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Panel vector autoregressions (PVARs) are a popular tool for analyzing multicountry data sets. However,
the number of estimated parameters can be enormous, leading to computational and statistical issues. In this
article, we develop fast Bayesian methods for estimating PVARs using integrated rotated Gaussian approxi-
mations. We exploit the fact that domestic information is often more important than international information
and group the coefficients accordingly. Fast approximations are used to estimate the latter whereas the former
are estimated with precision using Markov chain Monte Carlo techniques. We illustrate, using a huge model of
the world economy, that it produces competitive forecasts quickly.

1. introduction

There is much evidence that working with multicountry time-series models improves
macroeconomic forecasting and structural analysis (see, among many others, Pesaran et al.,
2004, 2009; Canova and Ciccarelli, 2016). This is to be expected in the modern globalized
economy where countries are linked together through trade and financial flows and events in
one country can spill over into others. However, the relevant data sets can be enormous. In
this article, we work with a 38-country data set that contains 487 variables. If all of these are
treated as endogenous variables in an unrestricted multicountry vector autoregression (VAR),
the number of equations in the VAR will be huge, as will the number of right-hand side vari-
ables in each equation. The resulting model will be overparameterized.
Much of the existing literature deals with this problem by imposing restrictions on the

model or compressing the data (e.g., by using factor methods). For instance, the popular class
of global VARs (GVARs, see, e.g., Pesaran et al., 2004, 2009; Cuaresma et al., 2016; Dovern
et al., 2016; Huber, 2016) assumes that information from all other countries impacts a country
solely through a single weighted average of other country information. The weights in the av-
erage typically are based on bilateral trade flows. By contrast, the literature on panel VARs
(PVARs) mainly deals with overparameterization issues through constraints on the parame-
ters describing the dynamic and static relations across countries (see, e.g., Canova and Cic-
carelli, 2009).
We propose an unrestricted PVAR specification where any variable can affect any or all

other variables either contemporaneously or with a lag. This implies that the influence of
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2 feldkircher et al.

foreign variables is neither a priori restricted (e.g., using trade weights) nor based on the out-
put of a dimension-reduction procedure such as principal components. In other words, we
want to let the data decide the exact nature and extent of linkages between countries. This
feature of our approach turns out to be a substantial improvement over multicountry models
commonly used in the literature.
Bayesian shrinkage methods are increasingly used for overcoming the overparameteriza-

tion problems which arise when working with unrestricted PVARs (or large VARs in general).
Influential early contributions such as Canova and Ciccarelli (2009) used simple methods for
choosing the prior (e.g., subjective elicitation or training sample methods). More recently,
Bayesians have been working with global–local shrinkage or variable selection priors (see,
e.g., Koop and Korobilis, 2016; Korobilis, 2016; Bai et al., 2022). These priors are commonly
used in Big Data problems where models involve a large number of parameters. They auto-
matically sort through all the parameters and decide which ones to shrink to zero and which
ones to estimate freely. Our goal in this article is to use a global–local shrinkage prior in a
large unrestricted PVAR and let it decide which cross-country linkages are important and
which can be ignored. In our empirical work, we mainly use the Horseshoe prior of Carvalho
et al. (2010) although the econometric methods developed in this article will work with any
hierarchical shrinkage prior that takes a conditionally Gaussian form including the least ab-
solute shrinkage and selection operator (LASSO) and Dirichlet–Laplace priors of Park and
Casella (2008) and Bhattacharya et al. (2015), respectively.
Bayesian estimation and forecasting in VARs using global–local shrinkage priors typically

requires the use of computationally demanding Markov chain Monte Carlo (MCMC) meth-
ods. These algorithms are impractical in the very large PVARs that arise when working with
many countries and many variables. For this reason, the existing Bayesian literature which
uses unrestricted PVARs has focused on relatively small models. For instance, Koop and Ko-
robilis (2016) use a PVAR involving four variables for each of seven European countries
which is much smaller than the one considered in this article.
To overcome the computational hurdle, we develop an integrated rotated Gaussian approx-

imation (IRGA) for the PVAR. IRGAs were recently developed by Van den Boom et al.
(2021) as a machine learning tool to speed up computation in high-dimensional models. These
methods build on the intuition that some parameters are more important than other param-
eters. The other parameters, which in our case are mainly coefficients associated with other
countries’ lagged endogenous variables and covariance terms, are estimated using efficient ap-
proximations. The more important parameters are then estimated conditional on these ap-
proximations using precise MCMC techniques. We adapt these methods for use with PVARs.
The resulting IRGA-based algorithm leads to vast improvements in speed of computation and
has appealing approximation properties which we illustrate through simulations.
In our empirical work, we estimate a huge model of the world economy that contains 487

endogenous variables. In a forecasting exercise, we compare the performance of our unre-
stricted PVAR with a Horseshoe prior, estimated using IRGA methods (PVAR-IRGA), to
a range of alternatives including a GVAR, factor-augmented VARs (FAVARs) with the fac-
tors constructed using other country variables, and single-country Bayesian VARs (BVARs).
In terms of computation, our key finding is that the computational improvements are large
enough to enable Bayesian forecasting and structural analysis to be done even in huge
PVARs. In terms of empirical results, we find our large approximate model forecasts well and
often outperforms competing models. The forecast improvements are particularly strong for
short-run density forecasts of stock market returns and longer-run inflation and output predic-
tions. In these cases, we find PVAR-IRGA, with few exceptions, to forecast substantially bet-
ter than all the alternatives.
We then proceed by analyzing the properties of the forecasts of the PVAR-IRGA via re-

cent techniques used for analyzing social networks (Holland et al., 1983; Karrer and Newman,
2011; Žiberna, 2014; Pati and Bhattacharya, 2015). These stochastic block models build on
the correlation matrix and sort correlations into clusters which facilitate interpretation. This
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approximate inference in panel vars 3

analysis provides novel insights on the properties of the forecasts which are consistent with ac-
tual developments during the global financial crisis and the euro area sovereign debt crisis.
Our forecasting exercise is complemented by additional empirical results on the degree

of cross-country spillovers. Considering different variants of the Diebold and Yilmaz (2009)
spillover index shows that our model detects sizable international relations across output,
prices, long-term interest rates (LT-IR), and stock markets which sharply increase throughout
the holdout period. These increases are particularly pronounced during times of economic tur-
moil. Our findings hence provide novel insights on truly global connectivity since comparable
large-scale analyses are not feasible with standard econometric techniques.
The remainder of the article is structured as follows: In Section 2, we define the PVAR like-

lihood and the prior we use to carry out Bayesian inference and prediction. Section 3 dis-
cusses computation and develops our IRGA methods which allow for fast computation. It
also includes a theoretical discussion on the approximation properties of IRGA. In Section 4,
we carry out a simulation exercise to complement the theoretical discussion whereas in Sec-
tion 5 we present results for our forecasting exercise which compares our PVAR-IRGA to
a range of other approaches. This section also includes information on the extent of cross-
country spillovers. The final section summarizes and concludes the article. The Appendix pro-
vides additional technical details and further empirical results such as robustness checks.

2. the pvar

This section develops the basic PVAR and briefly discusses the main specification issues
commonly faced by researchers. We then discuss how Bayesian techniques can be used to deal
with overparameterization concerns and thus, in an automatic fashion, solve several of these
specification issues.

2.1. The Likelihood Function. Our goal is to model dynamic and static relations in an
international panel of macroeconomic and financial time series which are stored in an n-
dimensional vector yt = (y′

1t, . . . , y
′
Nt )

′ for t = 1, . . . ,T . This vector is composed of N country-
specific subvectors yit which are M × 1-dimensional.1 Assuming that each yit depends on the
lagged values of yt , we obtain a PVAR given by

yit = �i1yit−1 + · · · + �ipyit−p + �izit + εit,(1)

where �i j are M × M coefficient matrices associated with the lagged endogenous vari-
ables of country i. Lags of variables from countries other than i are denoted by zit =
(y′

−i,t−1, . . . , y
′
−i,t−p)

′ with y−i,t = (y′
1t, . . . , y

′
i−1,t , y

′
i+1,t , . . . , y

′
Nt )

′. The coefficient matrix on
other country lags, �i, is an M × Kother matrix where Kother = (N − 1)Mp. Note that �i will
contain an enormous number of parameters unless N and/or M are small. The matrix �i en-
codes the dynamic relations across countries (which are commonly referred to as dynamic in-
terdependencies in the literature) whereas the M × k(= Mp) matrix �i = (�i1, . . . ,�ip) cap-
tures domestic dynamics.
The usual VAR representation in terms of yt is obtained by stacking all country-specific

models and reshuffling the columns of �i and �i appropriately:

yt = �̃1yt−1 + · · · + �̃pyt−p + εt .(2)

The coefficient matrices �̃ j are of dimension n × n and the errors εt = (ε′
1t, . . . , ε

′
Nt )

′ are i.i.d.
Gaussian with � being an n × n-dimensional variance–covariance matrix. The off-diagonal el-
ements of this matrix determine both contemporaneous relations across variables within a

1 Note that M may differ across countries but is used here to simplify notation. Our approach naturally allows for
different covariates across equations and countries. In the empirical work, variable coverage differs across countries.
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4 feldkircher et al.

country and instantaneous dependencies across countries. The latter relations are typically re-
ferred to as static interdependencies in the literature. Notice that unrestricted estimation of
all contemporaneous relations across countries implies estimating n(n − 1)/2 covariances. For
large n, this adds to the already huge number of parameters in the �i’s and �i’s.

In the literature on PVARs, estimation is often facilitated by introducing restrictions (see,
e.g., Canova and Ciccarelli, 2009, 2016) on the coefficients in (1) and (2). For instance, the
so-called cross-sectional homogeneity restriction arises if �i = �s for i �= s. This implies that
domestic dynamics across countries are identical—a rather restrictive assumption if the panel
of countries includes, for example, developed and developing economies. Another restriction
often introduced is �i = 0 for some (or even all) i. This rules out dynamic relations across
some countries but substantially reduces the number of free parameters. GVARs are also
not restriction free. The assumption here is that cross-country linkages can be approximated
by cross-country weighted averages and hence restrict �i.2 Another restriction sometimes
considered assumes that shocks across countries are uncorrelated, that is, cov(εit, εst ) = 0.
This implies introducing zero restrictions on the relevant elements in �. All these restrictions,
however, have serious implications for forecasting and structural inference and potentially
introduce misspecification if chosen wrongly. These considerations inspire us to use Bayesian
variable selection methods via a global–local shrinkage prior so as to choose the appropriate
restrictions in a data-based manner.
If left unrestricted, estimation of the PVAR using traditional Bayesian MCMC methods is

computationally cumbersome. For large data sets such as the one used in this article, the com-
putational burden becomes impractical. Hence, a goal of this article is to speed up compu-
tation. In a first step, we greatly simplify computation by transforming the PVAR to allow
for equation-by-equation estimation. This can be achieved by taking a Cholesky-type decom-
position of � = UHU ′. Here, we let U denote a lower triangular matrix with unit diagonal
and H is a diagonal matrix with main diagonal σ2 = (σ2′

1 , . . . , σ2′
N )

′. The M-dimensional vec-
tor σ2

i = (σ 2
ε,i1, . . . , σ

2
ε,iM)′ stores the idiosyncratic variances σ 2

ε,i j associated with the shock in
country i and equation j. We can use this decomposition to recover the structural form of (2):

yt = A1yt−1 + · · · + Apyt−p +Wyt + εt, εt ∼ N (0,H ),

where W = (I −U−1) encodes the contemporaneous relations across the shocks in the sys-
tem and the matrices A j( j = 1, . . . , p) denote structural coefficients. Within a given country,
we can easily obtain a representation similar to (1) by reshuffling the explanatory variables:

yit = Ai1yit−1 + · · · + Aipyit−p + Bizit +Wiyt + εit,

with Wi denoting the M rows of W associated with the ith country. This allows us to rewrite
the jth (>1) equation in the country-specific model i(> 1) as follows:3

yi j,t = A′
i j,•xit + B′

i j,•zit +
j−1∑
s=1

wisyis,t +
i−1∑
v=1

u′
ivyvt + εi j,t ,(3)

where yi j,t denotes the jth element of yit , xit = (y′
it−1, . . . , y

′
it−p)

′ whereas Ai j,• and Bi j,• denote
the jth rows of Ai and Bi, respectively. ui j,• = (wi1, . . . ,wi, j−1,u′

i1, . . . ,u
′
ii−1)

′ are the covari-
ance parameters associated with the relevant row inWi.
Note that the errors are now independent across equations (i.e., both within and across

countries) with error variance given by σ 2
ε,i j. This independence allows for estimating one

2 These weights have to be specified exogenously and are often based on measures of economic connectivity such
as bilateral trade flows. For an overview, see Feldkircher and Huber (2016).

3 For j = 1 and i = 1, the equation simplifies and only xit and zit appear as regressors.
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approximate inference in panel vars 5

equation at a time which greatly speeds up computation. Cholesky-based formulations such
as this have been used in many recent papers, including Carriero et al. (2019), Koop et al.
(2019), Huber et al. (2021), and Carriero et al. (2021). As opposed to Carriero et al. (2021),
our approach includes the contemporaneous values of the endogenous variables and is thus
not order-invariant. In the Appendix, we show that the results are robust to different order-
ings of the countries in yt , implying only negligible empirical differences.

Equation (3) is a simple regression model which regresses yi j,t on the lags of yit , the lags of
the other countries’ endogenous variables in zit , the contemporaneous values of the preceding
j − 1 variables domestic variables in country i as well as the contemporaneous values of the
preceding i − 1 countries. Our approach builds on the notion that xit is more important in ex-
plaining yi j,t than all other quantities in (3).

To simplify notation, let z̃i j,t = (z′
it, yi1,t , . . . , yi j−1,t , y′

1t , . . . , y
′
i−1t )

′ denote a Ki j(= Kother +
j − 1 + (i − 1)M) vector which stores the international quantities (both lagged and contempo-
raneously) as well as the time t values of the endogenous variables up to equation i. More-
over, we stack the corresponding regression coefficients in a Ki j vector B̃i j,• = (B′

i j,•,u
′
i j,•)

′.
Notice that Ki j is much larger than k which implies that B̃i j,• is difficult to estimate for large
M, N, and p. We can rewrite (3) in full-data form by stacking the T observations into vectors
to obtain the PVAR equations which define the likelihood function of our model:

yi j = xiAi j,• + z̃i jB̃i j,• + εi j ⇔ yi j ∼ N
(
xiAi j,• + z̃i jB̃i j,•, σ 2

ε,i jIT
)
,(4)

with xi being a T × k matrix where k = Mp with tth row given by x′
it . z̃i j is a T × Ki j ma-

trix with tth row z̃′
i jt . This equation is a regression model which discriminates between a high-

dimensional set of predictors related to covariances and international quantities in z̃i j and a
low-dimensional set of domestic quantities in xi.

2.2. The Prior. The methods developed in this article apply for any prior which has a hier-
archical Gaussian form and thus leads to a full conditional posterior which is Gaussian. This
is due to the fact that IRGA methods exploit the property that Gaussian distributions are
invariant to rotations. A popular class of priors which has this form is the class of Gaussian
global–local shrinkage priors. These can be represented as scale mixtures of Gaussians.4

At a general level, consider the jth coefficient in a model, φ j. A global–local shrinkage
prior can be written as:

φ j ∼ N
(
0, ψ2

j λ
2
)
, ψ j ∼ f, λ ∼ g,

where f and g are mixing densities and many different choices for them have been proposed.
In a global–local shrinkage prior, λ controls global shrinkage (common to all parameters).
Having global shrinkage has often been found useful in BVARs (e.g., the Minnesota prior has
a global shrinkage parameter) to reduce overfitting concerns.5 ψ j does local shrinkage (spe-
cific to the jth parameter). That is, if ψ j is estimated to be close to zero then φ j is shrunk to
be close to zero.
Suitably chosen mixing densities f and g result in a wide range of popular shrinkage pri-

ors such as the LASSO (Park and Casella, 2008), Normal-Gamma (Griffin and Brown, 2010),
Dirichlet–Laplace (Bhattacharya et al., 2015), or the Horseshoe (Carvalho et al., 2010). Due
to its empirical success and ease of implementation, we use the Horseshoe prior. It takes the
form:

λ ∼ C+(0, 1), ψ j ∼ C+(0, 1),

4 Cadonna et al. (2020) provides a taxonomy of a range of priors in this class and discusses their properties.
5 In Appendix A.2, we show how to implement a hierarchical Minnesota-type prior within this framework.
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6 feldkircher et al.

whereby C+ denotes the half-Cauchy distribution. Makalic and Schmidt (2016) show that the
Horseshoe can be equivalently stated in terms of inverse Gamma distributions using suitable
auxiliary variables. Specifically,

ψ2
j |ν j ∼ G−1(1/2, 1/ν j), λ2|ξ ∼ G−1(1/2, 1/ξ ), ν j, ξ ∼ G−1(1/2, 1),

with G−1 denoting the inverse Gamma distribution and ν j, ξ being auxiliary parameters. These
auxiliary parameters are merely used to simplify posterior inference.
Up to this point, we have assumed that all parameters of the model are forced to zero

through a single global shrinkage parameter λ. However, in the PVAR model we have dif-
ferent sets of parameters, countries, and variable types (equations within a given country).
Specifying a single shrinkage parameter would imply that global shrinkage is symmetric across
these different dimensions, a rather restrictive assumption. In the PVAR, we will assume that
the λ does not shrink all parameters toward zero but is specified to differ across countries,
equations, and types of parameters. This implies that for each coefficient vector Ai j,• and B̃i j,•
we will replace λ with λA,i j and λB,i j, respectively. In other words, each equation will have its
own global shrinkage parameters and there will be two of them: one for own country coeffi-
cients and one for other country and contemporaneous coefficients.
Since B̃i j,• includes the covariance parameters as well, our discussion suggests that we use

a Horseshoe also on the off-diagonal elements of U . This implies that our prior allows for
detecting whether static interdependencies across countries and variables are present and, if
not, introduces shrinkage. We choose independent weakly informative inverse Gamma prior
on the variances collected on the main diagonal of H . In particular, σ 2

ε,i j ∼ G−1(aσ ,bσ ) with
aσ = bσ = 0.01 for all countries and equations.

3. approximate bayesian inference in pvars

In this section, we provide a framework that is capable of estimating huge PVAR models
at reasonable computational cost. The next subsection introduces IRGA to the PVAR case
and provides some information on how posterior simulation can be carried out. Since this ap-
proach relies on approximating certain regions of the parameter space we then discuss the
theoretical properties of the approximation.

3.1. Posterior Computation Using IRGAs. As written in (4), the PVAR simply involves
MN regression models. Bayesian MCMC methods for posterior and predictive inference in
the regression model using a Horseshoe prior are well-established (see Makalic and Schmidt,
2016). In theory, we could simply use such methods with our PVAR. However, the problem
is that MCMC methods are simply too slow for dealing with the high-dimensional parameter
spaces that arise with PVARs. The main source of this high-dimensionality is that B̃i j,• (the co-
efficients on contemporaneous and other country variables in the equation for the jth variable
for country i) potentially contains tens of thousands of coefficients. The matrix of own country
coefficients, Ai j,•, is much smaller.
One empirical regularity often found in multicountry data sets is that own country effects

are usually more important than other country effects. Hence, the literature sometimes sets Bi

equal to a zero matrix to rule out dynamic interdependencies. This, however, could translate
into a misspecified model. In this article, we allow the data to speak about the degree of spar-
sity in B̃i j,•. A second empirical regularity is that the time series in z̃i j often display substan-
tial comovement (Kose et al., 2003). A potential solution would be to extract a low number of
principal components from z̃i j. Another solution, which we adopt here, builds on the notion
that if elements in z̃i j are very similar to each other, it might pay off to not include all of them
and effectively control for collinearity. This is also consistent with B̃i j,• being very sparse.
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approximate inference in panel vars 7

By contrast, Ai j,• is likely nonsparse. This consideration motivates the way we implement
IRGA with the PVAR. The general idea of IRGA is to use MCMC methods on important
(low-dimensional) parameters but compute a fast approximation of the posterior for other
(high-dimensional) parameters of less importance. In the PVAR, we consider Ai j,• as the im-
portant parameters and B̃i j,• the less important ones.6

We now provide details of how we implement IRGA in the PVAR. Let Qi be the T × T
rotation matrix obtained from the QR-decomposition of xi and partition it as Qi = (Qi1,Qi2)
withQi1 being T × k and Qi2 being T × (T − k).

Multiplying the equation for the jth variable in country i by Qi and exploiting the rotation
invariance of the Gaussian distribution yields an equivalent representation of (4):

Q′
i1yi j ∼ N (Q′

i1xiAi j,• + Q′
i1z̃i jB̃i j,•, σ 2

ε,i jIk),(5)

Q′
i2yi j ∼ N (Q′

i2z̃i jB̃i j,•, σ 2
ε,i jIT−k).(6)

The second equation follows since Q′
i2xi = 0. Note that Ai j,• does not appear in it. This gives

rise to a computational strategy which estimates B̃i j,• independently of Ai j,•. IRGA involves
calculating the posteriors based on the two likelihood functions defined by (5) and (6). An
approximate posterior for the (high-dimensional) B̃i j,• and σ 2

ε,i j is obtained using (6). Con-
ditional on this approximate posterior p̂(B̃i j,•|Q′

i2yi j), the posterior of Ai j,• is obtained using
MCMC based on (5).
Any Gaussian approximation can be used for p̂(B̃i j,•|Q′

i2yi j). We use vector approximate
message passing (VAMP). Our choice of VAMP is driven by its scalability in huge dimen-
sions and the fact that recent papers in machine learning and econometrics (see, e.g., Koro-
bilis, 2021) have shown that it works extremely well for forecasting purposes. The specific im-
plementation of the VAMP algorithm is the one proposed in Rangan et al. (2019) and details
are given in Appendix A.7 The result is a Gaussian approximation: N (Bi j,•,V i j,•).

Rewriting (5) and plugging in the approximate moments of p̂(B̃i j,•|Q′
i2y) yields:

Q′
i1(yi j − z̃i jBi j,•) ∼ N

(
Q′

i1xiAi j,•,Q′
i1z̃i jV i j,•z̃′

i jQi1 + σ 2
ε,i jIk

)
.

This gives us a Gaussian likelihood for a regression model which can be combined with any
(conditionally) Gaussian prior on Ai j,• leading to a textbook form for the posterior of Ai j,•
which can be estimated using MCMC methods. Additional details on the full conditional pos-
terior distributions and how we approximate the error variances as well as the hyperparame-
ters of the prior are given in Appendix A.2.

3.2. Approximation Accuracy. In this subsection, we briefly discuss why a Gaussian ap-
proximation is reasonable and how this approximation impacts the posterior distribution
of Ai j,•. Intuitively, the accuracy of the approximate posterior of the domestic coefficients
p̂(Ai j,•|yi j) depends on the goodness of the approximation to p(B̃i j,•|Q′

i2yi j).
To investigate this relationship more formally, let KL(p(a)||p̂(a)) denote the Kullback–

Leibler (KL) divergence between an exact and an approximating distribution. Van den Boom
et al. (2021) show that the expected (with respect to the conditional distribution of yi j given

6 It is worth noting that other choices of important and less important coefficients are possible. For instance, if it
is felt likely that the United States is a dominant unit, then coefficients on U.S. variables could always be treated as
important even for countries other than the United States. The key consideration is that the number of parameters in
Ai j,• should not be too large so as to prevent practical use of MCMC methods on it.

7 We have also experimented with variational Bayes to approximate p̂(B̃i j,•|Q′
i2yi j ). However, computation of the

expected lower bound on evidence in these dimensions becomes computationally and numerically cumbersome. In
addition, in our experiments the VAMP-based algorithm led to more precise predictions of the model.
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8 feldkircher et al.

Q′
i2yi j) KL divergence between p(Ai j,•|yi j) and p̂(Ai j,•|yi j) is bounded from above by the ap-

proximation error to p(B̃i j,•|Q′
i2yi j).

Formally, Van den Boom et al. (2021, Theorem 1) establish a link between the approxima-
tion quality of p̂(B̃i j,•|Q′

i2yi j) and how this impacts the approximate full conditional posterior
p̂(Ai j,•|yi j):

E[KL(p(Ai j,•|yi j) || p̂(Ai j,•|yi j))|Q′
i2yi j] ≤

KL(p(Q′
i1z̃i jB̃i j,•|Q′

i2yi j) × Nσi j || p̂(Q′
i1z̃i jB̃i j,•|Q′

i2yi j) × Nσi j ),(7)

with Nσi j = N (0, σ 2
ε,i jIk). This equation has three main implications. First, if the Gaussian ap-

proximation p̂(B̃i j,•|Q′
i2yi j) is close to the exact full conditional posterior p(B̃i j,•|Q′

i2yi j) the
corresponding conditional distribution p̂(Ai j,•|yi j) will be close to p(Ai j,•|yi j). Second, the
prior on Ai j,• does not impact the error bound. Third, it does not depend on concentration
properties around the true value of B̃i j,• which makes the result relevant for settings with T
being small.
In the next step, we justify our Gaussian approximation. Under certain mild assumptions

on p(B̃i j,•|Q′
i2yi j) and z̃i j and if k � Ki j, a multivariate central limit theorem implies that

Q′
i1z̃i jB̃i j,• is close to a Gaussian distribution (see Diaconis and Freedman, 1984) even if ele-

ments in B̃i j,• are non-Gaussian. This motivates a Gaussian approximation to p(B̃i j,•|Q′
i2yi j).

Van den Boom et al. (2021), in Theorem 2, show that the expected KL divergence (with
respect to Q′

i2z̃i j) between the actual full conditional and the Gaussian approximation is
bounded by two constants 
1 and 
2:8

E[KL(p(Q′
i1z̃i jB̃i j,•|Q′

i2yi j,Q
′
i2z̃i j) × Nσi j || p̂(Q′

i1z̃i jB̃i j,•|Q′
i2yi j,Q

′
i2z̃i j) × Nσi j )] ≤ 
1 + 
2,(8)


1 depends on the concentration properties of p(B̃i j,•|Q′
i2yi j) around its mean and 
2 on the

average correlation between the elements in B̃i j,•.
If the posterior covariance of B̃i j,• is small relative to σ 2

ε,i j and when k � Ki j,
1 approaches
zero. The second constant measures approximation errors between the first two moments of
p(B̃i j,•|Q′

i2yi j) and the approximating density. This quantity depends on the posterior covari-
ance of the approximating density to the posterior of B̃i j,• and thus the error bound can be
small even if the approximate variance–covariance matrix differs sharply from the true covari-
ance of the posterior of B̃i j,•. This finding also has important implications for our estimates of
Ai j,• since (7) and (8) can be combined to arrive at an upper bound for the approximation er-
ror to the posterior distribution of Ai j,•.

4. illustration using synthetic data

The theoretical discussion in the previous section builds on certain assumptions about the
rows of z̃i j and the correlation properties of the posterior of p(B̃i j,•|Q′

i2yi j). In this section,
we will use synthetic data to illustrate how our approach performs under a realistic data-
generating process (DGP).
Our DGP assumes that N = 10,K = 2,n = 20, and T = 500 and features a single lag. It is

given by

yt = �̂1yt−1 + εt, εt ∼ N (020,UHU ′),

where H = σ 2
ε × I20 and ui j ∼ N (0, σ 2

ε /10) for i = 2, . . . ,n; j = 1, . . . , i − 1. The matrix �̂1 is
obtained as follows: The blocks referring to the domestic coefficients are centered around the

8 The constants 
1 and 
2 take a complicated form. To avoid introducing additional notation, we summarize their
main properties here. Precise definitions can be found in Van den Boom et al. (2021).
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approximate inference in panel vars 9

Table 1
simulation evidence: irga-pvar versus pvar estimated through mcmc

σβ

σ ε 0.01 0.025 0.05

0.01 1.99 1.33 1.06
(1.96) (1.29) (1.00)

0.025 1.19 1.08 1.04
(1.19) (1.07) (0.97)

0.05 1.11 1.09 1.07
(1.14) (1.10) (1.03)

Notes: The table shows the relative mean absolute error (MAE) ratios between our IRGA-PVAR and a PVAR es-
timated using MCMC techniques for different values of σε and σβ . The numbers are averages across 100 draws from
the DGP. The rows with numbers in parentheses refer to the MSE ratios for the full coefficient vector (i.e., includ-
ing both international and domestic coefficients) whereas the other rows include MSE ratios for the domestic coeffi-
cients only.

same mean vector and we add Gaussian shocks:

vec(�i1) = vec
[(

0.8 0.2
0.3 0.6

)]
+ σβηt, ηt ∼ N (04, I4)

for all countries i. We simulate the elements in �i from N (0, σ 2
β ). To obtain sparsity in �i, we

randomly zero out elements such that we have around 60% zeroes in �i. The initial value of
yt is sampled from a multivariate zero-mean Gaussian with variance 0.01. To analyze how the
goodness of our approximation changes with different measurement errors and cross-country
heterogeneity, we consider σε, σβ ∈ {0.01, 0.025, 0.05}.
The main question is whether our IRGA-based approach yields estimates of the domestic

coefficients which are close to the ones obtained from exact methods. Since exact methods be-
come prohibitively slow in truly large data sets, we make this comparison operational by simu-
lating from a moderately large DGP and estimate a PVAR model with a Horseshoe prior and
without using IRGA (i.e., all coefficients are estimated using MCMC). For both models, we
include p = 2 lags of yt .

To avoid mixing up approximation errors arising from using IRGA to any errors in esti-
mates that come from our equation-by-equation estimation approach, both the exact and ap-
proximate models are estimated based on the same (correct) ordering and in what follows we
compare the coefficients Ai1 and Bi to their true (implied) values.

Table 1 shows averages of relative mean absolute error (MAE) ratios between the IRGA-
PVAR and the PVAR estimated through MCMC across 100 replications of the DGP. The
white rows refer to MAE ratios for the domestic coefficients whereas the gray-shaded rows
denote MAE ratios for all regression coefficients. For both models, we use the posterior me-
dian as our point estimator.
When we consider the results for the domestic coefficients (i.e., the white rows), we find

a great deal of relative MAEs close to 1 (except for cases in which both σβ and σε are very
small). In principle, when we fix a given row and consider increasing values of σβ we find
that the relative MAEs approach unity. This is consistent with the theoretical predictions in
the previous section and shows that, at least when the posterior mean is considered, approx-
imation accuracy of our IRGA-based approach increases with the ratio σβ/σε. When we fix a
given column, as long as σε is not too small, we find no discernible differences across values of
σβ .

Turning to the relative MAEs across all coefficients reveals that our approximate method
also yields estimates of Bi which are competitive to the ones obtained using MCMC. In fact,
for σβ = 0.05 we find that the mean estimates essentially equal to the ones obtained from the
MCMC-based method.
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10 feldkircher et al.

Notes: Ai j,s denotes the sth element of Ai j,• for s = 1, . . . ,k. The solid black line refers to the approximate posterior
p̂(Ai j,s|yi j ) whereas the dashed black line denotes the posterior distribution p(Ai j,s|yi j ) obtained through estimating
the model using MCMC.

Figure 1

marginal posterior distribution of the domestic coefficients in Ai j,• for three countries

To illustrate our approach using a single draw from the DGP for σβ = σε = 0.05, Fig-
ure 1 shows the marginal posterior distributions of the domestic coefficients for our IRGA-
based PVAR (in solid black) and the MCMC-based estimates (in dashed black). This fig-
ure shows that in most cases, posterior distributions are similar. Especially when we focus on
the mean/median, we observe only small differences across coefficients (with some few cases
suggesting a larger disagreement between MCMC and approximate estimates). When we fo-
cus on the higher moments of the marginal distributions, we find similar variances, tail be-
havior, and skewness properties. This small discussion has shown that, at least when synthetic
data are considered, our approach yields reasonable estimates.

5. a huge model of the world economy

In this section, we develop a huge-dimensional model of the world economy. The model is
used to forecast output (measured by industrial production), inflation, LT-IR, and stock prices
for a large panel of countries. We moreover analyze the properties of the forecasts using novel
stochastic block models as well as Diebold–Yilmaz (DY) spillover indices.

5.1. Data. We have collected macroeconomic and financial data from the Organisation for
Economic Co-operation and Development’s (OECD’s) short-term indicator data base. The
data are monthly and span the period from 2001m2 to 2019m12. In principle, we have a panel
of 18 series for 38 OECD countries but not all variables are available with the same country
coverage (see Table 2). In total, we have 487 variables in our PVAR.
The series fall into three categories: macroeconomic, financial, and leading indicators. For

macroeconomic variables, we consider measures of economic activity (industrial production
growth, the output gap and the unemployment rate), export and import growth, consumer
and producer price inflation as well as changes in earnings in the manufacturing sector.
Financial data cover short- and long-term interest rates (overnight, three-month money

market rates and long-term government bond yields), changes in stock prices and broad
money growth. For euro area countries, we include the three-month euribor as a measure of
short-term interest rates.
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approximate inference in panel vars 11

Table 2
data description

OECD Code Description Trans. Coverage (percent)

Macroeconomic data
PRINTO01 Industrial production, s.a. 1 81.6
LORSGPRT GDP, ratio to trend (output gap) 0 92.1
LRHUTTTT Harmonized unemployment rate: all persons, s.a. 0 76.3
XTEXVA01 Exports in goods, s.a. 1 100.0
XTIMVA01 Imports in goods, s.a. 1 100.0
CPALTT01 Consumer prices: all items 1 92.1
PIEAMP01 Producer prices—Manufacturing 1 60.5
LCEAMN01 Hourly earnings: manufacturing, s.a. 2 39.5
Financial data
IRSTCI01 Overnight interbank rate 0 96.3
IR3TIB01 Three-month interbank rate 0 92.6
IRLTLT01 Long-term interest rate 0 78.9
SPASTT01 Share prices 2 100.0
MABMM301 Broad money, s.a. 2 28.9
Leading indicators
LOLITOAA Leading indicator, amplitude adjusted 0 92.1
BSCICP02 Manufacturing confidence indicator, s.a. 0 78.9
CSCICP02 Consumer confidence indicator, s.a. 0 65.8
SLRTCR03 Passenger car registrations, s.a. 2 28.9
ODCNPI03 Permits issued for dwellings, s.a. 2 31.6

Notes: All data are from the OECD’s short-term indicator database, accessed via dbnomics (https://db.nomics.
world/). Transformations refer to no-transformation (0), year-on-year growth rates (1), and month-on-month growth
rates (2). Country coverage of each variable in percent. The sample consists of Austria, Australia, Belgium, Brazil,
Canada, Switzerland, China, Czechia, Germany, Denmark, Estonia, Spain, Finland, France, Great Britain, Greece,
Hungary, Indonesia, Ireland, Israel, Italy, Japan, Korea, Lithuania, Latvia, Mexico, the Netherlands, Norway, New
Zealand, Poland, Portugal, Russia, Sweden, Slovenia, Slovakia, Turkey, the United States, and South Africa.

In addition to this rather standard macrofinancial data set, we gathered data on confi-
dence/sentiment and short-term leading indicators. These comprise the OECD’s leading indi-
cator, which is a constructed measure to provide early signals of turning points in business cy-
cles,9 measures of manufacturers’ and consumers’ confidence, as well as changes in passenger
car registration and newly permitted dwellings. Confidence measures potentially contain ad-
ditional information to predict economic activity (Batchelor and Dua, 1998; Ludvigson, 2004)
as do car registrations and new dwellings for consumer expenditures. Changes or growth rates
refer to either year-on-year or month-on-month growth rates. For a detailed overview, see Ta-
ble 2.

5.2. Design of the Forecasting Exercise and Competing Models. We carry out a forecasting
exercise comparing an unrestricted PVAR with a Horseshoe prior to a range of alternatives.
In what follows, we focus on predictions for four target variables: consumer price inflation (la-
beled Infl. in the tables and figures), industrial production (Ind. prod.), stock returns (Equi-
ties), and LT-IR.
Our forecasting design is recursive, implying that we use the data from 2001m2 to 2006m12

as an initial estimation period. We use data through 2006m12 to produce one-month up to 12-
month-ahead forecast distributions. This initial estimation period is then extended by data for
2007m1 and forecast densities for 2007m2 (up to 2008m1) are constructed. We repeat this pro-
cedure until we reach the end of the holdout period.

9 This measure shows fluctuations of an economy’s activity around its long-term trend (i.e., potential out-
put). The main difference to the output gap measure we employ is that the leading indicator is ampli-
tude adjusted. For more information, see http://www.oecd.org/sdd/leading-indicators/oecdcompositeleadingindicators
referenceturningpointsandcomponentseries.htm.
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12 feldkircher et al.

Table 3
estimation time in minutes

BVAR FAVAR-10 GVAR PVAR-IRGA

235.4 663.7 566.4 113.4

Notes: BVAR and FAVAR-10 are estimated one country at a time. The indicated time marks the time required for
estimating all forecasts for the full system. GVAR and PVAR-IRGA estimation times are based on joint estimation
of the multicountry system.

To compare point forecasts across models, we use MAEs. Since this disregards higher-order
moments of the predictive distribution we also use log predictive likelihoods (LPLs) to com-
pare the density forecast performance of these alternatives.
The set of competing models is chosen not only to reflect a variety of popular approaches,

but also to be computationally practical. In particular, alongside the proposed PVAR-IRGA
approach, we consider the following models. First, to assess the role of allowing for cross-
country spillovers, we estimate single-country BVARs that rule out both static and dynamic
interdependencies. These are estimated country-by-country. Second, to compare our approach
to other models incorporating international information, we consider two types of specifica-
tions. The first is a factor-augmented VAR (FAVAR-10) model, which augments the single-
country BVARs with 10 factors extracted from the nondomestic country variables. This proce-
dure serves to obtain a lower-dimensional representation of the international information set.
As a second option to include international information, we use a Bayesian GVAR.
To ensure that differences in forecast performance are not driven by the respective priors

on the VAR coefficients, we estimate all models with Horseshoe priors and set the number
of lags equal to two. As a robustness check, we also repeat the forecasting exercise replac-
ing the Horseshoe prior with a conventional Minnesota prior for each of the PVAR-IRGA,
BVAR, FAVAR-10, and the GVAR. Further specification details and results are given in Ap-
pendices A.2, A.3, and A.4.
Other than PVAR-IRGA, all of the models are estimated using exact MCMC methods. We

stress that approaches which involve using MCMC methods for an unrestricted 487 dimen-
sional VAR would simply be computationally impractical. Computation times (average esti-
mation time per model over all periods in the holdout) for doing the pseudo real-time fore-
casting exercise are provided in Table 3. It can be seen that PVAR-IRGA is substantially
faster than any of the competing approaches, even though all of the latter are much more par-
simonious models. Notice that estimating the PVAR-IRGA is even faster than estimating a
set of N country-specific VARs of the same size. This is because MCMC sampling of the do-
mestic coefficients based on the IRGA posterior is faster since it only relies on a part of the
likelihood function to form the conditional posterior distributions.

5.3. Summary of Forecasting Results. The results of our forecasting exercise are summa-
rized in Table 4. It presents absolute values of MAEs and LPLs for our PVAR-IRGA ap-
proach for two forecast horizons. Results for the other approaches are benchmarked relative
to these. To be precise, for MAEs we take ratios relative to PVAR-IRGA (with numbers ex-
ceeding unity implying that the PVAR improves upon the competitors), for LPLs we take dif-
ferences relative to PVAR-IRGA (with values below zero suggesting that the PVAR is out-
performing the respective model). The numbers in the table are GDP-weighted averages of
country-specific LPLs computed by using GDP in 2015 U.S. dollars averaged over the period
2002–19. To provide a rough gauge of model performance across countries, the numbers in
parentheses represent the percentage of countries in which a given model performs best in ab-
solute terms.
The most important finding is that PVAR-IRGA works—it produces sensible forecasts

quickly. Bayesian estimation of huge-dimensional PVARs has been made possible through the
use of IRGA methods. The other main finding is that (with some exceptions) PVAR-IRGA
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approximate inference in panel vars 13

Table 4
summary of forecast exercise, all models with horseshoe prior

MAE LPS

Model Equities Ind. Prod. LT-IR Infl. Equities Ind. Prod. LT-IR Infl.

h = 1
BVAR 1.008 0.988 0.927 1.000 −4.686 2.538 13.855 −0.503

(31.6) (9.7) (36.7) (22.9) (13.2) (12.9) (13.3) (14.3)
FAVAR-10 1.004 0.981 0.923 0.994 −4.511 4.022 14.664 0.713

(23.7) (51.6) (53.3) (60.0) (2.6) (51.6) (66.7) (45.7)
PVAR-IRGA 0.825 0.410 0.274 0.386 −177.799 −39.815 36.181 −13.387

(44.7) (25.8) (10.0) (17.1) (68.4) (25.8) (20.0) (40.0)
GVAR 1.051 1.092 1.090 1.199 −12.541 −21.086 −42.623 −44.480

(0.0) (12.9) (0.0) (0.0) (15.8) (9.7) (0.0) (0.0)
h = 12

BVAR 0.984 1.081 0.912 1.020 9.251 −10.936 16.181 −4.867
(39.5) (32.3) (40.0) (40.0) (42.1) (25.8) (50.0) (34.3)

FAVAR-10 0.987 1.089 0.896 1.020 5.545 −15.878 14.098 −0.372
(28.9) (3.2) (16.7) (11.4) (5.3) (6.5) (20.0) (22.9)

PVAR-IRGA 0.875 0.664 0.570 0.759 −204.541 −149.824 −104.962 −174.713
(28.9) (48.4) (36.7) (45.7) (47.4) (61.3) (30.0) (40.0)

GVAR 1.048 1.072 0.981 1.135 −1.333 −13.215 −15.904 −30.407
(2.6) (16.1) (6.7) (2.9) (5.3) (6.5) (0.0) (2.9)

Notes: GDP-weighted average over countries, win percentage across countries in parentheses. Root mean squared er-
ror (RMSE) and log predictive score (LPS) relative to the benchmark. The benchmark PVAR-IRGA shows actual
values, all other models are in ratios to the benchmark for RMSEs and in differences for LPSs.

works well and is highly competitive with competing approaches. These improvements are
limited for point forecasts but sometimes very pronounced for LPLs which measure density
forecast performance. For short-term forecasts of equity returns in particular, PVAR-IRGA
is producing strong improvements in LPLs whereas its performance is slightly weaker for the
remaining variables under consideration.
When we focus on higher-order forecasts, the relative performance of PVAR-IRGA im-

proves. Whereas we observe that predictive accuracy is deteriorating for equities at the 12-
month-ahead horizon, forecasts of industrial production and inflation improve considerably.
For the latter two variables, the PVAR-IRGA is the single best performing model.
BVAR is the only alternative that does not allow for any cross-country spillovers. On av-

erage, it forecasts fairly well for both forecast horizons. Improvements, however, are more
pronounced at the one-month-ahead horizon. For 12-month-ahead, we find that taking cross-
country linkages into account helps forecast accuracy. This suggests that for short-run fore-
casts, cross-country spillovers are not that strong (or at least do not significantly help in pre-
dicting output, inflation, and long-term rates).
The fact that the single-country BVARs improve upon the GVAR indicates that having

a smaller-sized sparse model seems to be more important than taking into account cross-
country linkages for improving forecasts. The good performance of our PVAR-IRGA sug-
gests that the Horseshoe prior successfully strikes a balance between exploiting cross-country
information and sparsity. Since the model is unrestricted it also allows the data to speak about
the precise form of cross-country linkages.
The statements in the preceding paragraphs are based on an examination of LPLs. Analyz-

ing MAEs reveals similar patterns, but to a weaker extent. This indicates that the benefits of
unrestricted modeling of the high-dimensional PVAR offers some benefits in terms of point
forecast performance, but the benefits are larger for density forecasts.
The discussion has focused on averages across countries (and time periods). However, it

could be that a model (such as our PVAR-IRGA) yields lower-average LPLs but still pro-
vides the best performance for individual countries in our sample. Considering the percentage
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14 feldkircher et al.

Figure 2

cumulative lps for pvar-irga relative to bvar for h = 1 forecasts across countries and over time

of wins for each model corroborates the findings based on LPLs and MAEs. But it is worth
emphasizing that even though the PVAR-IRGA is sometimes outperformed by simpler com-
petitors such as BVAR, for most variables we still find a sizable fraction of wins across coun-
tries for our proposed model. In the case of one-month-ahead inflation density forecasts, this
share is about 34% whereas it is around 47% for longer-run forecasts of equity returns (in
which BVAR outperforms the PVAR-IRGA if we consider LPLs). These sizable shares sug-
gest that it might be worthwhile to carefully analyze country-specific results.

5.4. Forecast Comparison across Countries and over Time. In the preceding subsection, we
compared the average (over countries and time) forecast performance of PVAR-IRGA to
various alternatives. In this subsection, we look behind the average performance to investigate
forecast performance at the country level and see how it changes over time. We do so through
heatmaps of cumulative LPLs for PVAR-IRGA for the individual countries. To assess when it
pays off to allow for cross-country linkages (and because it is the strongest competitor to our
approach) we benchmark our results to the LPLs of the BVAR.
Figures 2 and 3 contain these heatmaps for the two forecast horizons. The figures are

grouped into four categories: Advanced European, Emerging European, Advanced Other,
and Emerging Other and individual countries are labeled using ISO country codes. Intensify-
ing shades of blue (red) indicate stronger support for PVAR-IRGA (BVAR).
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approximate inference in panel vars 15

Figure 3

cumulative lps for pvar-irga relative to bvar for h = 12 forecasts across countries and over time

We first focus on one-month-ahead forecasts. Starting with inflation predictions, we observe
that the stronger performance of the BVAR is mainly driven by a weak performance of the
PVAR-IRGA in emerging economies (most notably Brazil and Turkey, with some exceptions,
such as India) whereas it performs best for developed economies such as the United States,
France, and Ireland. This brief discussion shows why it is important to also consider results at
the country level. If the researcher is interested in short-term forecasting of U.S. inflation and
has to decide on one of the models we consider, focusing on overall LPLs masks the particu-
larly strong U.S.-specific forecasting performance.
When we focus on industrial production we find a somewhat different pattern, with PVAR-

IRGA being outperformed by the BVAR for several countries in Advanced Europe (except
for Austria, Finland, Norway, and the Netherlands) and some gains in several countries lo-
cated in Emerging Europe (Slovakia, Russia, and the Baltics). For some countries (such as
Sweden and Italy), the PVAR-IRGA performs well prior to the global financial crisis. The
rapid decline in output in the final half of 2008, however, led to a deterioration in forecast per-
formance. This is because PVAR-IRGA yields predictive distributions which are sometimes
too tight and thus capturing outliers becomes increasingly difficult.
Turning to the results for equity returns reveals a great number of blue-colored cells. In

principle, our model works well for most economies (with a slightly weaker performance for,
e.g., Portugal, Norway, Slovenia, and Japan). Interestingly, we also find some heterogeneity
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16 feldkircher et al.

with respect to model performance over time. In the case of the United States, for instance,
our model only improves upon the BVAR from 2012 onward. We conjecture that the slightly
weaker performance prior and during the financial crisis is, again, driven by too tight predic-
tive intervals. But these tight intervals then help in predicting returns after the financial crisis,
a period characterized by steady increases in U.S. stock markets.
The PVAR-IRGA displays the weakest performance for LT-IR. For some few countries

(e.g., Portugal, Greece, Latvia, and Israel) the PVAR performs well. In general, the weak per-
formance for long-term rates is driven by the fact that these display a downward trend dur-
ing the holdout period for most countries. PVAR-IRGA captures this downward trend rather
well but the predictive variance is considerably smaller than the one of the single-country
BVAR. Hence, under the predictive distribution of the PVAR-IRGA, even relatively small
changes in long rates have strong effects on LPLs. The countries which depart from this gen-
eral pattern (such as Portugal and Greece) feature large spikes in LT-IR. The PVAR cap-
tures this well and quickly adjusts the predictive variance. Since it takes slightly longer for the
BVAR to adjust we conjecture that this quick increase is mostly driven by the large informa-
tion set.
In the previous subsection, we have shown that on average, the PVAR-IRGA produces the

most precise density forecasts for inflation and industrial production when the forecast hori-
zon is increased whereas the performance for equity returns deteriorates. When we focus on
12-month-ahead predictions (see Figure 3) we find that the strong overall performance for
inflation is mostly driven by excellent forecasts in major developed economies such as the
United States or Japan. A similar pattern is found for industrial production. Again, we find
that the PVAR-IRGA produces precise density forecasts for most developed economies lo-
cated in Europe as well as the United States and Japan. However, it is also worth stressing
that the PVAR also produces accurate forecasts for developing economies such as Turkey
as well as several countries located in Central Eastern Europe. This strong performance
is driven by more precise point forecasts but also by the fact that the predictive distribu-
tions for multistep-ahead forecasts seem to be heavy tailed and thus make observing outliers
more probable.
For equities and LT-IR, we find that the PVAR performs slightly weaker than the BVAR.

Especially for equities, this is driven by a particularly bad performance in the United States.
For LT-IR, we again find that the PVAR is competitive when used to forecast long-term rates
in Portugal and Israel but it appears to be outperformed in countries such as Denmark.
In summary, PVAR-IRGA yields precise equity return predictions for short-term forecasts

and shows good performance when used to forecast inflation in major economies such as the
United States. For higher-order forecasts, the results somewhat reverse and the PVAR-IRGA
works particularly well when it is used to predict industrial production and inflation. In gen-
eral, and this is consistent with the findings based on average LPLs, we find that more pre-
dictive evidence in favor of cross-country spillovers increases with the forecast horizons. We
will provide additional evidence on the increasing importance of cross-country spillovers in
the following subsections.

5.4.1. A quantitative analysis of the point forecasts. In the previous section, we have shown
that our PVAR yields highly competitive forecasts and often improves upon other single- or
multicountry models. In this section, our aim is to quantitatively analyze the country-specific
forecasts to investigate the role of cross-country correlations in the point predictions. For
brevity, we focus on one-month-ahead forecasts for industrial production and LT-IR.
Since the corresponding correlation matrices are high-dimensional and thus difficult to in-

terpret, we use techniques from network analysis (see, e.g., Žiberna, 2014) to search for
clusters in the correlation matrices of the posterior median and the posterior standard de-
viation of the forecasts.10 Intuitively speaking, we reorder the rows and columns such that

10 These are implemented through the R package blockmodeling.
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approximate inference in panel vars 17

correlations between countries are grouped into R = 8 distinct blocks.11 The relations (i.e.,
positive correlations) within a given block are maximized whereas the relations of countries
within a block to economies outside of a block are much less important (or even negative).
Since this algorithm needs a correlation matrix of forecasts, we compute the initial corre-

lation matrix based on the first 12 observations and then expand this window until we reach
the end of the holdout period which is used to compute forecast distributions. This yields a se-
quence of correlation matrices which we then analyze using a stochastic block model.
In what follows, we focus on one-month-ahead forecasts for three distinct periods in our

holdout sample. First, we examine correlation structures among our forecasts for 2009m1, the
onset of the global financial crisis. The second period we consider is 2012m6, the month prior
to Mario Draghi’s famous “whatever it takes” speech, which marks the height of the euro
area sovereign debt crisis. The final period is 2019m12, the end of our sample. Using all avail-
able information is a natural choice to investigate how forecasts are related. Figure 4 shows
the correlation matrices (multiplied by 10) for industrial production forecasts sorted using a
stochastic block model.
The figure shows the R = 8 clusters on the main diagonal of the matrix. The first two blocks

are each defined by a single country (Norway and Portugal, respectively). Forecasts between
the blocks are (modestly) negatively correlated, as indicated by the red shading in the off-
diagonal elements between the blocks. Considering the remaining countries, we see that fore-
casts for Norway are not only negatively correlated with those for Portugal, but also with the
rest of the sample. As an oil-based economy, Norway was considerably less affected by the
global financial crisis than the rest of the sample. Looking at the remaining economies reveals
two large clusters. One of them contains forecasts for Greece, Italy, Spain, and the Baltics—
countries that showed massive contractions in output during the global financial crisis. The
Irish economy, which also significantly contracted during the global financial crisis, appears in
another cluster. Another large cluster contains countries that were comparably less affected
by the crisis. Importantly though and with the exception of Norway, all clusters are positively
correlated indicated by the gray to black color shading in Figure 4. This reflects the global na-
ture of the financial crisis.
Considering the period of the euro area sovereign debt crisis, depicted in the upper right

panel of Figure 4 reveals a very similar picture: Norway stands out, and forecasts of the re-
maining countries are positively correlated. One big cluster emerges which covers mostly Eu-
ropean economies and Russia—the latter which shares strong trade ties with the European
Union. Other European countries that were not affected by the sovereign debt crisis, such as
the Baltics, are allocated into different blocks and Ireland again appears in a separate clus-
ter. Turning now to one-month-ahead forecasts for the end of the holdout sample, we still find
isolated countries such as Norway and Ireland, two European clusters and one large, inter-
national cluster. The latter one shows only a modest within-correlation, indicating that at the
end of our sample, with the pandemic yet to fully unfold, forecasts are less strongly correlated
as in periods of severe downturns.
Figure 5 shows the same analysis for LT-IR forecasts. During the period of the global finan-

cial crisis, long-term rates spiked in countries like Greece, but have been downward-trending
in countries considered as safe havens: the United States, Canada, and Japan. PVAR-IRGA
forecasts are consistent with these historical observations putting the aforementioned country
groups into separate blocks. Two further clusters emerge: one solely consisting of European
economies, whereas the other one contains both Advanced European and non-European
economies. At the height of the sovereign debt crisis, LT-IR shot up for most economies but
to a different extent. This is mirrored in the first four correlation blocks depicted on the main
diagonal of the correlation matrix. Forecasts for crisis-stricken economies, such as Ireland,
Italy, and Spain are strongly correlated and appear in a separate block. Interestingly, Greece

11 The choice of eight blocks is arbitrary. For our application, it yields a good balance between a too granular and a
too coarse approach.
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18 feldkircher et al.

Figure 4

correlation matrices of one-month-ahead forecasts for industrial production sorted using a stochastic block
model

and Portugal appear in one block, but forecasts between these clusters are positively corre-
lated. Both blocks of crisis-stricken countries are clearly separated from the rest of the sam-
ple. Last and looking at the end of sample period, we see a very different picture. With the
exception of South Africa and to some extent Greece, global long-term interest forecasts are
very homogeneous and positively correlated.
Summing up, examining correlation structures of one-month-ahead forecasts revealed in-

sights as to which extent the model is capable of mirroring correlation structures present in
the data. Correlations are strongest during periods of simultaneous contractions such as wit-
nessed during the global financial crisis. Looking at the episode of the sovereign debt crisis,
which unfolded on a more regional basis, also reveals clusters but they differ from those iden-
tified during the global financial crisis. This highlights the overall flexibility of the model. For
some countries, forecasts are always separated from the rest of the sample (e.g., Norway as an
oil-exporting economy). This implies that the PVAR-IRGA can take cross-country links into
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approximate inference in panel vars 19

Figure 5

correlation matrices of one-month-ahead forecasts for long-term interest rates sorted using a stochastic
block model

account when they are important but at the same time does not enforce them on the whole
set of countries—a flexibility which is of ample importance when dealing with large, heteroge-
neous cross-sections.

5.4.2. Other evidence of cross-country spillovers. Another way of looking at cross-country
correlations is to use the DY spillover index (see Diebold and Yilmaz, 2009). This index distin-
guishes to which extent forecast error variance can be explained by its own history as opposed
to effects through all other variables in the system. The latter effects are dubbed “spillovers”
and serve as a measure of overall connectivity. For instance, in this article, we calculate the
index based on a generalized forecast error variance decomposition (GFEVD) which avoids
order dependence with respect to the elements in yt . We report the total share of effects
from nondomestic variables (spillovers from one variable to another) in the GFEVD. The
calculation of the underlying GFEVD is recursive (in the same manner as was done for the
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20 feldkircher et al.

Notes: This index indicates the share of spillovers across countries excluding spillovers to variables within a given
country (summed across variable types). Estimated based on an expanding window. The solid line is the posterior me-
dian alongside the 68% posterior credible set.

Figure 6

diebold–yilmaz spillover index for all countries based on decomposition of forecast error variance of the
full system

forecasting exercise), and we show results for a forecast horizon of 12 and 24 months. Our fo-
cus on higher-order spillovers is motivated by evidence reported in the literature on GVARs
(see, e.g., Feldkircher and Huber, 2016) which shows that cross-country spillovers (measured
through FEVDs) become sizable only after several quarters.
Figure 6 shows the DY index over the holdout period for both horizons. Most importantly,

our results point at a sizable degree of cross-country connectedness. At the end of our sam-
ple period, the DY indices amount to about 45 at the 12-month-ahead forecast horizon and to
68% at the 24-month-ahead horizon. Investigating the DY index over time, reveals a steady
increase of the index until 2016 after which the indicator levels out.12 A particularly pro-
nounced increase of the index can be observed during the period of the euro area sovereign
debt crisis (between 2010 and 2012). In general, economic variables tend to comove more
strongly during turbulent times (see, e.g., Pham and Sala, 2022)—a pattern that we also ob-
serve with our data. It is worth stressing that our estimates are surrounded by considerable
posterior uncertainty, which tends to attribute more posterior mass above than below the pos-
terior median. This behavior is even more pronounced during the period of the sovereign
debt crisis.
The discussion up to this point focused on an overall measure of cross-country connectivity

considering all focus variables jointly. To investigate whether connectivity plays a larger role
for certain variables, we display the DY index for each of the focus variables separately in Fig-
ure 7.
The figure reveals some interesting variable-specific differences. For example, the evolution

of the DY index for industrial production, inflation, and LT-IR is very similar to the behav-
ior of the overall index displayed in Figure 6. The degree of connectedness, is however, com-
parably smaller (35%). It is worth stressing that the posterior distribution is again strongly
tilted toward higher levels of connectivity. A high degree of cross-country dependence be-
tween inflation rates is in line with Borio and Filardo (2007), Ciccarelli and Mojon (2010), and
Kabukçuoğlu and Martínez-García (2018) who stress the importance of a global component in
determining domestic inflation rates.

12 Note that consistent with the forecasting exercise, we use an expanding window to calculate the DY index which
automatically introduces a certain degree of persistence. Appendix A.4 provides additional empirical results for esti-
mates using a rolling window of observations.
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approximate inference in panel vars 21

Notes: This index indicates the share of spillovers between countries one variable at a time (summed across coun-
tries). Estimated based on an expanding window. The solid line is the posterior median alongside the 68% posterior
credible set.

Figure 7

diebold–yilmaz spillover index by variable based on decomposition of forecast error variance of the
full system

Spillovers between equity prices show a distinct dynamic. The degree of connectivity in fi-
nancial markets is generally higher compared to that of the remaining variables. The associ-
ated DY index is about 25% at the beginning of the holdout period and rises sharply during
the global financial crisis. This finding is in line with Demirer et al. (2018), who demonstrate
a strong increase in equity connectedness between banks during periods of financial stress. At
the end of the sample period, the DY index amounts to about 75%. Notably, there is also little
difference between the two forecast horizons.
In Figure 8, we repeat the calculation and measure the role of cross-country effects for each

country. In general, most of the countries considered display sustained increases in their re-
spective DY indices peaking at about 75%. In some emerging economies, such as China and
Indonesia, the index increases sharply right after 2008. Some notable exceptions are Turkey
and Mexico which experienced a decrease in connectivity after the global financial crisis sur-
rounding the Fed’s tapering statement in June 2013. In the case of Greece, we observe a grad-
ual decline in connectivity during the euro area sovereign debt crisis. This finding reflects a
strong domestic component which complies with the fact that Greece was the epicenter of the
crisis at the time.
Summing up and jointly considered with the forecasting results, the cross-variable DY in-

dices paint a similar and consistent picture. Benefits from estimating a large multicountry sys-
tem tend to increase with the forecast horizon. This finding is mirrored by increasing levels
of connectivity if higher-order forecasts are considered. Our results indicate that the PVAR
is capable of, in light of heavy shrinkage introduced through the Horseshoe prior, captur-
ing cross-country relations flexibly. As opposed to other models (such as the FAVAR or the
GVAR), the PVAR-IRGA introduces no particular restrictions on the coefficients. This fea-
ture is crucial to appropriately control for cross-country heterogeneity in light of a diverse set
of countries such as the one we have in our data set.
Appendix A.4 provides additional results for the spillover indices computed using rolling

windows of varying length. Using a rolling instead of an expanding window implies that past
observations do not impact the estimates at some point. Thus, parameters are quicker to
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22 feldkircher et al.

Notes: This index indicates the share of foreign spillovers to the indicated country (summed across variables). Esti-
mated based on an expanding window. The solid line is the posterior median alongside the 68% posterior credible set.

Figure 8

diebold–yilmaz spillover index by country based on decomposition of forecast error variance of the
full system

adjust to new information (at the cost of discarding past information). Results for both the
overall and the variable-specific DY indices tell a similar story to the ones based on an ex-
panding window. The main difference is that the estimates feature more movements in pe-
riods of economic turmoil such as the global financial crisis and the sovereign debt crisis in
Europe.

6. concluding remarks

Multicountry VARs have the potential to be enormous and simply working with unre-
stricted versions of them leads to overparameterization and computational problems. The ex-
isting literature typically deals with these problems by imposing restrictions or reducing the
dimension of the data. But the former strategy risks misspecification and the latter risks los-
ing information. Accordingly, in this article, we have developed Bayesian methods for work-
ing with unrestricted VARs and rely on the Horseshoe prior to gain in parsimony by imposing
shrinkage in a data-based fashion. Existing Bayesian work with VARs with such a prior has
been done using MCMC methods. These are too computationally demanding to be used with
PVARs with hundreds of dependent variables. In this article, we have used IRGA methods to
overcome this computational hurdle. We show that these allow for practical inference even in
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approximate inference in panel vars 23

PVARs of huge dimension. Our macroeconomic empirical application demonstrates the bene-
fits of being able to work with such large PVARs.

appendixA

A.1 Vector Approximate Message Passing (VAMP). In this section, we provide a brief in-
troduction on VAMP. Before we provide details on the VAMP algorithm for the panel vector
auto regression (PVAR), a (very) brief introduction to message passing and the sum-product
algorithm is in order.13 In general, message passing involves factorizing a joint density in an
efficient way. Let p(x1, . . . , xK) denote such a joint density over K discrete random variables
x = (x1, . . . , xK)′. Moreover, let us assume that we are interested in the marginal distribution
of some variable xj with x− j denoting all except the jth variable. The marginal distribution of
x j is then simply given by

p(xj) =
∑
x− j

p(x),

which is a summation over K − 1 random variables. For large K, calculating this marginal dis-
tribution using this formula becomes computationally infeasible. To get around this problem,
we write the marginal density in a different way based on the concept of a factor graph. The
factors are functions of the random variables. Under certain conditions (which are almost al-
ways fulfilled in econometric models), we can factorize the joint density p(x) as follows (see,
e.g., (8.59) in Bishop, 2006):

p(x) =
∏
s

fs(xs)(A.1)

with xs denoting a subset of x and fs being a factor. These factors encode the relationship be-
tween variables. We make use of this idea to represent the linear Bayesian regression model
in terms of a factor graph and derive the relevant message passing algorithm which we then
approximate using VAMP.
To set the stage, let us assume that x = (x1, x2)′ and these two random variables can be fac-

torized as follows:

p(x1, x2) = fa(x1) fb(x1, x2) fc(x2).

This implies that, for instance, the factor fb establishes a relationship between x1 and x2. The
precise functional form of f depends on the application. Notice that the factors in this decom-
position depend on subsets of variables with xa = {x1}, xb = {x1, x2}, and xc = {x2}. The corre-
sponding factor graph is depicted in Figure A.1.
In this toy example, the marginal distribution of, say, x1 is proportional to:

p(x1) ∝
∑
x2

p(x1, x2)

=
∑
x2

fa(x1) fb(x1, x2) fc(x2)

= fa(x1)
∑
x2

fb(x1, x2) fc(x2).

13 For a textbook introduction, see Bishop (2006).
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24 feldkircher et al.

Figure A.1

factor graphs

Using the decomposition in the final line is computationally more efficient than computing the
marginal distribution naively through the joint distribution.
In what follows, we let mfi→x j denote the message (or information) from factor node fi (i ∈

{a,b, c}) to variable xj ( j = 1, 2) whereas mxj→ fi refers to a message from a factor to a vari-
able node. Since fc(x3) depends exclusively on x3 the message sent is equal to the factor
node itself, mfc→x3 = fc(x3). These messages convey all relevant information from a factor to
a node and vice versa. In the next step, we derive all relevant messages and show that the
marginal distribution of x1 is proportional to the product of all incoming messages.
Starting on the right part of Figure A.1(a), the message from factor node fc to x2 is

mfc→x2 = fc(x2).

The message from x2 to factor node fb equals

mx2→ fb = fc(x2).

Finally, the messages from node fb to x1 are

mfb→x1 =
∑
x2

fb(x1, x2)mx2→ fb .

Intuitively speaking, mfb→x1 captures the information flow from the nodes to the right of the
variable node x1. If we would use this information exclusively we would miss all information
that arises from the node to the left of x1. Because fa is an exterior node, the message from fa
to x1 is simplymfa→x1 = fa(x1).

The product over all incoming messages is proportional to the marginal distribution p(x1):

p(x1) ∝ mfb→x1mfa→x1 = mfb→x1 fa(x1).(A.2)

Deriving the marginal distribution of x2 analogously yields:

p(x2) ∝ mfb→x2μ fc→x2 = μ fb→x2 fc(x2).(A.3)

Bishop (2006) highlights that there exists a close relationship between the belief about a vari-
able x j (which is defined as the product of all incoming messages to the variable node), b(xj),
and the corresponding marginal distribution. If the graphical model is a tree, the beliefs con-
verge to the marginal distribution after one iteration of a message passing algorithm.
Algorithms exploiting Equations (A.2) and (A.3) are labeled sum-product algorithms (see,

e.g., Korobilis, 2021). Notice that to arrive at the marginals of x1 (x2), we need to marginalize
over x2 (x1). This summation is often difficult to compute. As a solution, researchers often rely
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approximate inference in panel vars 25

on approximations to these sums (or integrals more generally) and arrive at so-called approxi-
mate message passing algorithms (Donoho et al., 2009).
Before we discuss such approximations in more detail, we show how to design a message

passing algorithm for the general regression model. Let y denote a T -dimensional response
vector and X is a T × K matrix of regressors. The corresponding regression coefficients
are denoted by β and the error variance is given by σ 2. Furthermore, we let �(β) denote
the prior. We assume throughout that any hyperparameters associated with the prior and σ 2

are known.14

The posterior of β (conditional on σ 2) is given by

p(β|σ 2, y,X ) ∝ N (y|Xβ, σ 2IT )�(β).(A.4)

To derive the graphical representation of the regression model, it proves convenient to intro-
duce a copy of β, labeled β∗. This allows us to rewrite the posterior in (A.4) as follows:

p(β|σ 2, y,X ) ∝ N (y|Xβ∗, σ 2IT )δ(β − β∗)�(β),(A.5)

with δ denoting the Dirac Delta function which equals one if β = β∗.
The factorization in (A.5) closely resembles the one used in our toy example. If x1 =

β, fa(x1) = �(β), x2 = β∗, fb(x1, x2) = δ(β − β∗), and fc(x2) = N (y|Xβ∗, σ 2IT ), we can easily
derive the belief of β and β∗ as follows:

b(β) ∝ m�→βmδ→β = mδ→β �(β),(A.6)

b(β∗) ∝ mδ→β∗ mN→β∗ = N (y|xβ∗, σ 2IT ) mδ→β∗ .(A.7)

Van den Boom et al. (2021) show how (A.6) and (A.7) can be used to derive a message pass-
ing algorithm which exploits certain properties of the structure of the graphical model out-
lined above. This message passing algorithm cycles between the following updating steps:

b(β) ∝ mδ→β �(β),(A.8)

mβ→δ ∝ b(β)
mδ→β

,(A.9)

b(β∗) ∝ mβ→δ N (y|Xβ∗, σ 2IT ),(A.10)

mδ→β∗ = mβ∗→δ ∝ b(β∗)
mβ→δ

.(A.11)

The corresponding updates are then obtained as follows: Initialize mδ→β = N (β|ξ(0), ζ (0)IK).
For iteration j, the belief about β is approximated through a Gaussian distribution

b(β) ≈ N
(
β|β( j)

, s( j)IK
)

(A.12)

14 In practice, we will update them using expectation maximization steps using the quantities presented below.
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26 feldkircher et al.

with β
( j) = Eb(β)(β) and s( j) = Tr(�k)/K with �( j) = covb(β)(β) with Tr denoting the trace op-

erator. Using (A.8) yields the first updating step of the algorithm:

β
j
i = E

(
βi|ξ ( j)

i , ζ ( j)
)

with s( j) =
K∑
i=1

var
(
βi|ξ ( j)

i , s j
)
.(A.13)

Given that we approximate mδ→β using a Gaussian distribution and, under a Gaussian prior,
it directly follows that b(β) is Gaussian as well, the message mβ→δ is also Gaussian with:

mβ→δ ∼ N (
β∗|ξ∗ j, ζ ∗ jIK

)
,(A.14)

where

1/ζ ∗( j) = 1/s( j) − 1/ζ ( j),

ξ ∗( j) = ζ ( j)β
( j) − s( j)ξ

ζ ( j) − s( j)
.

In the next step, we notice that because mβ→δ is Gaussian and the likelihood based on the
copy of β is Gaussian too, the belief b(β∗) is also approximated using a Gaussian distribu-
tion with a covariance matrix that is proportional to the identity matrix (Rangan et al., 2019;
Van den Boom et al., 2021). The corresponding approximating density is

b(β∗) ≈ N
(
β∗|β∗( j)

, s∗( j)IK
)
.(A.15)

Simply computing the moments of this distribution requires inverting a K × K matrix. How-
ever, the formula for these moments can be written in a different way so as to avoid invert-
ing such a matrix by decomposing X using the singular value decomposition (SVD) of X =
UDV ′. The corresponding mean and variance are then given by

β
∗( j) = ξ ∗( j) +V (σ 2D−1/ζ ∗( j) + D)−1(U ′y − DV ′ξ ∗( j)),

s∗( j) = ζ ∗( j)(1 − Tr(V (σ 2D−1/ζ ∗( j) + D)−1)/K).

These expressions require only the inversion of diagonal matrices and are thus computation-
ally cheap to implement.
Finally, we set

1/ζ ( j+1) = 1/s∗( j) − 1/ζ ∗( j),(A.16)

ξ ( j+1) = ζ ∗( j)β
∗( j) − s∗( j)ξ

ζ ∗( j) − s∗( j)
.(A.17)

Repeating steps (A.13)–(A.17) S times yields the approximate posterior which is

N (β
(S)

, s(S)IK). In practice, we stop iterating the algorithm if ||β( j) − β
( j−1)||2 is smaller

than a certain threshold close to zero. This algorithm shows good convergence properties, is
computationally fast and has been shown to work well empirically.
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approximate inference in panel vars 27

A.1.1 Updating the error variance. Conditional on the data and the current state of the
parameter vector β, let ε = y − Xβ. Under the prior σ 2 ∼ G−1(aσ ,bσ ), the error variance up-
date is given by

σ 2 = 2bσ + ε′ε
2aσ + T

.

A.1.2 Updating the Horseshoe prior. Based on the general Horseshoe prior described in
Subsection 2.2, the updating quantities for the hierarchical prior structure in the VAMP algo-
rithm for a parameter vector φ = (φ1, . . . , φk)′ are given by

ψ−2
i = 1

ν−1
i +φ2

i λ
−2/2

, λ−2 = k+1
2ξ−1+ψ−2

i

∑k
i=1 φ2

i

νi = 1
1+ψ−2

i
, ξ = 1

1+λ−2 .

Note that in the empirical application, we have country- and equation-specific global and local
shrinkage parameters.

A.2 Inference for panel VAR integrated rotated Gaussian approximation (PVAR-IRGA).

A.2.1 Markov chain Monte Carlo (MCMC) sampling of the VAR coefficients. Let ỹi j =
Q′

i1(yi j − z̃i jBi j,•), x̃i j = (Q̃′
i1xi), and �i j = Q′

i1z̃i jV i j,•z̃′
i jQi1 + σ 2

ε,i jIk, and recall that the likeli-
hood of the approximate model is

Q′
i1(yi j − z̃i jBi j,•) ∼ N

(
Q′

i1xiAi j,•,Q′
i1z̃i jV i j,•z̃′

i jQi1 + σ 2
ε,i jIk

)
.

The conditional posterior distribution of the VAR coefficients collected in Ai j,• is

Ai j,• ∼ N (μ̄i j, S̄i j),

S̄i j =
(
V−1

A,i j + x̃′
i j�

−1
i j x̃i j

)−1
,

μ̄i j = S̄i j
(
V−1

A,i jμA,i j + x̃′
i j�

−1
i j ỹi j

)
,

where μA,i j is the prior mean andVA,i j the prior covariance matrix. For our empirical applica-
tion, the prior mean is set to a zero vector, μA,i j = 0k for all equations and countries, and the
prior variance is defined by the Horseshoe prior:VA,i j = (λA,i j)2 × diag(ψ2

i j,1, . . . , ψ
2
i j,k).

A.2.2 Minnesota prior for PVAR-IRGA. The Minnesota prior for PVAR-IRGA, in the
spirit of Chan (2021), is constructed as follows: The global scaling parameter for equa-
tion i, λi ∼ C+(0, 1), follows a half-Cauchy distribution as in the case of the Horseshoe.
This parameter governs the overall tightness of the Minnesota prior on an equation-by-
equation basis. Let σ̂ 2

i denote the residual variance of a univariate AR(p) model for the ith
variable. The local scales ψi j are set deterministically in the Minnesota tradition, by introduc-
ing a quadratic lag-penalty scaled by the ratio σ̂ 2

i /σ̂ 2
j for the shrinkage parameter related to

variable j.

A.2.3 Posteriors related to the Horseshoe prior. We present the conditional posterior dis-
tributions of the Horseshoe prior for the general example in Subsection 2.2 to economize on
notation. Note that for the PVAR, we have country- and equation-specific global and local
shrinkage parameters.
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28 feldkircher et al.

Our implementation is based on the auxiliary representation of the Horseshoe prior
discussed in Makalic and Schmidt (2016). For a k-dimensional parameter vector φ =
(φ1, . . . , φk)′, with φ j indexing the j = 1, . . . ,k coefficient, we obtain the following inverse
Gamma distributed posteriors:

ψ2
j |φ j, λ, ν j ∼ G−1

(
1,

1
ν j

+ φ2
j

2λ2

)
, λ2|φ j, ψ j, ξ ∼ G−1

⎛
⎝k + 1

2
,
1
ξ

+
k∑
j=1

φ2
j

2ψ2
j

⎞
⎠,

ν j|ψ j ∼ G−1

(
1, 1 + 1

ψ2
j

)
, ξ |λ ∼ G−1

(
1, 1 + 1

λ2

)
.

For the case of the Minnesota prior, only the auxiliary variables related to the global parame-
ter need to be drawn.

A.3 Other Models.

A.3.1 Single-country VARs. The Bayesian vector autoregressions (BVARs) for single
countries are given by

yit = �i1yit−1 + · · · + �ipyit−p + εit, εit ∼ N (0,�i).

Note that this specification corresponds to Equation (1) with �i = 0M×Kother , ruling out both
dynamic and static interdependencies across countries by assuming cov(εit, εst ) = 0. The mod-
els are estimated one country at a time.
We use a Horseshoe prior on the own and cross-variable VAR coefficients. Alternatively,

we use a hierarchical Minnesota-type prior similar to the one discussed in Subsection A.2.2.
The VARs are estimated equation-by-equation. The priors on the covariances are indepen-
dent Gaussian distributions with mean zero and variance 10. The variances of the structural
errors are assigned independent weakly informative inverse Gamma priors.

A.3.2 Factor-augmented vector autoregressions (FAVAR). Define a vector ỹit = (y′
it, f

′
it )

′,
with yit including the domestic variables of country i and fit denoting a set of principal compo-
nents extracted from the matrix Fi = (y−i,1, . . . , y−i,T )′. The domestic variables and the “for-
eign” factors fit are modeled jointly in a VAR:

ỹit = �i1ỹit−1 + · · · + �ipỹit−p + ε̃it, ε̃it ∼ N (0,�i).

We use the same hierarchical Minnesota and Horseshoe priors and estimation algorithm as
for the BVAR and estimate the models one country at a time.

A.3.3 Global vector autoregression (GVAR). The GVAR model incorporates cross-
country dependencies via including weighted averages of the foreign variables in the domestic
equations. In particular, the GVAR is given by

yit = �i1yit−1 + · · · + �ipyit−p + �i0y∗
it + �i1y∗

it−1 + · · · + �iqy∗
it−q + εit, εit ∼ N (0,�i),

where the y∗
it are defined as

y∗
it =

N∑
j=1

wi jy jt .
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approximate inference in panel vars 29

Table A.1
summary of forecast exercise, all models with minnesota prior

MAE LPS

Model Equities Ind. Prod. LT-IR Infl. Equities Ind. Prod. LT-IR Infl.

h = 1
BVAR 1.003 0.992 0.955 0.965 −5.877 0.058 6.796 3.241

(42.1) (16.1) (40.0) (45.7) (7.9) (29.0) (40.0) (31.4)
FAVAR-10 1.003 1.007 0.948 0.971 −4.905 −0.789 8.324 3.417

(31.6) (12.9) (56.7) (45.7) (15.8) (22.6) (60.0) (40.0)
PVAR-IRGA 0.829 0.414 0.265 0.397 −178.797 −42.377 43.308 −18.394

(23.7) (54.8) (3.3) (8.6) (63.2) (38.7) (0.0) (28.6)
GVAR 1.045 1.083 1.127 1.166 −11.543 −18.524 −49.750 −39.472

(2.6) (16.1) (0.0) (0.0) (13.2) (9.7) (0.0) (0.0)
h = 12

BVAR 1.000 1.033 0.940 1.010 −1.092 −11.992 5.480 8.696
(42.1) (6.5) (40.0) (28.6) (15.8) (16.1) (26.7) (45.7)

FAVAR-10 0.997 1.034 0.923 1.008 −0.220 −16.291 9.441 5.539
(31.6) (9.7) (43.3) (20.0) (10.5) (12.9) (56.7) (17.1)

PVAR-IRGA 0.856 0.700 0.548 0.772 −192.860 −158.364 −95.594 −184.650
(26.3) (45.2) (16.7) (42.9) (68.4) (48.4) (16.7) (31.4)

GVAR 1.071 1.018 1.021 1.115 −13.015 −4.675 −25.273 −20.469
(0.0) (38.7) (0.0) (8.6) (5.3) (22.6) (0.0) (5.7)

Notes: GDP-weighted average over countries, win percentage across countries in parentheses. Root mean squared er-
ror (RMSE) and log predictive score (LPS) relative to the benchmark. The benchmark PVAR-IRGA shows actual
values, all other models are in ratios to the benchmark for RMSEs and in differences for LPSs.

Table A.2
summary of forecast exercise, comparison of pvar-irga estimated with horseshoe (hs), and minnesota (mn) prior

MAE LPS

Model Equities Ind. Prod. LT-IR Infl. Equities Ind. Prod. LT-IR Infl.

h = 1
PVAR-IRGA-HS 0.825 0.410 0.274 0.386 −177.799 −39.815 36.181 −13.387

(63.2) (51.6) (46.7) (77.1) (39.5) (61.3) (46.7) (77.1)
PVAR-IRGA-MN 1.005 1.009 0.967 1.029 −0.998 −2.562 7.127 −5.007

(36.8) (48.4) (53.3) (22.9) (60.5) (38.7) (53.3) (22.9)
h = 12

PVAR-IRGA-HS 0.875 0.664 0.570 0.759 −204.541 −149.824 −104.962 −174.713
(47.4) (61.3) (63.3) (65.7) (36.8) (77.4) (43.3) (74.3)

PVAR-IRGA-MN 0.979 1.054 0.962 1.017 11.681 −8.540 9.368 −9.938
(52.6) (38.7) (36.7) (34.3) (63.2) (22.6) (56.7) (25.7)

Notes: GDP-weighted average over countries, win percentage across countries in parentheses. Root mean squared er-
ror (RMSE) and log predictive score (LPS) relative to the benchmark. The benchmark PVAR-IRGA-HS shows ac-
tual values, PVAR-IRGA-MN is in ratios to the benchmark for RMSEs and in differences for LPSs.

The prespecified set of weights satisfy the restrictions
∑N

j=1 wi j = 1 and wii = 0. We estimate
the GVAR using the R-package by Böck et al. (2020), using again a hierarchical Minnesota
and a Horseshoe prior similar to the BVAR and the FAVAR.

A.4 Additional Empirical Results.

A.4.1 Minnesota prior. To provide empirical evidence on the role of the Horseshoe prior
that we choose to impose shrinkage in the baseline specification of PVAR-IRGA, we re-do
the forecast exercise with all models estimated using a Minnesota-type prior. Table A.1 shows
the forecast results for this set of models relative to PVAR-IRGA estimated with a Minnesota
prior. Table A.2 provides a direct comparison between the two competing priors for PVAR-
IRGA. On average, the performance of PVAR-IRGA-HS is stronger than PVAR-IRGA-MN.
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30 feldkircher et al.

Figure A.2

correlation of spillover index estimates across permutations of country blocks

Notes: This index indicates the share of spillovers across countries excluding spillovers to variables within a given
country (summed across variable types). Estimated based on rolling windows of varying length. The thicker line is the
posterior median alongside the 68% posterior credible set (thin lines).

Figure A.3

diebold–yilmaz spillover index for all countries based on decomposition of forecast error variance of the
full system using a rolling window of observations
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approximate inference in panel vars 31

Notes: This index indicates the share of spillovers between countries one variable at a time (summed across coun-
tries). Estimated based on rolling windows of varying length. The thicker line is the posterior median alongside the
68% posterior credible set (thin lines).

Figure A.4

diebold–yilmaz spillover index by variable based on decomposition of forecast error variance of the full
system using a rolling window of observations

However, it is worth mentioning that PVAR-IRGA-MN produces modest improvements in
our aggregate measures of predictive accuracy for equity prices and long-term interest rates
(LT-IR) with respect to both point and density forecasts.

A.4.2 Ordering of variables. Our implementation of the equation-by-equation estimation
algorithm of the PVAR implies that the posterior estimates are not invariant with respect to
different orderings of the variables.
To shed light on the robustness of our approach in this context, we assess the sensitivity of

the posterior median estimates of the spillover index to different orderings of country blocks
(defined by the four categories Advanced European, Emerging European, Advanced Other,
and Emerging Other) in the system. We choose this approach for two reasons. First, it is not
possible to compute all possible permutations of individual variables. Consequently, we com-
pute the same metric, the spillover index, for all possible permutations of the four country
blocks. Second, it is infeasible to show robustness with respect to estimates of all parameters
of the model. Thus, we rely on the spillover index as a relevant summary statistic for this pur-
pose.
Figure A.2 shows a pairwise correlation matrix of the posterior estimates of the spillover

index across all possible permutations of country blocks. The correlations range from 0.97 to

 14682354, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/iere.12577 by N

H
S Education for Scotland N

ES, Edinburgh C
entral O

ffice, W
iley O

nline Library on [17/10/2022]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



32 feldkircher et al.

Notes: This index indicates the share of foreign spillovers to the indicated country (summed across variables). Esti-
mated based on rolling windows of varying length. The lines are the posterior median estimates.

Figure A.5

diebold–yilmaz spillover index by country based on decomposition of forecast error variance of the full
system using a rolling window of observations

close to one, suggesting almost identical estimates of the spillover indices across orderings.
Hence, we conclude that the ordering of the variables in our model only has negligible effects
on the results.

A.4.3 Spillover index with rolling window. Figures A.3 to A.5 show the DY indices esti-
mated using rolling windows of varying length instead of an expanding window. In Figure A.3,
we show the results of the overall DY index for different rolling window sizes (60 and 84
months) and for two horizons (12 and 24 months). Two facts that are in line with the litera-
ture on using the DY emerge: First, we see a significant increase in spillovers during crisis pe-
riods. More specifically, the DY increases strongly during the period from 2009 and 2011. This
period was characterized by the emergence of the global financial crisis and—for Europe—
the sovereign debt crisis. A second peak emerges in 2013/2014, the period of the so-called ta-
per tantrum, that is, the fear that the U.S. Federal Reserve Bank could wind down its asset
purchase program, causing large swings in exchange rates and capital outflows from emerging
economies. The third peak occurred around 2016/2017, the period when the Brexit referen-
dum caused severe strains in the European Union and Donald Trump was elected president of
the United States. Second, we see that, in general, spillover indices are larger for higher fore-
cast horizons, which is a finding that is consistent with the analysis provided in Section 5.
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approximate inference in panel vars 33

In Figure A.4, we show variable-specific spillover indices. We see that for example,
spillovers are much larger for equity prices compared to spillovers of inflation, output, and
LT-IR. This finding is also in line with results provided in Section 5. Spillovers in equity prices
increased strongly in the aftermath of the global financial crisis as well as from 2015 onward.
In both periods, major central banks launched large-scale asset purchase programs which af-
fected financial markets (see, e.g., D’Amico and King, 2013; Rogers et al., 2014). Consistent
with our analysis from Section 5, we also find a peak in spillovers between long-term rates in
2012, which might be explained by the events related to the sovereign debt crisis in Europe.
For completeness, we also show country-specific spillover indices in Figure A.5.
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