y|IM3 = im3,DS2]OBN − E[Y|IM3 = im3,DS2]GBN

E[Y|IM3 = im3,DS2]GBN

Table 1  Posterior distributions of the variables of interest, for the two evidence scenarios. Observed val-
ues (evidence) are in bold font.  Ci and  IMi are expressed in log m/s2

Prior Evidence scenario 1
(im3 = -0.1)

Evidence scenario 2
(im3 = -0.1, ds2 = 1)

Gaussian BN OpenBUGS BN Gaussian BN OpenBUGS BN

P(s = 0) 0.8320 0.7576 0.7592 0.5717 0.5706

im1 ; σim1 0.3346 ; 0.4260 0.1459 ; 0.3330 0.1469 ; 0.3334 0.1420 ; 0.3332 0.1408 ; 0.3326

im2 ; σim2 0.0878 ; 0.4260 − 0.1009 ; 0.3330 − 0.0994 ; 0.3334 − 0.2391 ; 
0.2954

− 0.2387 ; 0.2957

im3 ; σim3 0.2025 ; 0.4260 − 0.1 ; / − 0.1 ; / − 0.1 ; / − 0.1 ; /
c1 ; σc1 − 0.0083 ; 0.4472 − 0.0083 ; 0.4317 − 0.0083 ; 0.4469 0.0416 ; 0.4433 0.0415 ; 0.4437
c2 ; σc2 − 0.0083 ; 0.4472 − 0.0083 ; 0.4317 − 0.0081 ; 0.4473 0.2411 ; 0.3510 0.2419 ; 0.3508
P(ds1 = 0) 0.7106 0.6090 0.6101 0.5717 0.5706
P(ds2 = 0) 0.5618 0.4341 0.4350 0 0
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Fig. 6  OpenBUGS model for scenario 2. Observations (evidence) are the quantities Dobs and IMobs

Fig. 7  Top left: posterior distributions of variables IM2 and C2, in terms of 16th, 50th and 84th percentiles, 
with evidence IM3 = im3 and DS2 = 1; Top right: posterior distributions of variables IM2 and C2, in terms 
of 16th, 50th and 84th percentiles, with evidence IM3 = im3 and DS2 = 0; Bottom: Error rate between the 
Gaussian BN and OpenBUGS estimates
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• Regarding the error rates, no significant biases or trends are observed. The errors seem 
to be well constrained under 0.03 (i.e., around 3% of deviation at the maximum), con-
firming the suitability of the sampling-based BN for the problem at hand.

4  Application to a real road network

This section describes the case-study area in the French Pyrenees mountain range and the 
construction of the corresponding BN model.

4.1  Description of the case‑study area

The proposed BN approach for rapid response is applied to a road network composed of 
118 bridges (i.e., vulnerable components), which connects 53 municipalities (i.e., built 
areas) located in a valley around Bagnères-de-Luchon (Pyrenees, France). The case-study 
area is detailed in Fig. 8.

The typologies of the 118 bridges are identified based on photographs and aerial pic-
tures, and their conditional probability of failure is defined by fragility functions, some of 
which are taken from the SYNER-G database (Crowley et  al. 2011). The most common 
bridge type consists of short single-span bridges (length < 50 m), followed by masonry 
arch bridges. In total, 18 different fragility curves have been assigned (3 models for the 
83 single-span bridges, 3 for the 7 continuous multi-span bridges, and 12 for the 28 arch 
bridges). The fragility curve corresponding to the first limit state is considered as the 

Fig. 8  Situation map of the Luchon case-study area
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threshold of the loss of functionality of the bridge (i.e., failure of the component), assum-
ing that even small structural damage might be enough to prevent safe passage.

For the 53 municipalities, the information concerning the characteristics of the resi-
dential buildings is extracted from the building census data freely provided by the French 
National Institute of Statistics and Economic Studies (INSEE). From INSEE data, we are 
using mainly three items: the building type (e.g. individual building, collective building 
…), the number of stories and the construction age period. We associate the age period 
range of construction to the evolution of the construction technics and the evolution of 
seismic design codes. With these data, we classify the different buildings types into the 
EMS-98 vulnerability classes (Grünthal 1998). For each building type in each municipal-
ity, we estimate the associated number of buildings and the associated population. Then, 
for the building types distributed into the EMS-98 classes, we estimate the RISK-UE vul-
nerability indices based on the method developed by Lagomarsino and Giovinazzi (2006).

The studied area is surrounded by several seismic stations (see Fig. 8), which are used 
as sources of observations to constrain estimates of the strong-motion field. All selected 
fragility curves use PGA as IM; therefore, the regional GMM by Tapia (2006) is applied 
here for the estimation of the prior distribution of IM. For PGA, the spatial correlation 
model by Jayaram and Baker (2009) is expressed as:

where h is the inter-site distance in km.
Finally, site effects are modelled via soil amplification factors, which were estimated 

from local investigations and soil measurements (Roullé et al. 2012).

4.2  Construction of the BN model

The assembled Super-Network is displayed in Fig.  9, where the position of the abstract 
Super-Nodes is estimated as the mean of the coordinates of the nodes belonging to each 
Super-Node. This preliminary step leads to a dramatic simplification of the network since 
the initial 607 nodes and 689 edges are now replaced by 52 Super-Nodes and 67 Super-
Edges. Out of the initial 118 bridges, only 96 are kept in the Super-Network, since some of 
them are not useful to ensure the connectivity between Super-Nodes.

For demonstration purposes, the connectivity between a location A (downtown of Bag-
nères-de-Luchon) and a location B (Northern end of the road network) is studied here, 
in order to simulate the possibility to send rescue teams from the North to the affected 
area after a potential earthquake (see Fig. 9). Thanks to the Super-Network conceptualisa-
tion, the decomposition of all possible paths between A and B becomes computationally 
manageable: 60 MLSs are identified, mobilising 25 bridges in total (i.e., most bridges are 
involved in multiple MLSs), as shown in Fig. 10.

Finally, this structure is implemented in OpenBUGS in order to build the corresponding 
BN, which contains the following nodes:

• The vector IM, containing 156 elements (96 bridge sites + 53 built area centroids + 7 
observations);

• The vector C, containing 96 elements;
• The vector V, containing 53 elements;
• 96 DS nodes;

(20)�ij = exp
(
−
3h

8.5

)
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• 53 µD nodes;
• 60 MLS nodes;
• 1 S node.

The updating capabilities of the BN are tested with a hypothetical Mw 6.3 earthquake 
scenario, located south of the road network (0.60° lon, 42.65° lat). Hypothetical observa-
tions from 7 seismic stations and damage measures on 5 bridges are set as evidence in the 
BN (2 survivals and 3 failures). It is assumed that one of the monitored bridges belongs to 
the identified MLSs, and it has been observed as intact (see Fig. 10).

5  Results and discussion

This section details the updated loss distributions obtained from the BN while discussing 
the impact of various factors, such as the number of MCMC samples or the correlation 
between the seismic response of the bridges.

5.1  Checking the accuracy of the updated ground‑motion field

As the numerical test in Sect.  3 could only be performed on a small example with a 
reduced number of variables, another test is conducted here on all IM variables involved 
in the case-study. In the BN, the IM vector represents a spatially-correlated Gaussian 
field, for which analytical solutions have been developed (Vanmarcke 1983; Stafford 

Fig. 9  Construction of the Super-Network from the physical network
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2012): such an updating procedure is actually adopted in current systems for the genera-
tion of shake-maps (Worden et al. 2018), thus constituting the reference solution. Since 
this solution is only available for the ground-motion field, the IM variables are updated 
here using only the 7 seismic observations (i.e., no observations of the damage states of 
bridges). IMs are updated at the locations of the 96 bridges of interest and the centroids 
of the 53 built areas: the updated distributions are compared to the analytical solution 
for different sizes of MCMC samples (respectively three chains of 3 000, 5 000, 15 000 
and 25 000 samples each, with the removal of a burn-in phase of 2 000 samples in each 
chain). The errors rates εE(IM) and εσlogIM of the posterior distributions estimated with 
the BN with respect to the exact analytical solution, at all vulnerable sites, are summa-
rized in Fig. 11:

Fig. 10  Summary of the identified MLSs and location of the observations
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where E(IM) is the expectation of the posterior IM distribution and σlogIM is the standard 
deviation of the logarithm of IM.

The estimated posterior distributions of IM are globally in very good agreement 
with the analytical solution, both in terms of mean and standard deviation, thus provid-
ing further confidence with respect to the application of the proposed sampling-based 
inference algorithm. This comparison exercise serves as a preliminary step to calibrate 
the size of samples and ensure proper convergence of the posterior distributions. In the 
current application, Fig. 11 shows that satisfying accuracy levels are quickly reached 
as the size of samples grows. Therefore, it is decided to opt for a chain size of 15 000 
samples, in order to keep the error rate well below 1%. With this choice, the complete 
BN (including also C, DS, MLS and S nodes) is solved in less than half an hour with 
a medium-performance personal computer (8 GB memory): this timeframe is in line 
with what should be expected from elaborate rapid response systems, although it could 
be further improved with the use of dedicated computing servers.

(21)

⎧⎪⎨⎪⎩

�E(IM)
=

E(IMsampled)−E(IMexact)

E(IMexact)
× 100

��logIM =
�logIMsampled

−�logIMexact

�logIMexact

× 100

Fig. 11  Histograms of the error rate of the mean and standard deviation of the posterior IM distribution at 
the various sites, with respect to the analytical solution, for various lengths of the MCMC chains
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5.2  Updated loss estimates

Following the discussion of Sect.  2.4 on the assumptions to be made for the covariance 
models, three different correlation hypotheses are tested for the response C of bridges:

• Corr1: no correlation is introduced, so that ∑C is simply a diagonal matrix.
• Corr2: only the correlation of the record-to-record variability is introduced, with a cor-

relation model decreasing with inter-bridge distance (i.e., Eq. 6 with ρM
ij = 0).

• Corr3: in addition to the correlation of the record-to-record variability, a full correla-
tion between bridges of the same type (i.e., using the same fragility model) is assumed, 
i.e. ρM

ij = 1 if bridges i and j are in the same typology.

Global results for the system connectivity are detailed in Table  2, where it is shown 
that the proposed approach is also able to identify which MLS is the most likely to remain 
accessible (i.e., “best” MLS).

A significant difference is observed between the prior and posterior probabilities of dis-
connection, due to the assumption that the damage states of 5 bridges were entered as evi-
dence (see Fig. 10). The evidence of a bridge’s state has an impact on the system at various 
levels:

• The observation of a bridge failure directly modifies the accessibility of the MLS(s) to 
which it belongs, and in turn system connectivity.

• If the seismic response C is modelled with a constrained correlation model (i.e., Corr2 
or Corr3), then the observation of a bridge’s state may modify the seismic response of 
other bridges, in turn modifying their probability of failure and ultimately the accessi-
bility of the MLSs to which they belong.

• Finally, as seen in Fig. 7, the observation of a bridge’s state may also modify the distri-
bution of the IM at the base of the bridge, in turn modifying the ground-shaking field 
in the vicinity. In the BN model, the state of a bridge i is dependent on both the seismic 
response Ci and on the shaking level IMi: therefore, both parent nodes C and IM are 
affected by the evidence on the bridge’s state.

The differences between the three correlation models are noticeable: the extreme 
configurations Corr1 and Corr3 should be used as upper and lower bounds of the model 
outcome, pending an in-depth investigation of appropriate correlation models for the 
seismic response. Furthermore, each assumption leads to the identification of a different 
MLS as the least affected route, which could have a large impact on emergency opera-
tions. An example of the changes in the rapid estimate of the post-earthquake condition 
of the network is provided in Fig. 12, both in terms of failure probability of bridges and 

Table 2  Results of the Bayesian updating, in terms of probability of disconnection between points A and B 
(i.e., S = 0) and of identification of the “best” MLS, for the various correlation assumptions

Prior Posterior

Corr1 Corr2 Corr3

Pr(Disconnection) 0.095 0.342 0.353 0.435
“Best” MLS #45 #49 #21 #3
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identifying the most accessible MLS. Similar updating may also be performed for the 
damage assessment of built areas (see Fig. 13): the results are shown for Corr3 model, 
which only affects the seismic response C of bridges. However, in a BN, the model 
adopted for the nodes related to a type of component can impact the posterior distribu-
tions of all nodes, including those related to other types of components in the system. 

Fig. 12  Left: prior distribution using only the characteristics of the earthquake event; Right: posterior dis-
tribution using field observations (with Corr3 model)

Fig. 13  Left: prior mean of µD (Mean Damage Grade) of the built areas; Right: posterior distribution using 
field observations (with Corr3 model)
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Therefore, the choice of a correlation model C has consequences on the distribution of 
IM, which in turn affects the distribution of the mean damage grade for buildings.

Apart from the changes in the mean damage and loss values, the Bayesian updating is 
especially useful for reducing the related uncertainties; and therefore, gaining more con-
fidence in rapid damage assessment. In Fig.  14, the updated standard-deviations of log-
PGA, used as IM, are reduced by half (from around 0.42 in the prior distribution down to 
the 0.20-0.25 range) in the immediate vicinity of seismic stations. On the other hand, the 
survival/failure observations on bridges have a reduced impact on the distribution of IM, 
since the probability updating enters here in competition with the updating of C, which 
have an equal contribution in the damage sampling (see Eq. 1).

The updating process of the response C is further detailed in Fig. 15, where the poste-
rior distribution of a given Ci is used to assemble a fragility function, through the following 
expression:

Two opposite configurations are shown in Fig. 15:

• In the top plots, bridge #533 is observed as intact, and its updated response distribution is 
therefore moving towards higher PGA levels. The response of bridge #546, a neighbouring 
bridge of the same type (i.e., Type 1), is also updated, but to a lesser extent. As expected, 

(22)Pf (PGA) = Φ

⎛⎜⎜⎝
im−

−

Ci

�Ci

⎞⎟⎟⎠

Fig. 14  Posterior standard-deviation σlogPGA of the IMs at the locations of interest (with Corr3 model)
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the correlation model Corr1 (no correlation at all) has no impact on the response. Since 
the two bridges are only about 2 km apart, the application of model Corr2 (only distance-
dependent correlation) has a noticeable influence on the response distribution. Model 
Corr3 has the most influence since it corresponds to the strongest correlation structure.

• In the bottom plots, bridge #629 is observed as failed, and its updated response distribution 
is therefore moving towards lower PGA levels. Similar trends are observed for bridge #661 
of the same type (i.e., Type 2): in this case, the effect of model Corr2 is less noticeable, 
since the two bridges are further apart (10 km).

The updated seismic response may then be used as a prior distribution in subsequent risk 
analyses: this feature is especially useful in the earthquake aftershock phase, since the updated 
fragility models may be directly applied to the components that have survived, in order to 
refine the aftershock risk assessment.

Fig. 15  Updating of the seismic response of bridges, based on damage observations
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6  Conclusions

This study has investigated the implementation of a Bayesian Network-based framework 
for improving situational awareness during the rapid response phase following an earth-
quake event. It has been demonstrated that a BN built in OpenBUGS environment is able 
to provide updated losses for a real-world road network and built areas based on available 
observations. The BN is solved with a MCMC sampling scheme, which delivers approxi-
mate posterior distributions: this approximate solution, as opposed to exact inference 
algorithms, is a necessary trade-off in order to treat systems of hundreds of components 
exposed to spatially distributed hazards. Moreover, the sampling inference scheme used 
in OpenBUGS can combine continuous (e.g., intensity measures, seismic capacities) and 
discrete variables (e.g., damage states), which has the benefit of introducing exact distribu-
tions instead of discretizing continuous variables. Regarding road networks, when connec-
tivity loss is used as a simple system indicator, the decomposition of the system into MLSs 
is also essential in reducing the complexity of the BN. As a result, in the studied example, 
posterior distributions are generated within 20 or 30  min. Moreover, the decomposition 
into MLSs has the benefit of identifying specific routes associated with probabilities of 
accessibility: this information has the potential to be used by emergency managers to set up 
dedicated evacuation routes or safe itineraries to hospitals. Each MLS can also be associ-
ated with a travel distance or travel duration, in order to develop more elaborate perfor-
mance indicators than connectivity loss.

The input of field observations has the expected effect of refining the loss estimates, 
thus providing more confidence in the information delivered to emergency responders. The 
main mechanism behind the updating process is due to the formulation of the covariance 
matrices ∑IM and ∑C: while the correlation between intensity measures is well studied, 
the correlation between the seismic capacities of components is less obvious. Various cor-
relation assumptions have been tested here, in an attempt to quantify this effect: further 
investigations will be required in order to propose a robust model for the covariance of the 
seismic response. It is shown that correlated seismic capacities also lead to updated fragil-
ity models, depending on the observed damage on components. Such a feature of the BN 
model would be especially useful to update the risk assessment models in the aftershock 
phase, for instance. Finally, the results of such a BN application can constitute the starting 
point of rapid repair strategies for bridges, in order to improve the seismic resilience of 
transportation systems.

While the present study has focused on methodological developments and on the 
demonstration of a simple yet realistic case-study, further work should be devoted to the 
verification of this framework on a real earthquake case, where collected post-earthquake 
data could be used to replay the sequence of events and evaluate the ability of the BN to 
reduce uncertainties on loss estimates. Although the theory behind the BN model has been 
checked (e.g., validation of the ground-motion updating part in Sect. 5.1), an application 
to a real earthquake case would have the merit of confronting the method to actual condi-
tions (e.g., possibility of missing data, contradicting observations, etc.). Moreover, the BN 
model is solely based on a connectivity analysis: if each MLS is associated with a travel 
distance or duration, post-earthquake travel times may be generated. However, such a per-
formance indicator would remain based on free-flow travel conditions (i.e., each edge of 
the road network is associated with a constant travel speed, whatever the traffic conditions). 
While the BN model in itself is not able to account for traffic flows, the approach intro-
duced by Gehl et al. (2018) may be applied: it consists of generating off-line stochastic loss 
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scenarios, computing travel times with a traffic flow model (i.e., with an origin-destination 
matrix and user-equilibrium equations) and learning an ad-hoc BN structure from the sim-
ulation outcomes.
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