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Abstract: Grid shells have been widely used in various long-span public buildings, and 9 

many of them are defined over free-form surfaces with complex boundaries. This 10 

emphasizes the importance of general and digitalised grid generation and optimization 11 

methods in the initial design stage to achieve visually sound grid shells. In this paper, 12 

a framework is presented for the development of a digital tool and to generate regular 13 

and fluent grids for structural design over free-form surfaces, especially those with 14 

complex boundaries. Both triangular and quadrilateral grid generation are addressed. 15 

To generate regular and fluent grids for free-form surfaces, a simple yet practical 16 

framework is proposed based on a spring-mass model. Firstly, an initial casual 17 

quadrilateral grid is tiled on the surface based on surface discretization and mesh 18 

parameterization. Secondly, the distribution of the initial grid vertices is adjusted by a 19 

dynamic relaxation procedure, assuming the grid as a spring-mass system. Thirdly, the 20 

grid vertices corresponding to the adjusted particles in the equilibrium state are then 21 

reconnected to produce a grid with a predefined pattern (triangular or quadrilateral). 22 

Finally, the generated grid is relaxed with the spring-mass model, alongside additional 23 

geometric operations including grid size adjustment and filtering techniques, to further 24 

improve the grid regularity and fluency. As part of its contribution, this paper also 25 

broadens the application scope of the fluency index, which can be used to quantitatively 26 
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evaluate the suitability of a given triangular or quadrilateral grid for architectural and 27 

structural expression. Examples are presented and show that the proposed framework 28 

is effective for the triangular and quadrilateral grid generation over various surfaces 29 

and to optimize the resulted grids along complex boundaries. The method proposed can 30 

be useful for rapid design and performance evaluation of free-form grid structures. 31 

Key words: Free-form surface; Grid structure; Parametric design; Dynamic 32 
relaxation; Grid quality.  33 

 34 

1. Introduction 35 

Grid structures as long span roof shells are often one of the most striking parts of a 36 

building in terms of structural efficiency or architectural appearance. Grid structures 37 

with simple shapes such as cylinder, sphere, and paraboloid have been widely applied 38 

in design practice, where designers often use analytical equations to determine the 39 

positions and connections of joints for structural design [1,2]. With the introduction of 40 

digital Computer-aided Design applications, designers can model almost any 41 

continuum shape (curves, surface, or volume) imaginable. Some buildings with 42 

fantastic and inspired shapes have been successfully erected in recent years, such as 43 

British Museum [3] with triangular grid cells and Chadstone Shopping Centre with 44 

quadrilateral grid cells, as presented in Fig. 1. To transform an architectural model with 45 

a free-form yet continuum surface into a real building, thin-walled, efficient grid 46 

structures may be the best choice due to their potentials for material reduction and 47 

internal space increase. 48 
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(a) Triangular grids on British 
Museum Great Court roof, London, 

UK 

(b) Quadrilateral grids on Chadstone 
Shopping Centre roof, Melbourne, 

Australia 

Fig. 1 Free-form structures in engineering practice with triangular and 
quadrilateral grids (Photographed by the authors). 

To design a grid structure, grid generation is a vital step. However, it is always not 49 

easy to generate a grid that meets the requirements of designers, especially when the 50 

surface has complex boundaries. Designers often require the grid to be of fluent grid 51 

lines and regular grid cells to achieve visually sound architectures. In terms of fluency, 52 

each continuous member should fluidly pass over the surface and avoid singular 53 

vertices. As shown in Fig. 2(a-c), the structured triangular grid of which the internal 54 

vertices all have the same number of adjacent cells automatically forms continuous 55 

lines-sets in three different directions (green, blue, red lines in Fig. 2(a-c)). The three-56 

directional lines-sets are distributed over the whole design domain and exhibit nearly 57 

little bending. This arrangement of grid lines enables the grid structure to be visually 58 

sensible and fluent. However, the singular vertices in fig. 2(d) interrupt the continuity 59 

of the grid lines, and some lines-sets are severely bent, such as the two lines-set formed 60 

by black and gray lines in Fig. 2(d). The fluency of the structured triangular grid has 61 

been defined as the overall bending degree of the lines-set in [4]. In terms of regularity, 62 

the narrow grid cell results in a small angle between two adjacent bars, which will bring 63 

difficulties to construction; therefore, grid cells should all be well-shaped and avoid 64 
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distortion to ease connections. Detailed quantitative quality metrics of fluency and 65 

regularity will be illustrated in Section 8 of this paper. 66 

 

Fig. 2 Grid with curve fluidity and disfluent grid in a shell structure. 
Existing instances of grid patterns on free-form shells have generally been 67 

generated manually using computer-aided design tools or automatically using purpose-68 

built programming scripts that are tailored to each project. As such structures are 69 

becoming more popular and more challenging, particularly with complex 70 

internal/external boundaries and varying curvatures, perhaps more practical tools that 71 

can efficiently generate a structured grid that meets the requirements of designers on a 72 
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given free-form surface are needed to facilitate the design process, especially in the 73 

early stage. 74 

Most of the previous research has addressed grid generation methodologies for 75 

visualization or finite element analysis purposes. Owen [5] presented an excellent 76 

literature review of unstructured grid generation technologies in finite element analysis, 77 

including the Delaunay triangulation [6], the Advancing Front Technique [7], the 78 

Mapping Method [8,9], and their combinations. In finite element analysis, grid 79 

generation is concerned with the trade-off between calculation accuracy and speed. 80 

Grid generation in the field of architecture pays more attention to the aesthetic aspect 81 

of the grid, which is typically reflected by regular grid cells and fluent grid lines. As a 82 

result, the traditional grid generation approach cannot be used directly to build a free-83 

form grid. 84 

To generate efficient and practical grids for free-form structures, Winslow et al. 85 

[10] presented a design tool for the optimization of grid structures using structural 86 

performance as the objective. They employed a multi-objective genetic algorithm to 87 

vary rod directions over the surface, and a process of grid homogenization was used to 88 

calculate the mechanical performance of discretized grid structures that are composed 89 

of repeating grid cells. However, free-form surfaces with complicated boundaries were 90 

not considered. Su et al. [11] proposed an improved advancing front technique using 91 

the main stress trajectories to arrange rod directions of the grids. Although the grids 92 

generated by this method have better structural performance for a single load case, the 93 

fluency of the grid is bad, and some distorted grid cells exist.  94 

To generate a more aesthetic grid, many studies have reported the grid generation 95 

progress over a free-form surface. Shepherd and Richens [12] employed an improved 96 

method based on the technique of surface subdivision to generate grids for structural 97 
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design. A very coarse control grid with only a small number of vertices is first sketched 98 

over the given surface, and then the coarse grid is subdivided over a number of iterations 99 

to fit the original surface. Similarly, EvoluteTools [13], a plugin in Rhino, first 100 

generates a grid with a few large-size cells and then subdivides these cells at the same 101 

level to obtain the final grid. Because the subdivision operation generates structured 102 

and well-shaped sub-grids within each coarse cell, these two methods [12,13] can 103 

improve the fluency and regularity of the grid. However, their main limitation is that 104 

designing appropriate coarse grids manually over complex free-form surfaces is 105 

extremely difficult. Based on the concept of “guide line” by Gao et al. [14], a “guide 106 

line method” was developed to generate grids with rods of balanced length and fluent 107 

lines. The process began with a number of guide-curves on the surface, which determine 108 

the directions of the “rods” of the grid. The generated grids were demonstrated to have 109 

similar rod lengths. Gao et al. [15,16] improved the “guide line method” by 110 

incorporating a surface flattening technique, which reduced the grid shape irregularity 111 

by up to 47%. However, these strategies [14–16] did not succeed in improving grid 112 

fluency and eliminating the small rod members near the complex boundaries. Most 113 

recently, Oval et al. [17] proposed a feature-based topology finding of patterns for shell 114 

structures. The method is based on a generation procedure for singularity meshes as a 115 

start, followed by the boundaries of a surface as well as point and curve features, using 116 

a topological skeleton or medial axis. Despite the fact that the designed patterns are 117 

highly structured, a small number of singular vertices remain. 118 

Many researchers have also utilized some force-based methods to generate grids. 119 

Shimada et al. [18] introduced a bubble-like approach for meshing trimmed parametric 120 

surfaces for finite element analysis. They viewed nodes as the centers of packed bubbles 121 

and optimized their placement iteratively by solving the bubbles' force equilibrium.  122 
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Similarly, Zheleznyakova et al. [19,20] presented a molecular approach for generating 123 

finite element meshes. In this method, nodes were treated as charged interacting 124 

particles that could be moved to ideal places using molecular dynamics in a NURBS 125 

surface parametric design domain. The Delaunay triangulation technique was used to 126 

connect these particles into well-shaped triangles. In a similar fashion to the molecular 127 

method, Wang et al. [21] suggested a grid generation strategy based on a mapping 128 

technique and a truss-like method. Delaunay triangulation was used to construct a 129 

planar triangular grid, which was then optimized by treating the grid as a truss in the 130 

parametric domain. The planar grids were then mapped back to the original surface to 131 

create a more regular grid. Combining the bubble method with edge operations, Wang 132 

et al. [4] developed a framework for triangular grid generation, resulting in highly 133 

structured grids. While these force-based methods [4, 18-21] have been developed and 134 

employed for grid generation, the primary goals have been grid uniformity and 135 

regularity, with a dearth of effective actions to account for grid fluency. 136 

In addition to the above methods, topology optimization can also be regarded as 137 

an effective method to generate grids over free-form surfaces. Topology optimization 138 

is a mathematical method for optimizing the layout of materials inside a given design 139 

domain, under specified loads, boundary conditions, and constraints, with the purpose 140 

of maximizing the system performance [22]. Some scholars have made substantial 141 

progress in this field. For example, Wang et al. [23] proposed a method that combined 142 

the multiscale isogeometric topology optimization method and the progressive 143 

homogenization method, and applied it to the design of periodic lattice material 144 

structures.. Numerical examples show the advantages of this method in calculation 145 

accuracy, efficiency, and convergence. Zhang et al. [24] proposed a topology 146 

optimization method using B-spline curves to describe the geometry of the holes in the 147 
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structure and developed the corresponding numerical solution technology, which 148 

achieved good results in topology optimization problems considering geometric 149 

features. Based on the Hamilton-Jacobi equation, Park and Youn [25] proposed the AIF 150 

(Adaptive Inner-Front) level set method and used the linear quadrilateral shell element 151 

based on Reissner-Mindlin theory to realize the application of the level set topology 152 

optimization method in the hyperbolic shell structure. Kang and Youn [26] proposed 153 

the TSA (Trimmed Surface Analysis) method, using topological derivatives as the 154 

criteria for judging the formation of new holes and determining the location of the holes, 155 

and obtained results with smooth boundaries and robust convergence. However, 156 

topology optimization does not take architectural aesthetics into account, and the 157 

generated grid is so coarse that it often destroys the shape of the original surface. 158 

Furthermore, the topology optimization results in complex configurations that are 159 

difficult to produce industrially.  160 

All the studies reviewed so far, however, suffer from the fact that they fail to 161 

address grid regularity and fluency of free-form surfaces with complex boundaries. This 162 

paper is, therefore, innovative by developing a framework to generate a regular and 163 

fluent grid over a free-form surface based on the physical analogy between the grid and 164 

a spring-mass model. The framework can also deal with the surface with complex 165 

boundaries. The classical spring-mass method [27] has been widely employed in the 166 

form-finding of spatial structures since the 1980s, but it is demonstrated that the method 167 

can be used to solve grid design problems in free-form grid roofs with a simple initial 168 

grid. Compared with the classical spring-mass method, this paper designs different 169 

kinds of springs, such as grid edge spring, three types of constraint spring (surface 170 

constraint spring, curve constraint spring, and point constraint spring), especially the 171 

face edge spring and visual spring, to generate required grids. The framework starts 172 
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with tiling an initial casual quadrilateral grid on the surface based on surface 173 

discretization and mesh parameterization to obtain a list of nodes spanning the design 174 

domain. A force-based spring-mass model is then applied to uniformize node 175 

distribution. After that, the grids are generated by connecting the resulted grid nodes 176 

according to a user-defined rule. With additional operations included, like grid size 177 

adjustment and grid filtering, a regular and fluent grid will be obtained. The proposed 178 

framework can be robustly applied to generate triangular or quadrilateral grids over 179 

various surfaces, possessing excellent adaptability effectiveness. Case studies are 180 

presented to demonstrate the effectiveness of the proposed framework. The resultant 181 

grids are proved to be of regular cells and fluent lines, thereby satisfying aesthetic 182 

demands. The resulted geometry of the grid shell can be further used in finite element 183 

analysis for the design of ultimate limit state analysis, local/global stability analysis, or 184 

serviceability limited state analysis. However, such research has been observed in many 185 

publications or engineering practices, which is not the focus of this paper. 186 

2. Representation of surfaces and grids 187 

Many mathematical models for the representation of surfaces have been proposed. 188 

However, free-form surfaces are mostly modelled by Non-Uniform Rational B-Splines 189 

(NURBS) technique [28]. NURBS technique realizes a free-form surface by control 190 

points and knot weights and guarantees positional accuracy with small data. A NURBS 191 

surface is a bivariate vector-valued piecewise rational function and thus establishes a 192 

mapping relation between the 3D domain and the parametric domain. A trimmed 193 

surface is composed of a basic surface (untrimmed) and trimming curves. Fig. 3 194 

illustrates the composition of a trimmed NURBS surface. 195 
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(a) In 3D domain (b) In parametric space 

Fig. 3 Trimmed NURBS surface. 
A multiple surface consists of more than one closely adjacent trimmed or 196 

untrimmed NURBS surfaces. The boundary curves of its member surfaces which make 197 

up the boundary of the multiple surface are named naked boundary curves, while other 198 

boundary curves in the interior of the multiple surface are interior boundary curves. For 199 

example, the multiple NURBS surface shown in Fig. 4 consists of four member surfaces, 200 

and its boundary curve is fitted from seven naked boundary curves. 201 

  

Fig. 4 Multiple NURBS surface. Fig. 5 Simple grid. 
Discretized forms of surfaces (meshes/grids) are composed of a number of 202 

connected vertices, edges, and faces, as shown in Fig. 5. An edge (the connection 203 

between a pair of vertices) that forms only one face is defined as a boundary edge, 204 

whilst an edge that defines two faces is an interior edge. The endpoints of boundary 205 

edges are boundary vertices, whilst other endpoints are all interior vertices. 206 
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3. Overview of the framework 207 

The procedure of the grid generation framework is summarized in Fig. 6. The steps 208 

are as follows: 209 

(1) A free-form surface defined by an architect for a structural engineer is input to create 210 

a grid. 211 

(2) Based on surface discretization and mesh parameterization, an initial simple 212 

quadrilateral grid over the surface is obtained. 213 

(3) The distribution of the initial grid vertices is adjusted by a dynamic simulation 214 

procedure, assuming the grid as a spring-mass system. 215 

(4) The adjusted grid vertices are reconnected to produce a grid with a predefined 216 

pattern (triangular or quadrilateral). 217 

(5) The grid size control method can be optionally used to make the grid edges varied 218 

and adaptive to boundary curves. 219 

(6) For the surface with internal or external boundaries, filtering techniques and 220 

dynamic simulation are employed to further improve the grid regularity and fluency. 221 

 

Fig. 6 Flow chart of the grid generation framework. 
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4. Force-based design model 222 

The spring-mass model is commonly used for the simulation of dynamic systems 223 

in computer graphics due to its simplicity for implementation and relatively high 224 

computational efficiency [29,30]. In this paper, a grid is generated first, and then an 225 

algorithm is used to relax the generated grid. The algorithm is based on the physical 226 

analogy between the generated grid and the spring-mass model. In the physical analogy 227 

process, each grid vertex corresponds to a particle with a lumped mass, and each grid 228 

edge corresponds to an elastic spring with a stiffness. Besides the grid edge springs, 229 

some other types of springs are added to connect or restrict particles according to the 230 

design requirements of the grid, such as preventing particles from moving out of the 231 

surface so that the grids can approximate the given surface. With the slack length of a 232 

spring defined by the designer, unbalanced forces may develop due to the unequal 233 

length of the springs. The unbalanced forces express the difference between the current 234 

grid and the desired grid in a sense. With reasonable forces defined, a high-quality grid 235 

will be obtained by solving the equilibrium state of the spring-mass system. And with 236 

changes in forces, different grid characteristics can be achieved. 237 

4.1. The spring-mass analogy for various edges 238 

As stated above, the particles with a lumped mass are connected by analogically 239 

defined physical springs with a stiffness in the spring-mass model. Each spring has a 240 

force-displacement relationship which depends on its current length and its original 241 

length. A force-displacement function for linear elastic spring is used as the basic 242 

function in this paper, as shown in Eq. (1) and Fig. 7. According to their different roles, 243 

the springs involved in the model are divided into three types: grid edge springs, face 244 

edge springs, and constraint springs. The constraint springs can be subdivided into 245 
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surface constraint springs, curve constraint springs and point constraint springs 246 

according to the type of the source object of the constraint. Each spring type will be 247 

introduced in the following sections. The general force to displacement relationship can 248 

be defined as:  249 

 ( ) dT k e d
d

= −  , (1) 

where �⃗�  is the spring force; 𝑑  is the length vector of the spring. k is the elastic 250 

coefficient, and e is the slack length of the spring. 251 

 

Fig. 7 Schematic diagram of spring force. 
4.1.1. Grid edge spring  252 

As shown in Fig. 8, each grid edge corresponds to an elastic spring, called grid edge 253 

spring. The grid edge spring is to maintain the overall uniformity of grid size without 254 

changing the topology of the grid. To achieve this goal, all grid edge springs have the 255 

same original length proportional to the average value of all current edge lengths 𝑙: 256 

 g ge f l= , (2) 

where fg is a parameter that is smaller than 1.0 (a good default is 0.8). As 𝑙 will only 257 

change slightly during the dynamic simulation, eg can be set as a constant less than 𝑙 258 

for simplicity. Thus, based on Eq. (1), the grid edge spring force is:  259 
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 g, g g( ) ij
ij ij

ij

dT k e d
d

= −  , (3) 

where kg is the elastic coefficient of all grid edge springs. 260 

The resultant force of grid edge spring forces on pi is calculated by: 261 

 
g

g, g,=i ij
j J

T T


 , (4) 

where Jg is the set of particles connected to pi. 262 

 

Fig. 8 Grid edge spring. 
4.1.2. Face edge spring  263 

Considering an individual face of a grid, the edges of the face are also regarded as 264 

springs, called face edge springs. The face edge spring aims to locally adjust each grid 265 

cell, thereby further improving the quality of the grid. The force of a face edge spring 266 

is defined as: 267 

 f , f f( ) ij
ij ij

ij

dT k e d
d

= −  ,  (5) 

where kf is the elastic coefficient of all face edge springs; ef is the average value of the 268 

current edge lengths of the face; 𝑑 𝑖𝑗 is the displacement vector from the i-th particle 269 

to j-th particle. 270 
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A triangular face with equal-length sides is a regular triangle, while a quadrilateral 271 

face with equal-length sides is a rhombus. Since a flat rhombus is not regular, visual 272 

springs that correspond to the diagonal lines of the quadrangle are added to regulate the 273 

quadrilateral face. The force of each visual spring is:  274 

 v, v v( ) ij
ij ij

ij

dT k e d
d

= −  ,  (6) 

where kv is the elastic coefficient of all visual springs; ev is the average value of the 275 

current edge lengths of the two diagonal lines. 276 

Fig. 9 shows the face edge spring of the triangular grid, and Fig. 10 illustrates the 277 

face edge spring and visual spring of the quadrilateral grid. It should be noted that, 278 

although both face edge spring and grid edge spring correspond to grid edges, there are 279 

differences between a grid edge spring and a face edge spring. With the purpose of 280 

obtaining the uniformly distributed grid nodes, the slack length of the grid edge spring 281 

is the average of the lengths of all grid edges, and each grid edge corresponds to one 282 

grid edge spring. However, the slack length of the face edge spring is defined as the 283 

average of the edge lengths of the single grid cell, with the corresponding edge of the 284 

face edge spring belonging to this grid cell. Thus, for an interior grid edge that belongs 285 

to two grid cells, there are two corresponding face edge springs, and a boundary edge 286 

has one corresponding face edge spring. The face edge spring is defined to locally adjust 287 

the regularity of the grid cell. 288 

The resultant force of face edge spring forces on a vertex in a face, called face force, 289 

is calculated by: 290 

 
f

f , f ,=i ij
j J

T T


 , (7) 

where Jf is the set of particles connected to pi by face edges or visual edges in the face. 291 
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A grid vertex belongs to more than one face, so the resultant force of face forces 292 

on a vertex is 293 

 F, f ,
F

=i iT T , (8) 

where F is the set of the faces to which pi belongs. 294 

  

Fig. 9 Face edge spring of triangular 
grid. 

Fig. 10 Face edge spring and visual 
spring of quadrilateral grid. 

4.1.3. Constraint spring  295 

The continuum surface is usually predefined by architects, and the generated grids 296 

should approximate the original shape. To achieve this, the grid vertices need to be 297 

located on the surface, and the boundary vertices need to be located on the boundary 298 

curves. Therefore, it is necessary to define the corresponding constraint spring to 299 

constrain the position of the grid vertices. 300 

To keep the particles (correspond to the grid vertices) on the surface, each particle 301 

is connected to the target surface by a spring, defined as a surface constraint spring. As 302 

shown in Fig. 11, the endpoints of the surface constraint spring are composed of a grid 303 

vertex and the point closest to the grid vertex on the surface. The force of the surface 304 

constraint spring can be: 305 

 s, s,si iP k d=   (9) 

where ks is the elastic coefficient of the surface constraint spring; 𝑑 s,𝑖  is the 306 

displacement vector from pi to its closest point on the surface.  307 
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As to the boundary particles (correspond to the boundary vertices), there are curve 308 

constraint springs to constrain the boundary particles on the boundary curves, as shown 309 

in Fig. 11. One end of the curve constraint spring is a boundary vertex, and the other 310 

end is the point closest to the boundary vertex on the boundary curve. The force of the 311 

curve constraint spring is: 312 

 
c, bou

c,

int

       
0                

ic i
i

i

k d p P
P

p P

  
= 



，

，
, (10) 

where kc is the elastic coefficient of the curve constraint spring; 𝑑 c,𝑖  is the 313 

displacement vector from pi to its closest point on the curve; Pbou, Pint are the sets of the 314 

boundary vertices and the set of the interior vertices, respectively. 315 

Due to the demands of the load path or the surface modelling, some special 316 

positions on the surface are supposed to be fixed bearings in the grid structure, called 317 

anchoring points. To position the grid vertex at the anchoring point, the particle 318 

(correspond to the grid vertex) closest to an anchoring point or the specified particle is 319 

connected to the anchoring point by a point constraint spring (Fig. 11), subjected to the 320 

anchoring force of: 321 

 
p,p fixed

p,

free

       
0                 

i i
i

i

k d p P
P

p P

  
= 



，

，
, (11) 

where kp is the elastic coefficient of the point constraint spring; 𝑑 p,𝑖 is the displacement 322 

vector from pi to its corresponding anchoring point; Pfixed is the set of fixed vertices, 323 

and Pfree is the set of other vertices. 324 

The coefficients ks, kc, and kp control the constraint intensity from the surface, the 325 

boundary, and the fixed points. They are much larger than the coefficients kg, kf, and kv. 326 
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If the constraint is strict, the corresponding k is required to be infinite, which can be 327 

achieved by projecting points onto its relevant geometric object. 328 

 

Fig. 11 Constraint spring. 
4.2. Resultant force 329 

As mentioned above, all the forces acting on a particle come from interactions with 330 

other particles, from external geometric objects like the surface, the boundary curve, 331 

and the fixed point. An interior edge of the grid corresponds to one grid edge spring 332 

and two face edge springs, while a boundary edge of the grid corresponds to one grid 333 

edge spring and one face edge spring. As shown in Fig. 12, these springs and particles 334 

make up the spring-mass system for the grid. In general, the forces of grid edge springs 335 

are to uniformize the edge length, the forces of face edge springs are to regularize the 336 

shape of grid faces, and three kinds of constraining forces are constraint conditions. In 337 

brief, the grid is like a tensile spring net stretched by the boundary and attached to the 338 

surface. Besides, each particle experiences a drag force which dissipates the potential 339 

energy of the system gradually: 340 

 ve iif k v= −  , (12) 

where kve is the resistance coefficient; 𝑣 𝑖 is the velocity.  341 

Finally, in the spring-mass system, the resultant force acting on the i-th particle is 342 

computed by:  343 
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 g, F, s, c, p,i i i i ii iT T T P P P f= + + + + + , (13) 

 

Fig. 12 The spring-mass system of a grid. 
4.3. Dynamic simulation 344 

The definitions of the spring forces in the spring-mass model are all based on the 345 

linear spring model. But the settings of the original lengths of different springs are not 346 

identical and largely related to the positions of the particles, so the forces are essentially 347 

nonlinear in the dynamic simulation. 348 

Based on the force equations of particles and Newton’s equations of motion, an 349 

explicit time integration method called the Verlet algorithm [31] is applied to numerical 350 

integration of equations to solve the equilibrium position of the spring-mass system. In 351 

the beginning, the particles are at rest. Then the unbalanced forces push them to new 352 

positions at a discretized artificial time which is a very small value. During an artificial 353 

time, the forces are assumed to be the same. After an artificial time, the forces of nodes 354 

in new positions are updated and continue moving the nodes iteratively. The system 355 

moves to an equilibrium state within a relatively short time due to the action of drag 356 

forces and the fast calculation of the solver.  357 
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To perform the above dynamic simulation, reasonable forces of springs are required 358 

and can be evaluated by the result of dynamic simulation. Since the slack lengths have 359 

been defined, some trials need to determine reasonable elastic coefficients of various 360 

springs. In the field of virtual simulation, to simulate real objects, a great deal of 361 

research has been carried out on the physical parameters of springs to make the 362 

characteristics of digitized objects more similar to those of real objects [32–34]. 363 

However, in this research, the elastic coefficients of springs have no relevant physical 364 

characteristics and are just utilized to solve the equilibrium state under different spring 365 

forces to obtain a high-quality grid. 366 

In general, the elastic coefficients of constraint springs are much larger than those 367 

of other springs, while the coefficients of the grid edge springs, the face edge springs, 368 

and the virtual springs do not differ much. After some trials, the reasonable range of 369 

elastic coefficient is 2800-3200 N/m for surface and curve constraint springs, 8000-370 

10000 N/m for point constraint springs, 260-300 N/m for grid edge springs, face edge 371 

springs, and virtual springs, and 25-30 kg/s for resistance coefficient. The framework 372 

typically gives a good result when each coefficient is within the corresponding range. 373 

Within each range, the corresponding coefficient can be further adjusted interactively 374 

to obtain different results. However, the differences between the results are extremely 375 

small and are usually acceptable for the building grid. 376 

It should be noted that if a certain constraint is strict, its corresponding elastic 377 

coefficient k is required to be infinite, and the corresponding displacement vector 𝑑 p,𝑖 378 

would be zero, which is achieved through geometrical projection. In the actual 379 

operation, each particle's motion is calculated under forces except the forces of strict 380 
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constraints in each time step. Then the particle constrained strictly is projected to the 381 

object imposing the strict constraint. 382 

5. Grid generation 383 

Based on the spring-mass model, a method is proposed to generate grids for free-384 

form surfaces, named the spring net-like method. The main algorithm of the method 385 

includes three processes: initial grid generation, node adjustment, and node connection. 386 

The surface in Fig. 13a was taken as an example to explain these processes. 387 

5.1. Initial grid generation 388 

To create a visually pleasing grid, the initial grid is required to be structured. 389 

Directly creating structured grids over free-form surfaces is quite challenging. The 390 

single surface has a natural planar parameter domain, and the initial grid may be created 391 

by the mapping relationship between the surface and the planar domain. However, the 392 

multiple surface has no natural parameter domain, and the initial grid cannot be 393 

generated through mapping. To establish a planar domain for both single surface and 394 

multiple surface, surface discretization technique [35] and mesh parameterization 395 

technique [36] are used. 396 

Surface discretization is a fast and effective method to approximate a continuous 397 

surface by using a surface mesh. The surface mesh is composed of a large number of 398 

discrete triangular faces and is frequently clumsy and does not fulfill architectural 399 

standards, yet it effectively expresses the surface shape. Surface discretization is widely 400 

utilized in CAD tools such as Rhino and Solidworks. Mesh parameterization usually 401 

obtains a one-to-one mapping between a surface mesh and a simple parameter domain 402 

by assigning each grid vertex a 2D coordinate [36]. Therefore, the surface mesh can be 403 

converted to a planar mesh through mesh parameterization. Among the 404 
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parameterization methods, LSCM [37] is reasonably quick and robust. It features low 405 

angular distortion, ensuring parameterization bijectivity. Furthermore, because it is a 406 

natural border parameterization technique, there is no non-conformality distortion at 407 

the boundary. As a result, the LSCM method is used here to implement the bidirectional 408 

mapping between the surface mesh and the planar mesh. The detailed process of initial 409 

grid generation is shown in Fig. 13. 410 

Four boundary curves of the surface were divided into two pairs (Fig. 13(a)). Then 411 

the surface was discretized into a surface mesh, as shown in Fig. 13(b). The LSCM 412 

algorithm was applied to obtain the planar form of the surface mesh. Corresponding to 413 

original surface, the planar mesh also contains two pairs of boundary curves (Fig. 13(c)). 414 

A pair of boundary curves l'm,0 and l'm,m+1 (green curves in Fig. 13(c)) were divided into 415 

n+1 segments. The other n lines (noted l'n,1 , l'n,2 ,…, l'n,n in Fig. 13(d)) were acquired 416 

by connecting pairs of segment points at the same relative positions. n lines were 417 

uniformly sampled [28], with two adjacent sampling points spacing ε on each line. ε 418 

can be determined by Eq. (14). 419 

 min=
1

d
m

 
+

 (14) 

where 0 < ρ < 0.2, and dmin is the length of the shortest line among n lines. 420 

 Through the point location algorithm [38], the index of the planar triangular cell 421 

containing each sampling point can be found. According to the spatial coordinates 422 

corresponding to the three vertices of the triangular cell, the spatial position of the 423 

sampling point was calculated by barycentric interpolation [39], as shown in Fig. 14. 424 

The sampling points on the surface mesh were connected to obtain n polylines (noted 425 

ln,1 , ln,2 ,…, ln,n in Fig. 13(e)). These n polylines and the other pair of boundary curves 426 

(noted ln,0 and ln,n+1) were divided into m+1 segments, and m polylines on the other 427 
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direction (noted lm,1 , lm,2 ,…, lm,m ) were attained by connecting these segment points on 428 

the same relative locations. The n+m polylines and four boundary curves formed the 429 

initial grid, as shown in Fig. 13(f). 430 

After this process, all the vertices of the initial grid are located on the surface mesh 431 

instead of the initial surface. The regularity and uniformity of the grid are not good, 432 

especially near the boundary. Therefore, the initial grid does not meet the requirements. 433 

However, the initial grid nodes are well-positioned (i.e., the valence of each internal 434 

node is the same), which will be necessary to determine the trend of the final grids. 435 

 
 

 

(a) Surface (b) Surface mesh (c) Planar mesh 

   

(d) n lines on planar mesh 
(e) n polylines on surface 

mesh 
(f) Initial grid with m = 15, 

n = 11 

Fig. 13 Initial grid generation. 

Digital and automatic design of free-form single-layer grid structures



 

24 

 

 

Fig. 14 Calculating the spatial position of the sampling point by barycentric 
interpolation. 

5.2. Node adjustment 436 

The initially generated grids are usually not of high quality. Therefore, some post-437 

processes are needed to improve the overall quality of the elements. A nodal adjustment 438 

process is used here to adjust the node locations of the initial grid. 439 

In this process, the initial grid was regarded as a spring net using the spring-mass 440 

model introduced in Section 4. The coefficients of various springs were given by some 441 

initial defaults and could be adjusted by some trials interactively. By using the Verlet 442 

algorithm, the particles of the spring net moved over the surface iteratively in the 443 

dynamic simulation. The convergence of the spring-mass model has been proven in 444 

[40]. The termination condition is that the maximum of all particle displacements in an 445 

iteration step is less than a given threshold or the number of iterations exceeds the 446 

maximum number of iterations. Fig. 15(a, b) presented the grids after one iteration and 447 

five iterations, respectively. When the termination condition was met, the final grid 448 
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node distribution was acquired. As shown in Fig. 15(d), the grid nodes in the (m+2) × 449 

(n+2) matrix are distributed uniformly with all vertices subject to the surface and 450 

boundary vertices subject to the boundary. It should be noted that different grids require 451 

different iterations. Generally, the more grid nodes, the more iterations are required. 452 

The initial grid shown in Fig. 13(f) reaches convergence after 187 iterations, but the 453 

position of the grid vertices hardly changes after 20 iterations, as illustrated in Fig. 15(c, 454 

d). This shows that the process can quickly approach the state of convergence. 455 

As stated in Fig. 2(d), a significant difference among the lengths of the grid rods 456 

connected to a node can break the continuum of the rod segments of the grid shell, 457 

affecting the fluency of the grid shells. After the node adjustment process, the nodes 458 

are thus uniformly distributed to ensure that the lengths of the grid edges next to the 459 

nodes are approximately the same, ensuring grid fluency. 460 

  

(a) Grid after one iteration (b) Grid after five iterations 

  
(c) Node distribution after 20 

iterations 
(d) Node distribution after 187 

iterations 

Fig. 15 Node adjustment by the spring net-based dynamic simulation. 
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5.3. Node connection 461 

Grid shells come in many forms and are generally composed of triangular or 462 

quadrilateral grid cells. After the node adjustment, the grid nodes need to be 463 

reconnected to acquire the grid in the desired pattern.  464 

In this process, the mode of node connections of the smallest similar unit was 465 

determined by the user and then tiled to the whole grid by traversing all units. For 466 

example, four types of grid cells shown in Fig. 16 are used to connect the nodes in Fig. 467 

15(d), and four corresponding grids were obtained in Fig. 17. Although different forms 468 

of grids can be generated to give designers more choices, structured triangular and 469 

quadrilateral grids are more commonly used in buildings. This paper mainly discusses 470 

the generation and quality evaluation of these two forms of grids.  471 

Connecting nodes with predefined grid cells is an efficient and robust process. A 472 

specific form of node connection ensures that the grid topology, which explains the 473 

relationships between the vertices, edges, and cells, is perfectly regular, so there will be 474 

no singular vertices that are detrimental to the fluency of the grid. The resulted grids 475 

consist of repeating unit cells and are usually regular and fluent, satisfying the design 476 

requirements and providing designers with high-quality options.  477 

    
(a) Quadrilateral 

mode M1 
(b) Quadrilateral 

mode M2 
(c) Triangular 

mode M3 
(d) Triangular 

mode M4 

Fig. 16 Various predefined grid cell types are used for tilting the adjusted nodal 
set. 

 478 
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(a) Quadrilateral grid in M1 

 

(b) Quadrilateral grid in M2 

 

(c) Triangular grid in M3 

 

(d) Triangular grid in M4 

Fig. 17 Generated grids with various cell types. 

6. Grid size control method 479 

Sometimes, the designer may would like the generated grids to be of various 480 

lengths along with the boundary curves of the given surface. Taking the surface with a 481 

slender waist as an example, the initial grid was generated by the algorithm in the first 482 

process in Fig. 18(a). In the dynamic simulation process, all grid edge springs have the 483 

same slack length proportional to the average value of all current edge lengths, as 484 

illustrated in Eq. (2). As shown in Fig. 18(a), in the waist area, the lengths of the initial 485 

grid edges are smaller than those in other areas, and the corresponding slack lengths are 486 

substantially greater than the initial lengths. As a result, the grid edges in this area tend 487 

to elongate, with relatively large ratios of elongated lengths to initial lengths. However, 488 

the boundary constraint springs prevent the grid edges from extending beyond the 489 

surface, causing the grid to overlap (Fig. 18(b)). 490 
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To improve the grid regularity and avoid overlaps, the grid edges are desired to be 491 

varied and adaptive to the surface shape. The grid size is mainly controlled by grid edge 492 

springs. In Section 4.1.1, the force of the grid edge spring has been introduced and is to 493 

get a uniform grid. However, to get a non-uniform and adaptive grid, the force of the 494 

grid edge spring is redefined as:  495 

 , , ,( ) ij
t ij ijt j t ij

ij

dT k e d
d

= −  . (15) 

et,ij is the original length of the i-th edge on the curve lt,j, defined as: 496 
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where t = m, s = n or t = n, s = m; fg is the same as the one in Eq. (2).  497 

kt,j is the elastic coefficients of grid edge springs on the curve lt,j, that is  498 
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where kg is the basic elastic coefficient.  499 

The original lengths of grid edge springs are varied and related to their positions. 500 

The elastic coefficients of grid edge springs are also adjusted and not all the same. Only 501 

the grid edge springs on the same grid curve have the same elastic coefficient. The 502 

shorter the grid curve, the larger the elastic coefficient of grid edge springs on this curve.  503 

Except for the grid edge spring forces, other forces and processes of the spring net-504 

like method are not changed. Fig. 18(c) shows that the grid generated by the locally 505 

adjusted method is quite regular and fluent without overlaps of grids.  506 
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(a) Initial grid (b) Grid by the original 

method 
(c) Grid by the locally 

adjusted method 

Fig. 18 Grids for a surface with a slender waist. 

7. Adaption to complex boundary curves 507 

The above-proposed grid generation algorithm mainly focuses on the curved 508 

surface composed of four different boundary curves. Although the framework is 509 

effective and efficient, and the resulted grids are of high quality over such surfaces, the 510 

application scope is rather limited. To broaden the application scope of the proposed, 511 

some extensional operations are introduced to handle surfaces with more complex 512 

boundary curves. 513 

7.1. Ringed surface  514 

Ringed surfaces are relatively common in free-form grid structural design, as 515 

shown in the example in Fig. 19 (a). Fig. 19 (a) is a free-form grid shell that is to be 516 

built in Taizhou, China. A ringed surface has two disjunct closed boundaries. The two 517 

boundary curves are first divided into n segments. And n lines are acquired by 518 

connecting pairs of segment points at the same relative positions. Then these n curves 519 

are divided into m+1 segments relatively, and m polylines in the other direction are 520 

obtained by connecting these segment endpoints, following the same rules. Therefore, 521 

the n lines, m polylines, and two boundary curves form the initial grid. The nodal 522 

positions are then adjusted through the same process presented in Section 5. After the 523 

Digital and automatic design of free-form single-layer grid structures



 

30 

 

node adjustment, grid nodes in the (m+2) × n matrix are achieved and connected into 524 

ringed grids.  525 

The extended method was applied to the ringed surface presented in Fig. 19(b). The 526 

generated quadrilateral grid was obtained as presented in Fig. 19(c). It is shown that the 527 

grid quality is much better than the original grid presented in Fig. 19 (a) at the position 528 

of the surface with sharp curvature.  529 

    

(a) Architectural rendering 
(b) Free-form surface 

model 
(c) Quadrilateral grid 

Fig. 19 Grid generation for a drop-shaped and ringed surface roof. 
7.2. Free-form surface with odd number of boundary curves 530 

Surfaces with three or more than four boundary curves are frequently observed in 531 

some projects. This type of surface cannot be meshed directly, and the boundary curves 532 

must be processed in order to convert the surface into a pseudo surface with four 533 

boundary curves. 534 

For a surface with three boundary curves (Fig. 20), the corner of the surface can be 535 

regarded as a degenerate edge with a very short length, and the surface can then be 536 

converted into a surface with four boundary curves for grid generation. As shown in 537 

Fig. 21(a, b), two different corners of the surface are regarded as degenerate edges, and 538 

grids are generated accordingly. However, the two grids are of poor quality and cannot 539 

be constructed with the grid cells clustered at the degraded edge. To avoid the above 540 

situation, the polylines over the two grids that do not intersect with the degraded edge 541 

(purple polylines in the Fig. 21(a, b)) are extracted respectively and recombined into 542 
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the final grid (Fig. 21(c)). It should be noted that the designer has the option of 543 

generating the final grid based on any two corners. Different choices will result in 544 

different grid line directions, yet all final grids are more visually appealing, and the 545 

grid's quality has substantially improved, particularly at the corners.  546 

 

 

(a) Front view (b) Perspective view 

Fig. 20 A surface with three boundary curves. 

   

(a) Grid with the lower left 
corner as the degenerate 

edge 

(b) Grid with the upper right 
corner as the degenerate 

edge 
(c) Final grid 

Fig. 21 Grid generation for a surface with three boundary curves. 
For surfaces with more than four boundary curves, some boundary curves need to 547 

be merged to reduce the number of boundary curves to four. As shown in Fig. 22, the 548 

multiple surface is made up of 12 single surfaces and contains seven naked boundary 549 

curves. The boundary curves 1 and 2, the boundary curves 4 and 5, are merged into ln,0 550 

and ln,n+1 respectively, while lm,0 consists of the boundary curves 6 and 7, as illustrated 551 

in Fig. 23. The surface is then thought to have four boundary curves. Different from the 552 
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real surface with four boundary curves, when the initial grid is generated, due to the 553 

existence of vertices in the merged curve, the boundary edges of the grid near the 554 

vertices often deviate from the surface boundary curves, as shown in Fig. 24. To ensure 555 

the accurate representation of the surface by the grid, point constraint springs that only 556 

work on the boundary vertices of the grid are set at the vertices of each merged 557 

boundary curve. The subsequent steps are the same as for the four-sided surface, and 558 

the final grid is shown in Fig. 25. Furthermore, designers can choose different 559 

combinations of boundary curves according to their preferences. For example, the 560 

boundary curves 2 and 3 are merged into a curve, as are the boundary curves 5, 6, and 561 

7, and the final grid is shown in Fig. 26. 562 

 

 

(a) Front view (b) Perspective view 

Fig. 22 Surface with seven boundary curves. 
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Fig. 23 Surface with boundary curves 
merged. 

Fig. 24 Initial grid. 

  

Fig. 25 Final grid. Fig. 26 Grid. 
7.3. Free-form surface with internal boundary 563 

For grid generation over a trimmed surface with internal boundary curves, one 564 

method is to generate an extended grid using the spring net-like method over the 565 

original complete surface without considering the internal boundary curves. Then 566 

remove all redundant edges that are inside of the inner boundary. The shortcoming of 567 

such a geometry operation is that the resulted grid has nodes and non-uniform edges 568 

adjacent to the boundary curves, making it difficult to satisfy the requirements of 569 

architectural aesthetics. 570 
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An improved technique is used to generate the extended grid over the basic surface. 571 

The grids are firstly generated over the complete surface. Then, the grid is filtered to 572 

get rid of the unnecessary grid cells that are outside the definition of the trimmed surface. 573 

The key to filtering the grid is to decide whether to keep or delete the grid cells 574 

intersecting with the boundary curves. The cases of intersection between a quadrilateral 575 

grid cell and the boundary curve are shown in Fig. 27, and the filtering criterion of a 576 

quadrilateral grid cell is defined as:  577 
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where Sin and Sout are the areas of the grid cells inside and outside the given free-form 578 

surface, respectively.  579 

 580 

Fig. 27 The intersection between a quadrilateral grid cell ABCD and the boundary 581 
curve EF. 582 

A triangular grid is filtered according to Eq. (19). Then the edges around the 583 

boundary are adjusted to approximate the boundary curves as much as possible by 584 

connecting the related nodes or eliminated edges: 585 
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After filtered, the generated grids are relaxed by the spring-based dynamic 586 

simulation introduced in Section 5.2, and the final grid over the given surface is 587 

obtained. 588 

Based on the above grid filtering technique, a surface with an inner boundary is 589 

meshed according to the proposed framework, and the processes are shown in Fig. 28(a-590 

d). The resulted grid (Fig. 28(d)) is regular and fluent and complies with the internal 591 

boundary curve, which demonstrates that the proposed framework can be well adapted 592 

to the surface with internal boundary curves. 593 

 
 

(a) Surface with the inner 
boundary 

(b) Grid generated on the 
original surface 

  

(c) Grid with redundant 
edges removed 

(d) Relaxed grids 

Fig. 28 Grid generation over a surface with an internal 
boundary curve.  

7.4. Free-form surface with external boundary  594 

Similarly, given a surface with complex external boundary curves, the surface is 595 

firstly extended and trimmed according to the original one to form a surface with 596 

quadrilateral boundary curves. Then grids are generated for the quadrilateral surface 597 

with the spring net-like method in Section 5. The grid elements outside the given 598 
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surface are removed according to the principle introduced in Section 7.3. Then the 599 

filtered grids are relaxed by employing the dynamic simulation algorithm. 600 

As shown in Fig. 29(a-d), the grids over a surface with a complex outer boundary 601 

are generated accordingly. The resulted grids are shown in Fig. 29(d) with regular and 602 

fluent cells. The example illustrates the effectiveness of the proposed framework 603 

applying to the surface with complex outer boundary curves. 604 

  
(a) Surface with a complex outer 

boundary 
(b) Grid generated on the extended 

surface 

  
(c) Grid with redundant edges removed (d) Relaxed grid 

Fig. 29 Grid generation over a surface with an external boundary curve.  

8. Grid quality indexes 605 

Traditionally, architects or engineers evaluate grids generated in their design 606 

through a visual check. This requires the designers’ experience to assess the quality of 607 

grids in terms of regularization and fluency. Quantitative methods are essential to 608 

evaluate the quality of architectural grids of free-form surfaces. Quantitative metrics on 609 

the evaluation of the grid quality of grid shells can be borrowed from early studies of 610 

Finite Element Analysis (FEA) mesh element distortion [41,42]. Traditional grid 611 

quantitative indexes, such as face shape quality and edge length, can provide an overall 612 

description of the quality, but these indexes are mainly focused on FEA applications 613 

and are not appropriate in the context of structural grid shells. Therefore, an index is 614 
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used to assess the fluency of the structured grid, whereby improved fluency means a 615 

better visual expression of a grid shell as required in most architectural applications.  616 

Since grids used in the field of architecture are mostly triangular or quadrilateral, 617 

the quality evaluations discussed below are mainly for triangular or quadrilateral grids, 618 

even though grids in other patterns can be generated by our method. 619 

8.1. Regularity index 620 

To quantify the grid regularity, the shape quality index of the triangular or 621 

quadrilateral grid face is used and defined as:  622 

 tri

qua quadrang
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, (20) 

where the triangular shape index qtri is defined by Eq. (21) [43] and the quadrilateral 623 

shape index qqua is defined by Eq. (22) [15].  624 
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where ΔABCS  is the triangle area; lAB, lBC, and lAC are the side lengths. qtri∈[0,1]. For 625 

an equilateral triangle, qtri =1, and for a degenerate triangle (three points collinear), qtri 626 

= 0. Approximately equilateral triangles are desired. For quadrilateral shape: 627 
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where ΔABCS , ΔBCDS , ΔCDAS , ΔABDS  denote the area of the triangles ∆ABC, ∆BCD, 628 

∆CDA, ∆ABD; lAB, lBC, lCD, and lAD are the side lengths of the quadrangle. qqua∈[0,1]. 629 
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The higher the qqua, the better the shape quality of the quadrangle. If qqua = 1, the 630 

quadrangle is a square whose shape quality is the best. 631 

The average value �̅� defined in Eq. (23) and the standard deviation s defined in 632 

Eq. (24) are employed to evaluate the whole grid regarding regularity. The larger �̅� 633 

and the smaller s, the more regular the grid: 634 
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where N is the total number of objects, and qi is the value of the i-th object.  635 

8.2. Fluency index 636 

Grid fluency is an essential aspect in evaluating a free-form grid shell. Wang et al. 637 

[4] presented an index to assess the fluency of a structured triangular grid based on 638 

angles of interior vertices. We broaden the application scope of this index to make it 639 

also applicable to a quadrilateral grid.  640 

For a structured grid, the number of edges connected to any interior vertex noted 641 

as d is the same. d = 6 for a triangular grid while d = 4 for a quadrilateral grid. The 642 

factors that can affect fluency are the angles between two opposite edges and the 643 

opposite angles at the interior vertex. As shown in Fig. 30, if the opposite edges (i.e., 644 

E1 and E4 in a triangular grid and E1 and E3 in a quadrilateral grid) are in a straight line 645 

(β14=180° and β13=180°, respectively), a more fluent grid will be achieved. It is also 646 

expected that the opposite angles would be the same in a more fluent grid (i.e., β1 = β4 647 

in a triangular grid and β1 = β3 in a quadrilateral grid). Thus, the fluency index of an 648 

interior vertex is defined in Eqs. (25-27).  649 
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(a) Triangular grid (b) Quadrilateral grid 

Fig. 30 Angles of an interior vertex in structured grid 
 650 
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where δi denotes the fluency index of the i-th vertex; r = 0.5d, that is r = 3 for a 651 

triangular grid and r = 2 for a quadrilateral grid; βjk is the angle between the j-th edge 652 

and the k-th edge and βj is the angle between the j-th edge and the (j+1)-th edge (if j+1 > 653 

d, replaced by the 1-st edge).  654 

The smaller the δi, the more fluent the grid at the i-th vertex. The smaller the mean 655 

value of the fluency index, the better the fluency of the structured grid. 656 

  

(a) Triangular grid with 7 interior 
vertices 

(b) Quadrilateral grid with 6 interior 
vertices 
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Fig. 31 Simple planar grids. 
Two simple grids in Fig. 31 are evaluated using this index as examples. In the 657 

triangular grid (Fig. 31(a)), p2 is an ideal point with δ = 0°. The points p5 and p7 are 658 

visually non-ideal, and their fluency indexes are as large as 61.9° and 85.9°, 659 

respectively. Similarly, in the quadrilateral grid (Fig. 31(b)), point p2 is also an ideal 660 

point whose fluency index equals 0°, and the fluency is the worst around point p6 with 661 

δ = 78.0°. As shown in Table. 1 and Table. 2, the magnitude of δ reflects the grid fluency 662 

around each point.  663 

Table. 1 Fluency index of interior vertices of the triangular grid. 664 

Point number p1 p2 p3 p4 p5 p6 p7 

 (°) 13.5  0.0  21.1  15.7  45.9  21.0  61.3  

 (°) 12.2  0.0  12.3  15.6  41.5  20.1  60.2  

δ (°) 18.2  0.0  24.4  22.1  61.9  29.1  85.9  

 665 

Table. 2 Fluency index of interior vertices of the quadrilateral grid. 666 

Point number p1 p2 p3 p4 p5 p6 

 (°) 17.3 0.0 20.4 35.2 38.1 45.0 

 (°) 24.5 0.0 28.9 49.8 53.9 63.7 

δ (°) 30.0 0.0 35.4 61.0 66.0 78.0 

9. Additional case study 667 

In previous sections, all the components of the framework for grid generation have 668 

been introduced. Apart from the three main processes (initial grid generation, node 669 

adjustment, and node connection), the framework includes additional geometry 670 

operations to handle surfaces with complex boundary curves. Grid quality indexes such 671 

as regularity and fluency indexes are also utilized to evaluate the generated grids. The 672 

Digital and automatic design of free-form single-layer grid structures



 

41 

 

framework described in the previous sections has been made available as a grid 673 

generator in a plugin named Grasshopper which is a Rhinoceros-based geometric 674 

modelling tool, providing a parametric modelling environment. In this section, the grid 675 

generator is applied to an existing project, and the grid quality indexes are compared 676 

between the proposed framework and other methods. In addition, mechanical 677 

performance analysis is also carried out. 678 

9.1. Grid generation 679 

The Sun Valley of Expo Axis is a typical free-form grid structure (noted G0) in 680 

Shanghai, China, as shown in Fig. 32(a). G0 has good regularity, but there are several 681 

singular vertices. These singular vertices destroy the fluency of the whole grid and 682 

reduce the architectural beauty. A corresponding surface model has been established 683 

based on the Sun Valley (Fig. 32(b)). The surface is a single and ringed NURBS surface. 684 

Its top boundary is approximately an ellipse with a 100 m long axis and an 80 m short 685 

axis, while its bottom boundary is approximately an ellipse with a 30 m long axis and 686 

a 27 m short axis, and the height is 40 m. The surface is meshed by the mapping method 687 

and the proposed framework, respectively. As Fig. 32(c) and Table. 3 illustrate, the grid 688 

G1 generated by the mapping method is very fluent without any singular vertex, and its 689 

𝛿̅ = 3.69°. But G1 has many sliver triangles, and the regularity of the gird is not good 690 

obviously with �̅� =0.838 and s = 0.157. As Fig. 32(d) and Table. 3 illustrate, the grid 691 

G2 by the proposed framework is not only fluent with 𝛿̅ = 4.82°, but also regular with 692 

�̅� = 0.990. G2 has the best visual expression among G0, G1, and G2.  693 

Achieving the harmony of fluency and regularity, the proposed framework is better 694 

than both the mapping method whose grid is not regular and the method [44] previously 695 

used for the Sun Valley whose grid is not fluent.  696 
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(a) Sun Valley of Expo Axis (b) Surface for Sun Valley  

  

(c) Grid G1 by the mapping method  (d) Grid G2 by the proposed framework  

Fig. 32 Grid generation for the Sun Valley. 
 697 

Table. 3 Grid quality indexes. 698 

Grid l (m) �̅� s×10-2 𝛿̅(°) 

G1 (Fig. 32(c)) 2.49 0.838 15.7 3.69 

G2 (Fig. 32(d)) 2.54 0.990 0.954 4.82 

G3 (Fig. 33(c)) 2.55 0.987 1.54 5.24 

To be more challenging, the surface was trimmed by two closed curves, as shown 699 

in Fig. 33(a). As introduced in Section 7, the filtered grid (Fig. 33(b)) was attained by 700 

filtering the grid G2 based on the trimmed surface. The final grid G3 is acquired by 701 
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relaxing the filtered grid. As Fig. 33(c) and Table. 3 illustrate, the grid G3 that is regular 702 

with �̅� = 0.987 and fluent with 𝛿̅ = 5.24° expresses the trimmed surface adequately.  703 

   

(a) Trimmed Surface (b) Filtered grid  (c) Relaxed grid G3 

Fig. 33 Grid generation for the trimmed surface. 

9.2. Mechanical performance 704 

Many researchers have studied the mechanical properties of classic grid shells [45–705 

47]. As a result, it is worthwhile to investigate the mechanical performance of free-form 706 

grid shells. To evaluate the mechanical performance, detailed geometric and material 707 

non-linear finite element analyses taking into account the imperfections (GMNAI) are 708 

performed using ANSYS [48]. 709 

The free-form grid shell shown in Fig. 32(d) is used to create three finite element 710 

models for analysis. All members of each model have identical cross-sections, as 711 

indicated in Table. 4. The three finite element models are developed using the 712 

BEAM188 element. This element is based on Timoshenko beam theory and takes shear 713 

deformation effects into account, and each member is simulated with three elements. 714 

The structural boundary conditions are hinged. 715 
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Table. 4 Cross-sections of members of the three models. 716 

Designation Grid member 

 (diameter × thickness 

(mm)) 

Model 1 ϕ180 × 12 

Model 2 ϕ219 × 12 

Model 3 ϕ245 × 12 

The elasto-plastic constitutive model is used in finite element analysis. The yield 717 

strength and Young’s modulus of the steel are 235 MPa and 2.1×105 MPa, respectively. 718 

The vertical load is applied uniformly over the whole span of the three models. 719 

Furthermore, geometric imperfections are accounted for in the finite element analysis 720 

by scaling the first elastic buckling modes to a particular amplitude and superimposing 721 

it on the initial perfect geometry. The amplitude of the imperfections is taken as 1/300 722 

of the span, with the amplitude of the imperfections set to 1/300 of the span.The load-723 

displacement curve of each model is obtained from the GMNAI, as shown in Fig. 34. 724 

The displacement represents the maximum vertical displacement of all nodes in each 725 

model. As shown in Fig. 34, the load-displacement curve of each model has two 726 

characteristic times, denoted by time “a” and time “b”, respectively. Time “a” is defined 727 

as the time when the member yielding first initiates, and time “b” is the time when the 728 

model reaches its ultimate bearing capacity. It can be seen that the ultimate bearing 729 

capacities of the three models are 9.83 kN/m2, 12.55 kN/m2, and 14.42 kN/m2, 730 

respectively. As the cross-section grows larger, so does the ultimate bearing capacity 731 

of the model. Even Model 1, with the smallest cross-section, has a high ultimate bearing 732 

capacity. Additionally, from time a to time b, the displacements of corresponding nodes 733 
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of the three models are all relatively large, indicating that the three models do not fail 734 

suddenly under this load case. 735 

   

(a) Model 1 (b) Model 2 (c) Model 3 

Fig. 34 Load-displacement curves of the three models. 

10. Conclusion and future research 736 

To mesh a free-form surface with complex boundary curves into a regular and 737 

fluent grid for the preliminary design of grid shells, this paper proposes a new grid 738 

generation framework. The framework relies on a spring-mass model to achieve regular 739 

and fluent triangular or quadrilateral grids over free-form surfaces. The framework can 740 

also handle surfaces with complex boundaries. First, a quadrilateral grid is decorated 741 

on the surface based on surface discretization and mesh parameterization. Secondly, the 742 

distribution of the initial grid vertices is adjusted by assuming the grid as a spring-mass 743 

system. Thirdly, high-quality grids are created by connecting the nodes in an 744 

equilibrium state with a predefined pattern. Finally, the generated grid is relaxed with 745 

the spring-mass model, alongside additional geometric operations including grid size 746 

adjustment and filtering techniques, to further improve the grid regularity and fluency. 747 

In the spring-mass model, spring forces between connected particles control the grid 748 

size; spring forces of faces regularize the grid shape; surface attraction forces to 749 

particles keep the spring net on the surface; boundary attraction forces to the boundary 750 

particles make the spring net cover the whole surface; anchoring forces can fix some 751 
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particles. The proposed framework is robust, effective, and can be applied to free-form 752 

surfaces with complex boundary conditions. In addition to the conventional quantitative 753 

measurements of grid quality in terms of grid shape, we broaden the application scope 754 

of the fluency index to make it applicable to both triangular and quadrilateral grids, so 755 

a more concrete perception of the grid quality is obtained. Examples show that the 756 

framework can be applied to diverse free-form surfaces and the generated grids are 757 

fluent and regular in harmony with the requirements of architectural aesthetics. 758 

Compared with topology optimization, the grid generated by the proposed framework 759 

can better meet the requirements of architectural aesthetics and industrial production. 760 

This framework can be a useful tool to generate structured grids for the design of free-761 

form grid shells. 762 

 It should be pointed out that the proposed framework can mainly generate grids in 763 

harmony between regularity and fluency, while the grid size may be non-uniform. 764 

However, the uniformity is also of great importance to the architectural grid, and a large 765 

difference in grid size is not conducive to the section design of bars and the construction 766 

cost for grid shells. It is necessary to do further research to realize the harmony of grid 767 

uniformity, regularity, and fluency based on the spring-mass model in the future. 768 

Besides, other specific requirements, such as planarization of polygonal grids, should 769 

also be considered to improve and extend the method. 770 
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