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Abstract
Certain boundary conditions constrain the forms that the electromagnetic field can take in a theory, in
particular the boundary conditions inherent to closed spaces. According toMaxwell’s equations, this
can give rise to constraints for the electric charge in the theory.We identify three such ‘boundary
constraints’ for electric charge and highlight some of theirmyriad implications, touching upon a
wealth of topics including the self-consistency of practical calculations, the nature of darkmatter, the
origin of electric-charge quantisation and the shape of theUniverse. Furthermore, we explain that
magnetic analogues of our boundary constraints offer new insights into the possible existence of
magneticmonopoles and dyons.

1. Introduction

Electric charge is a fundamental quantity in physics, yet there ismuch still to be understood. The basic theory of
classical electrodynamics [1] allows us to choose the electric charges of particles independently with any values in
the continuous interval (−∞ ,∞ )C. It seems, however, thatmother nature is quite selective; empirical
observations suggest that electric charge is quantised and,moreover, that theUniverse is electrically neutral, for
example.What theoretical constraints for electric chargemight cause such selectivity?

In this paper, we identify three ‘boundary constraints’ for electric charge, so named because they derive from
Maxwell’s equations and the boundary conditions in relevant theories:

1. The zero-point electric chargemust vanish.

2. The total electric charge in the fundamental domain of a closed spacemust vanish.

3. The total electric current in the fundamental domain of a closed spacemust vanish.

Aswe shall see inwhat follows, our boundary constraints havemyriad implications, touching upon awealth of
topics including the self-consistency of practical calculations, the nature of darkmatter, the origin of electric-
charge quantisation and the shape of theUniverse. Furthermore,magnetic analogues of our boundary
constraints offer new insights into the possible existence ofmagneticmonopoles and dyons.

In section 2, we briefly summarise otherwork on constraints for electric charge. In section 3, we present
explicit derivations of our boundary constraints and how to satisfy them in the basic theory of quantum
electrodynamics. In section 4, we highlight some implications of our boundary constraints as they apply to
practical calculations. In section 5, we highlight some implications of our boundary constraints as they apply to
the entireUniverse. In section 6, we considermagnetic analogues of our boundary constraints, applicable to
magnetic rather than electric charge.

We use SI units; ÿ is the reduced Planck constant, ò0 is the electric constant,μ0 is themagnetic constant and
 m=c 1 0 0 is the speed of light.
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2.Otherwork

In this section, we briefly summarise other work on constraints for electric charge.
Most work to date has beenmotivated by the issue of electric-charge quantisation. Empirical observations

suggest that the electric charge of every known elementary particle and antiparticle in theUniverse is an integer
multiple of− e/3, where− e is the electric charge of the electron [2–6]. This apparent quantisation of electric
chargewas described by Jackson as ‘one of themost profoundmysteries in the physical world’ [1].Many
explanations for electric-charge quantisation have been put forward that invoke exotic newphysics, including
the existence of extra dimensions [7, 8], the existence ofmagneticmonopoles [9, 10] and/or dyons [11, 12] and
various group structures in grand unified theories [13, 14]. Searches for direct empirical evidence in support of
these are ongoing [15].

Two classes of constraint for electric charge have been identified that do notnecessarily invoke exotic new
physics; ‘classical constraints’ and ‘quantum constraints’, so named because they emerge at the levels offirst and
second quantisation, respectively. Classical constraints embody the requirement of electric-charge conservation
under transmutation; if a theory permits the transmutation of a particle of typeA into a particle of typeB
togetherwith a particle of typeC, for example, wemust satisfy

= +q q qA B C

to ensure that electric charge is conserved, where qA, qB and qC are the electric charges of the particles [16].
Quantumconstraints embody the requirement of gauge invariance in spite of gauge anomalies; if a theory has a
parity-violating Fermion sector yielding non-trivial gauge anomalies, for example, these anomaliesmust cancel
to ensure that the theory is gauge invariant [17–22].

In theminimal standardmodel of particle physics [15, 23] truncated at one family of elementary Fermions
and in certain plausible extensions of theminimal standardmodel of particle physics, electric-charge
quantisationwith the familiar values can, in fact, be explained as a necessary consequence of the relevant classical
and quantum constraints2 [24, 25]. In theminimal standardmodel of particle physics itself, however, the
relevant classical and quantum constraints, includingmixed gauge-gravitational anomalies [26–28], are satisfied
even if the electric charge of the  th elementary species is taken to be

  ℓ ( )= ¢ + Dq q e
1

2
, 1

where 
¢q is the familiar quantised value;   ℓ ℓ ℓD = -m n withm ä {e,μ, τ}≠ n ä {e,μ, τ} is the difference in

m-lepton and n-lepton numbers and ò is a free parameter [24, 25]. See table 1. According to equation (1), electric
charge need not be quantised. Although empirical observations show that the deviations  - ¢ µq q must be
zero or else extremely small [29–34] and thus that òmust be zero or else extremely small, no theoretical argument
has been given yet within the theory tofix the value of ò. Electric-charge quantisation in theminimal standard
model of particle physics is thus an open question. In section 5, we provide an answer to this question by showing
howour second boundary constraint canfix ò= 0 such that electric chargemust be quantisedwith the familiar
values.

Table 1.The elementary species in theminimal standardmodel of particle physics and some of their properties,
where subscriptσ ä {L,R}denotes chirality, subscript c ä {r, g, b} denotes colour charge, subscript a ä {1,K,8} is a
component in SU(3) space and f ä {1, 2, 3}denotes family number.

 
¢q e3 ℓe ℓm ℓt f  

¢q e3 ℓe ℓm ℓt f

H0 0 0 0 0 — ντL 0 0 0 1 3

νeL 0 1 0 0 1 τσ −3 0 0 1 3

eσ −3 1 0 0 1 tσc 2 0 0 0 3

uσc 2 0 0 0 1 bσc −1 0 0 0 3

dσc −1 0 0 0 1 γ 0 0 0 0 —

νμL 0 0 1 0 2 W± ±3 0 0 0 —

μσ −3 0 1 0 2 Z0 0 0 0 0 —

cσc 2 0 0 0 2 ga 0 0 0 0 —

sσc −1 0 0 0 2

2
The belief seems to bewidespread that electric-charge quantisation can only arise in a theory as the result of exotic new physics, with claims

like the following permeating the literature: ‘In any theoretical framework that requires [electric] charge to be quantised, therewill exist
magneticmonopoles.’ [35]. Evidently, this belief is ill-founded.

2

Phys. Scr. 97 (2022) 035502 RPCameron



3. Explicit derivations in basic quantum electrodynamics.

In this section, we present explicit derivations of our boundary constraints and how to satisfy them in the basic
theory of quantum electrodynamics.

We consider two ormore species ofmassive and electrically chargedmatter embodied byDirac-type fields,
accompanied by the electromagnetic field in aflat spacetimewith three-dimensional periodic boundary
conditions.Wework at the level of second quantisation in theGupta-Bleuler (Lorenz-gauge) formalism [36, 37].
An explicit formulation of the theory is presented in the appendix, where the notation used in this section is
defined.Note that we use the theory in its textbook form [38, 39], without adding new ingredients; we obtain our
results below simply by refraining from the use of heuristic normal-ordering procedures and staying true to the
periodic boundary conditions, thus revealing previously overlooked subtleties.

It should be clear below that our boundary constraints are distinct from classical and quantum constraints,
as the latter are satisfied trivially by the theory.

3.1. First and second boundary constraints
Suppose that the systemoccupies an arbitrary physical state. To derive ourfirst and second boundary
constraints, we begin by consideringGauss’s law3 in the form


∯ ˆ ( ) ·

ˆ
( )á ñ =

á ñ
t

Q
E r r, d , 22

0S

V

where the closed surfaceS is such that the enclosed volumeV is the fundamental domain. The periodic
boundary conditions and corresponding restriction to allowedwavevectors see the electricfieldmatched on
opposite walls of the fundamental domain:

ˆ ( ) ˆ ( )á ñ = = á ñ =x y z t x L y z tE E0, , , , , ,

with analogous results for thewalls of constant y and z. It follows that the electricflux throughS vanishes:

∯ ˆ ( ) · ˆ ( ) ˆ ( )ò ò ò òá ñ =- á ñ = + á ñ = +

=

t E x y z t y z E x L y z t y zE r r, d 0, , , d d , , , d d ...

0.

L L

x

L L

x
2

0 0 0 0S

According toGauss’s law (2), the total electric charge inV should also vanish:

ˆ ( )á ñ =Q 0. 3V

Explicit calculation reveals, however, that the total electric charge inV does not vanish immediately; it is
dependent on electric charges and occupation numbers:


  

ˆ ˆ ˆ ( )å åá ñ = á - + ñ
=

Q q N N 2 . 4
N

k1

q

V

Thefirst contribution on the right-hand side of equation (4) is the total electric charge of thematter particles in
V, the second is the total electric charge of thematter antiparticles inV and the third is the total zero-point
electric charge inV, which is the analogue for electric charge of the total zero-point energy inV and emerges as
a consequence of anticommutation relations in a similar way. Formore information on the origin of zero-point
electric charge, see the relevant discussions in [38, 39]. Comparing equations (3) and (4), we see that,firstly, we
must satisfy


 ( )å =

=

q 0 5
N

1

q

if we are to have any hope of obeyingGauss’s law (2) for a state describing finite numbers ofmatter particles and
antiparticles, as the summation over wavevectors in equation (4) diverges4; thefinite cannot neutralise the
infinite. Equation (5) is an embodiment of our first boundary constraint; the zero-point electric chargemust
vanish. Secondly, wemust satisfy


  ˆ ˆ ( )å á - ñ =

=

q N N 0. 6
N

1

q

With ourfirst boundary constraint (5) understood, equation (6) is an embodiment of our second boundary
constraint; the total electric charge in the fundamental domainmust vanish.

3
For the sake of brevity, we refrain from specifying that this is the newmean ofGauss’s law. Such abbreviation is used throughout the

main text.
4
More rigorously,  ∣ ∣ ∣ ∣ ∣ ∣å å =¥ =- qlim 2 0N

k k k krad m 1 ,
q

max
1

max
if and only if  å == q 0N

1
q .
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3.2. Third boundary constraint
Suppose again that the systemoccupies an arbitrary physical state. To derive our third boundary constraint, we
begin by considering the Ampère-Maxwell law in the form

∮ ∬ˆ ( ) · ˆ ( ) ˆ ( ) · ( )má ñ = á ñ + á ñ¢
¢

t I t
c t

tB r r E r r, d
1 d

d
, d , 70 2

2

C
S

S

where the closed curve C lies on thewalls of the fundamental domain at z= L/2, circling the z axis according to
the right-hand rule, and the enclosed surface ¢S is a square of cross-sectional areaA= L2. The periodic
boundary conditions and corresponding restriction to allowedwavevectors see themagnetic fieldmatched on
opposite walls of the fundamental domain:

ˆ ( ) ˆ ( )á ñ = = á ñ =x y z t x L y z tB B0, , , , , ,

with analogous results for thewalls of constant y and z. It follows that the line integral of themagnetic field
around C vanishes:

∮ ˆ ( ) · ˆ ( ) ˆ ( )ò òá ñ =- á ñ = = + á ñ = = +

=

t B x y z L t y B x L y z L t yB r r, d 0, , 2, d , , 2, d ...

0.

L

y

L

y
0 0C

According to the Ampère-Maxwell law (7), the sumof the total electric and displacement currents through ¢S
should also vanish:

 ∬ˆ ( ) ˆ ( ) · ( )á ñ + á ñ =¢
¢

I t
t

tE r r
d

d
, d 0. 80

2
S

S

Explicit calculation reveals, however, that the sumof the total electric and displacement currents through ¢S
does not vanish immediately; it is dependent on electric charges, occupation numbers and velocities:




   ∬ˆ ( ) ˆ ( ) · ˆ ˆ ( ) ( )ååá ñ + á ñ = á - ñ +¢
¢ =

I t
t

t
A

V
q v N N tE r r

d

d
, d ..., 9

N

z
k

k k k0
2

1

q

S
S

where, for the sake of brevity, we have refrained from showing terms due to Zitterbewegung [40, 41] explicitly.
Thefirst contribution on the right-hand side of equation (9) is proportional to themean piece [42] of the total
electric current of thematter particles inV and the second is proportional to themean piece of the total electric
current of thematter antiparticles inV. Comparing equations (8) and (9), we see that wemust satisfy


   ⟨ ⟩( ) ( )¯åå - + =

=

^ ^q v N N t ... 0 10
N

z
k

k k k
1

q

to obey the Ampère-Maxwell law (7). Our argument can be repeated for other curves, leading to the overarching
conclusion that wemust satisfy5


   ⟨ ⟩( ) ( )åå - + =

=

^ ^q N N tv ... 0. 11
N

k
k k k

1

q

Equation (11) is an embodiment of our third boundary constraint; the total electric current in the fundamental
domainmust vanish.

3.3. Satisfying our boundary constraints; electric-charge quantisation
Together, our first boundary constraint (5) and second boundary constraint (6) restrict the possible electric
charges q and occupation-number differences  

ˆ ˆá - ñN N as follows, wherewemake use of the fact that each
of the q must be non-zero by construction (otherwise wewouldn’t haveNq species of electrically charged
matter) and let e be an arbitrary non-zero quantity of electric charge:

• Nq= 1 is forbidden, as the requirement that q1= 0 fromour first boundary constraint (5)would be at odds
with the requirement that q1≠ 0 by construction; it is not possible to have only one species of electrically
chargedmatter in the theory, as there would be nothing to neutralise the zero-point electric charge. Evidently,
a theory (without normal ordering) inwhich electrons and positrons constitute the only species of electrically
chargedmatter cannot obeyGauss’s law.

• IfNq= 2, wemust have e= - =q q2 1 fromourfirst boundary constraint (5) and thus
ˆ ˆ ˆ ˆá - ñ = á - ñN N N N1 1 2 2 fromour second boundary constraint (6). Electric charge is quantised in this case,

albeit somewhat trivially.

5
This conclusion can be reachedmore directly by integrating the differential formof theAmpère-Maxwell law over the fundamental

domain  .
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• IfNq= 3, wemust have one of two possible scenarios; either e= - - =q q q3 2 1 and
ˆ ˆ ˆ ˆ ˆ ˆá - ñ = á - ñ = á - ñN N N N N N1 1 2 2 3 3 or

(⟨ ⟩ ⟨ ⟩) ( )e= - - -^ ^ ^ ^q N N N N , 121 2 2 3 3

(⟨ ⟩ ⟨ ⟩) ( )e= - - -^ ^ ^ ^q N N N N 132 3 3 1 1

(⟨ ⟩ ⟨ ⟩) ( )e= - - -^ ^ ^ ^q N N N N 143 1 1 2 2

with ˆ ˆá - ñN N1 1 , ˆ ˆá - ñN N2 2 and ˆ ˆá - ñN N3 3 differing from each other, as can be deduced fromourfirst
boundary constraint (5) and second boundary constraint (6) by regarding them as planes in (q1, q2, q3) space
and considering their intersection. Electric charge is non-trivially quantised in the latter scenario, assuming
that ˆ ˆá - ñN N1 1 , ˆ ˆá - ñN N2 2 and ˆ ˆá - ñN N3 3 are integers. Seefigure 1.

• IfNq� 4,more intricate possibilities exist.

In general, the theory cannot sustain electrically chargedmatter with only one sign of electric charge and it is
sufficient but not necessary to have




ˆ ˆ ˆ ˆ ˆ ˆå = á - ñ = á - ñ= =á - ñ
=

q N N N N N N0 ... .
N

N N
1

1 1 2 2

q

q q

For given electric charges and total occupation-number differences, our third boundary constraint (11)
restricts the possible velocities.

Evidently, novel forms of electric-charge quantisation can arise even in the basic theory of quantum
electrodynamics, as a result of our boundary constraints. This does not appear to have been recognised before.
Note that themechanismhere has nothing to dowith extra dimensions,magneticmonopoles and/or dyons,
grand unification, classical constraints or quantum constraints.

3.4.Why are such observations notmade routinely?
The derivations above are simple and it is natural, therefore, to askwhy such observations are notmade routinely
in the basic theory of quantum electrodynamics.

WhenDiracfirst described theDirac sea [43], he did recognise a ‘difficulty’ in that the ‘infinite density of
electricity’ should, according toGauss’s law, ‘produce an electricfield of infinite divergence’. Hewent on,
however, to ignore the difficulty, arguing that it ‘seems natural ... to interpret [the electric charge density] as the
departure from the normal state of electrification of theworld’. This approach persists to the present day. In
Cohen-Tannoudji, Dupont-Roc andGrynberg’s textbook on quantum electrodynamics [38],Milonni’s
textbook on the quantumvacuum [39] andmany other seminal works, the zero-point electric charge is
circumnavigatedwithout significant comment by focussing on the normal-ordered form(s) of the electric
charge density and/or total electric charge.Weinberg highlights Dirac’s difficulty in one of his textbooks [44]

Figure 1.Anovel formof electric-charge quantisation in the basic theory of quantum electrodynamics with three species of electrically
chargedmatter, illustrated for some specific occupation-number differences; ourfirst boundary constraint (5) and second boundary
constraint (6) can be regarded as planes in (q1, q2, q3) space and only quantised electric charges lying on the intersection of these planes
are allowed, the origin being excluded by construction.

5
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and, by omission, seems to convey the view that it has not yet been resolved. To derive ourfirst boundary
constraint (5), we have refrained fromusing such heuristic normal-ordering procedures, asking instead that the
theory be self consistent in its natural form. In this author’s view, the zero-point electric charge is to electric
chargewhat the zero-point energy is to energy and, like the zero-point energy, we should seek to understand it
rather than simply removing it. In section 5, we offer a fundamental resolution toDirac’s difficulty.

When periodic boundary conditions are used, they are usually regarded as amere computational aidwithout
physicalmeaning; ultimately, the (singular) limitV→∞m3 is taken and replacements like

∭( )
( )å p


¥

V
k

2
d 15

k
3

3

aremade. To derive our second boundary constraint (6) and third boundary constraint (11), we have instead
stayed true to the periodic boundary constraints. There are contexts inwhich it is appropriate to consider a closed
space like this. In sections 4 and 6, we consider systems such as an ideal crystal, for example, where three-
dimensional periodic boundary conditions are physicallymeaningful. In sections 5 and 6, we consider the
possibility that the entire Universe is closed.

In the appendix, we show that our boundary constraints (5), (6) and (11) emerge viaHeisenberg’s equation
ofmotion onlywhenwe are careful enough to exclude electromagneticmodeswithwavevector k= 0; there is a
factor of ∣ ∣k1 in themode expansion of the potential four-vector ˆ ( )a

A r , which is not defined for k= 0. This

subtlety is easy to overlook and is obscuredwhen replacements like (15) aremade, as ∣ ∣k1 multiplied by the
continuous reciprocal-space volume element d3k appears to bewell defined for k= 0 in the usual spherical-type
coordinates |k|,ϑ andj; ∣ ∣ ∣ ∣ ∣ ∣J J j=k k k kd sin d d d3 3 2 .

3.5. Some comments on generality
The arguments we havemade above in support of our boundary constraints (5), (6) and (11) are essentially
geometrical in nature. The fundamental domain has the topology of a three-dimensional torus due to the
periodic boundary conditions; an attempt to exit through one of its walls results in a re-entrance through the
opposite wall. It is impossible for a non-vanishing electric flux to simultaneously exit and enter the fundamental
domain or for a non-vanishing line integral of themagnetic field around thewalls of the fundamental domain to
simultaneously circulate in opposite directions.

Our first boundary constraint (5) also applies if, instead of a fundamental domainwith three-dimensional
periodic boundary conditions, we consider a space of infinite extent with the boundary condition that the
electric field vanish at spatial infinity; it applies whether the space is closed or open. In contrast, our second
boundary constraint (6) and third boundary constraint (11) apply nomatter how large the volumeV of the
fundamental domain is but do not obviously apply in a space of infinite extent; they are emphatically due to the
closed nature of the space. The limitV→∞m3 is singular [45] in this regard.

As our arguments are essentially geometrical in nature and assume only the validity ofMaxwell’s equations,
it should be clear that derivations analogous to those presented above apply in other relevant theories, including
theories with curved rather than flat spacetimes; our boundary constraints have a generality that transcends the
specific formulation of the basic theory of quantum electrodynamics considered in this section.

4. Implications for practical calculations

In this section, we highlight some implications of our boundary constraints as they apply to practical
calculations.

4.1. Second boundary constraint
When treating electrostatic problems using three-dimensional periodic boundary conditions, our second
boundary constraint tells us to ensure that the total electric charge in the fundamental domain vanishes. This is
truewhether the periodic boundary conditions are usedmerely as a computational aid or tomodel a systemwith
real three-dimensional quasi-periodicity. Possible examples of the former include the simulation of an
electrically charged colloid [46, 47], the simulation of an electrically charged quasiparticle or defect in the solid
state [48] and the simulation of an electrolyte solution [49]. Examples of the latter include an ionic atomic crystal
[50–52], aWigner crystal [53–55], a noblemetal crystal [56] and an ionic colloidal crystal [57]. The requirement
that the total electric charge in the fundamental domain vanishes can be seen in Ewald’s original description of
his summation technique [50] as well as Evjen’s [51] and it isusually respected. The requirement is usually
justified, however, on the grounds that it helps prevent the electrostatic potential and thus theCoulomb energy
fromdiverging [48, 49] or on the grounds that it helps to ensure that a Ewald summation is independent of the
chosen screening factor [58]. Although such arguments are complementary to the arguments we havemade in

6
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section 3, they are nevertheless weaker, as they invite attempts to ‘renormalise’ the divergent quantities, thus
leading to erroneous results [49, 58]. The arguments we havemade in section 3 show clearly that such attempts
are doomed to failure; it is geometrically impossible to have a non-vanishing total electric charge in the
fundamental domain. This precludes the use of three-dimensional periodic boundary conditions to simulate or
model non-neutral plasmas [59–61], for example.

4.2. Third boundary constraint
When treatingmore general electromagnetic problems using three-dimensional periodic boundary conditions,
our third boundary constraint tells us to ensure that, in addition to the above, the total electric current in the
fundamental domain vanishes. Again, this is truewhether the periodic boundary conditions are usedmerely as a
computational aid or tomodel a systemwith real three-dimensional quasi-periodicity. A possible example of the
former is the simulation of a plasma [62]. An example of the latter is a thin-wiremetamaterial [63, 64].

5. Implications for theUniverse

In this section, we highlight some implications of our boundary constraints as they apply to the entireUniverse.

5.1. First boundary constraint
Ourfirst boundary constraint applies whether theUniverse is closed or open and reads


 





 

( )
( ) ( )

å å å= +

=

q d q q d

0, 16
known yet to be discovered

where the  summation runs over all elementary species of Fermion in theUniverse; q is the electric charge of
the  th species; d with  =d 1 for aWeyl-type field is a spin-multiplicity factor, included for generality6, and
we have partitioned the summation into a summation over known species and a summation over any species yet
to be discovered. In this author’s view, our first boundary constraint (16) embodies the fundamental resolution
ofDirac’s difficulty [43]; the zero-point electric charge poses no problem, as it vanishes by necessity. In 1930,
therewas little prospect ofDirac recognising this, as only a handful of particle types were known.

Pleasingly, we find that ourfirst boundary constraint (16) is satisfied by the known elementary species of
Fermion in theUniverse, as described by theminimal standardmodel of particle physics:






⎧
⎨
⎩

⎡

⎣
⎢ ⎛

⎝
⎞
⎠

⎤

⎦
⎥

⎫
⎬
⎭

⎡

⎣
⎢

⎤

⎦
⎥( )

( )
( )

å å å å å= - - + + - + -

=

s s= = = =

q
e e

e e
2

3 3
0

1

2
1 1 1 1

0, 17

f L R c r g b L R
known

1,2,3 , , , ,

where the  summation runs over all elementary species of Fermion in the theory andwe have used equation (1)
and table 1, leaving the value of the parameter ò unspecified in the interests of generality. This leads us tomake a
prediction about physics beyond theminimal standardmodel of particle physics; as equation (17) holds, ourfirst
boundary constraint (16) dictates that the appropriately weighted sumover the electric charges of any
elementary species of Fermion yet to be discoveredmust vanish:


  ( )

( )

å =q d 0. 18

yet to be discovered

A simpleway to satisfy equation (18) is to have each electric charge in the summation be zero.
The possibility that there do indeed exist as-yet-unknown elementary species of Fermionwith zero electric

charge such as sterile right-handed neutrinos, for example, is appealing as they could serve as components of
darkmatter [15, 65, 66].

5.2. Second boundary constraint
Our second boundary constraint applies if theUniverse is closed and reads

ˆ ( )á ñ =Q 0, 19U

where ˆá ñQU is the total electric charge in theUniverse. Equation (19) has already been reportedmultiple times,
albeit with various interpretations; Landau and Lifshitz seem to have held the view that the total of a conserved
quantity in a closedUniverse ismeaningless as the corresponding conservation law is trivial (‘0= 0’) [67] and Li

6
It is possible that not all elementary species of Fermion in theUniverse have the same spinmultiplicity; theremight be as-yet-unknown

species out therewith spin 3/2, for example.
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recently described equation (19) as a ‘paradox’ that necessitatesmodification ofMaxwell’s equations [68], for
example. The identificationmade in this paper of equation (19) as a boundary constraint does not appear to have
beenmade explicitly before.

Consider theminimal standardmodel of particle physics augmentedwith three-dimensional periodic
boundary conditions tomodel a closedUniverse. Combining equation (1)with the appropriate statement of our
second boundary constraint (19), we obtain



   
ˆ ˆ ˆ ( )

ˆ ˆ

( )

á ñ = å á - ñ

= á ¢ ñ + áD ñ

=

Q q N N t

Q e L
1

2
0 20

U

U U

with


  

ˆ ˆ ˆ ( ) ( )åá ¢ ñ = ¢ á - ñQ q N N t 21U


   ℓ ℓˆ ( ) ˆ ˆ ( ) ( )åáD ñ = - á - ñL N N t , 22m nU

where the  summations run over all elementary species in the theory and  
ˆ ˆ ( )á - ñN N t is the total number of

particlesminus the total number of antiparticles of the  th species. According to equations (20)–(22), the
parameter ò is not free as is usually understood [24, 25] but is instead fixed as a function of occupation-number
differences:


ˆ

ˆ ( )= -
á ¢ ñ
áD ñ
Q

e L
, 23U

U

assuming that the difference ˆáD ñLU in total lepton numbers under consideration does not vanish. If one

considers a realistic statewith occupation-number differences chosen such that ˆá ¢ ñ =Q 0U , equation (23)
dictates that

 = 0.

If none of the differences in total lepton number vanish, electric chargemust thus be quantisedwith the familiar
values.

Evidently, the combination of classical, quantum and boundary constraints can give rise to electric-charge
quantisationwith the familiar values in theminimal standardmodel of particle physics augmentedwith three-
dimensional periodic boundary conditions. This does not appear to have been recognised before.

In this author’s view, the preceding argument is interesting but unlikely to be the explanation for electric-
charge quantisation. Theminimal standardmodel of particle physics is not our final theory of nature and it
seems reasonable to expect that electric-charge quantisationwill arisemore naturally in amore complete theory.
If one extends theminimal standardmodel of particle physics by adding sterile right-handed neutrinos with
Majoranamasses, for example, electric-charge quantisationwith the familiar values can be explained as a
necessary consequence of the relevant classical and quantum constraints only [24, 25].With electric charge
already fixed in such a theory, our second boundary constraint (19) simply restricts the possible occupation-
number differences.

The possibility that there do indeed exist sterile right-handed neutrinos withMajoranamasses is appealing
as they could give rise to the empirically observed neutrinomasses via a seesawmechanism [66].

5.3.Do our boundary constraints actually apply to theUniverse?
Akey question is whether or not theUniverse is closed such that our second and third boundary constraints
apply. At present, we cannot answer this definitively, as the shape of theUniverse is not knownwith certainty.

In theminimalΛCDMmodel of cosmology, theUniverse is taken to be open rather than closed, with zero
curvature and a trivial topology [15, 69]. Anomalous features observed in the cosmicmicrowave background
have led some to suggest, however, that theUniversemight be closed by virtue of having positive curvature and
perhaps even a non-trivial topology [70–73].

It is encouraging to note that the electric charge and current densities appear to vanish on astronomical and
grander scales7; the apparent dominance of gravitational interactions over electromagnetic interactions in
sculpting theUniverse at large suggests an electric-charge imbalance of nomore than 1 part in 1018 [74, 75] and
more stringent albeit speculative bounds can be claimed based on the apparent isotropy of theUniverse [75, 76].
Our boundary constraints offer an immediate theoretical explanation for this empirical observation; if the

7
In theminimalΛCDMmodel of cosmology, theUniverse is taken to be electrically neutral without an underlying explanation.
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Universe is closed, itmust exhibit such electrical neutrality to obeyMaxwell’s equations and the boundary
conditions. In the absence of other explanations, onemight reverse this to interpret the apparent electric
neutrality of theUniverse as indirect evidence that theUniverse is closed.

The possibility that theUniverse is indeed electrically neutral is appealing, perhaps, as it aligns with the
hypothesis that theUniverse is literally an intricate embodiment of nothing [77–79].

We have tacitly assumed above thatMaxwell’s equations apply to theUniverse, in particular that the photon
restmass is zero [1, 80]. There is currently no direct empirical evidence to suggest otherwise, the validity of
Maxwell’s equations having been extremely well tested [81–83]. Astronomical observationsmight soon reveal
whether or not the photon restmass is indeed zero [84, 85]. Some pertinent consequences of a non-zero photon
restmass are considered in [68, 74, 86, 87].

6.Magnetic analogues

In this section, we considermagnetic analogues of our boundary constraints, applicable tomagnetic rather than
electric charge.

Magneticmonopoles can be emulated usingmagnetised needles [88, 89] and in spin ices [90–93], for
example. Nomagneticmonopoles or dyons of elementary character have ever been detected, however, in spite of
efforts involving rocks recovered from theMoon [94], cosmic rays [95], themantle near the geomagnetic poles
[96] and ourmost powerful accelerators [97, 98], to name but a few lines of enquiry [15]. There is nevertheless
strong interest in the possible existence ofmagneticmonopoles and dyons, in part because they offer an
explanation for electric-charge quantisation [9–12] and occur naturally inmany grand unified theories [99, 100].

Themagnetic analogues of our boundary constraints can be summarised as follows:

• The zero-pointmagnetic chargemust vanish.

• The totalmagnetic charge in the fundamental domain of a closed spacemust vanish.

• The totalmagnetic current in the fundamental domain of a closed spacemust vanish.

These follow from the duplex (duality-symmetric) formofMaxwell’s equations [1, 101], using derivations
analogous to those already presented in this paper for electric charge. Ourmagnetic analogues apply in addition
to theDirac quantisation constraint [9–12] and do not appear to have been identified before.

Ourmagnetic analogues have implications for certain practical calculations, even though nomagnetic
charge has ever been found. An example can be seen in the fledgling field ofmagnetronics; when replacing
Ampèrian dipoles withGilbertian dipoles tomodel spin ice [90–93], say, using three-dimensional periodic
boundary conditions, themagnetic analogues of our second and third boundary constraints tell us to ensure that
the totalmagnetic charge and totalmagnetic current in the fundamental domain vanish.

Ourmagnetic analogues also yield new insights into the possible existence ofmagneticmonopoles and
dyons. Themagnetic analogue of ourfirst boundary constraint applies whether theUniverse is closed or open
and reads


  ( )å =g d 0, 24

where g is themagnetic charge of the  th elementary species of Fermion in theUniverse. According to our
firstmagnetic analogue (24), there cannot exist only one elementary species ofmagnetically charged Fermion, as
the summation cannot vanish if there is only one term. If an elementary species ofmagnetically charged Fermion
were to be discovered tomorrow, via the creation of a newparticle-antiparticle pair at an accelerator, for
example, ourfirstmagnetic analogue (24)would tell us immediately that theremust exist one ormore additional
species with the oppositemagnetic polarity. Note that this says nothing about occupation numbers, just the
existence of the elementary fields, irrespective of their excitations. Themagnetic analogue of our second
boundary constraint applies if theUniverse is closed and reads

ˆ ( )á ñ =G 0, 25U

where ˆá ñGU is the totalmagnetic charge in theUniverse. According to our secondmagnetic analogue (25), the
Universemust contain asmuch northmagnetic charge as south. If a singlemagneticmonopole or dyonwere to
be discovered tomorrow, our secondmagnetic analogue (25)would tell us immediately that theremust exist one
ormore additionalmagneticmonopoles and/or dyonswith the oppositemagnetic polarity, assuming that the
Universe is closed.

This workwas supported by grants from the Leverhulme Trust (RPG-2017-048) and the Royal Society
(URF⧹R1⧹191243). The author is a Royal SocietyUniversity Research Fellow.
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Appendix Basic theory of quantumelectrodynamics

In this appendix, we present an explicit formulation of the basic theory of quantum electrodynamics considered
in section 3.

A.1. Fundamental domain and allowedwavevectors
The fundamental domain is a cube of volumeV= L3 described by time t and right-handedCartesian
coordinates 0� x� L, 0� y� L and 0� z� Lwith associated unit vectors x̂ , ŷ and ẑ . The position vector, del
operator and Laplacian are

ˆ ˆ ˆ ˆ ˆ ˆ= + + =
¶
¶

+
¶
¶

+
¶
¶

 =
¶
¶

+
¶
¶

+
¶
¶

x y z
x y z x y z

r x y z x y z, ,2
2

2

2

2

2

2

respectively.
The periodic boundary conditions are ensured by only allowingwavevectors of the form

( ˆ ˆ ˆ)p
= + +

L
l m nk x y z

2
,

where l,m, nä {0,± 1,...} are integers.

A.2. Basic operators andHilbert space
WeconsiderNq ä {2, 3,...} species ofmassive and electrically chargedmatter, labelled  { }Î N1 ,..., q . For the

 th species, we identify Fermionic annihilation operators ̂tc mk s
and creation operators ˆ

†
tc mk s

, where τ=+ for
particles, τ=− for antiparticles, ÿk is an eigenvalue of linearmomentum and ÿmsä {ÿ/2,− ÿ/2} is an
eigenvalue of the z component ofmean spin. The ̂tc mk s

and ˆ
†
tc mk s

satisfy the usual Fermionic anticommutation
relations, in particular

 [ˆ ˆ ]† d d d=t t tt¢ ¢ ¢ + ¢ ¢ ¢c c, .m m m mk k kks s s s

The correspondingmatter occupation numbers are

     

   

   

ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

† †= =

= å = å

= å = å

+ + - -

= =

N c c N c c

N N N N

N N N N

, ,

, ,

.

m m m m m m

m m m m

k k k k k k

k k k k

k k k k

1 2 1 2

s s s s s s

s s s s

For the electromagnetic field, we identify Bosonic annihilation operators ˆ aak and creation operators ˆ†
aak ,

where k≠ 0 is a non-zero allowedwavevector,α= t for scalar photons andα= i ä {x, y, z} for Cartesian
photons. The ˆ aak and ˆ†

aak satisfy the usual Bosonic commutation relations, in particular

[ ˆ ˆ ]† d d=a a aa¢ ¢ ¢ ¢a a, .k k kk

The corresponding electromagnetic occupation numbers are

ˆ ˆ ˆ ˆ ˆ ˆ ˆ† å å= = =g a a a g
a

g a g g
= ¹

N a a N N N N .
t x y z

k k k k k
k

k
, , , 0

TheHilbert space is spanned by Fock states of the form

∣ ˆ ˆ
( ˆ ) ( ˆ )

! !
∣† †

† †

ñ = ñn n c c
a a

n n
1 , 1 ,..., , ,... ...

...

...
0 ,A B I J A B

I
n

J
n

I J

I J

whereA,B,... stand for distinctmattermodes (t mk s); I, J,... stand for distinct electromagneticmodes (kα); nI,
nJ,...ä {0, 1,...} are electromagnetic-occupation-number eigenvalues and |0〉 is the unperturbed vacuum state,
for which

̂ ∣ ˆ ∣ñ = ñ =t ac a0 0 0 0.mk ks

TheHilbert space is equippedwith the usual inner product

∣ ∣y f f yá ñ = á ñ* ,

where |ψ〉 and |f〉 are arbitrary kets and 〈ψ| and 〈f| are the corresponding bras. The usualHermitian conjugate
ˆ †

X of an arbitrary operator X̂ is defined such that
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∣ ˆ ∣ ∣ ˆ ∣†y f f yá ñ = á ñ*X X .

A.3. Indefinitemetric
The newket |ψ⟫ and corresponding bra⟪ψ| associatedwith an arbitrary ket |ψ〉 and corresponding bra 〈ψ| are

∣ ⟫ ∣ ⟪ ∣ ∣ ˆy y y y= ñ =á M ,

where M̂ is the indefinitemetric, acting on the subspace of theHilbert space pertaining to scalar photons as

ˆ ∣ ( ) ∣¼ ñ = - ¼ ñå ¹M n n n n1 , 1 , , , ,... 1 1 , 1 , , , ,... .A B I J
n

A B I J
tk k0

Note that ˆ ˆ ˆ†= = -
M M M

1
isHermitian in the usual sense and unitary in the usual sense.

The newHermitian conjugate ˆ ‡
X of an arbitrary operator X̂ is defined such that

⟪ ∣ ˆ ∣ ⟫ ⟪ ∣ ˆ ∣ ⟫‡y f f y= *X X .

Note that the newHermitian conjugate coincides with the usualHermitian conjugate for thematter creation
operators  ˆ ˆ† ‡=t tc cm mk ks s

and theCartesian-photon creation operators ˆ ˆ† ‡=a ai ik k but not the scalar-photon

creation operators ˆ ˆ† ‡= -a at tk k .

If the systemoccupies a state |Ψ(t)〉, the newmean of an arbitrary operator X̂ is

ˆ ( ) ⟪ ( )∣ ˆ ∣ ( )⟫
⟪ ( )∣ ( )⟫

á ñ =
Y Y
Y Y

X t
t X t

t t
,

assuming that the newnorm⟪Ψ(t)|Ψ(t)⟫ of |Ψ(t)〉 is non-zero.

A.4.Matterfields
Weconsider theDiracmatrices

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

a s
s

s
sb S=

-
= =´ ´

´ ´

´

´

´

´

1 0
0 1

,
0

0
0

0
,2 2 2 2

2 2 2 2

2 2

2 2

2 2

2 2

where

( )( ) ( )ˆ ˆ ˆs = + - +
-

x y z0 1
1 0

0 i
i 0

1 0
0 1

is a vector of Paulimatrices.
The  th species ofmatter is embodied by theDirac-type field

    
ˆ ( ) (ˆ ˆ )· † ·å åY = +

=
+ + -

-
- -c u c ur e e

m
m m m m

k
k

k r
k k

k r
k

1 2

i i

s

s s s s

with restmass m and electric charge q , where the






⎜ ⎟
⎧
⎨⎩

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎫
⎬⎭

·
∣ ∣

∣ ∣ [ ]ab
d d d d d d d d= - -t t t t t

-
+ + - - - -u

V cm

k

k

k1
exp i

i

2
tan , , ,m m m m mk

1
1 2 1 2 1 2 1 2

T
s s s s s

are spinors corresponding tomodes of definite energy, linearmomentum andmean-spin projection along the z
axis in that

 


     

  

∣ ∣· · · ·t= + =
=

t t t t

t t

h u c c m u u u

s u m u

k p ke e , e e

,
m m m m

z m s m

k r
k

k r
k

k r
k

k r
k

k k

i 2 2 2 4 2 i i i
s s s s

s s

where

 

 





 

 



   

·
( )

( )

a
a

b
b

 

S   S 
=- + = -

= -
´

-  +
+

´ ´

-  + -  + +

h c c m

c

c c m

c

c c m c c m c m

p

s

i , i

2 2 2

2

2

2 2 2 4 2

3 2

2 2 2 4 2 2 2 2 4 2 2

are thefirst-quantised free-fieldDiracHamiltonian, linearmomentum andmean spin, respectively. Note that
the tu mk s

satisfy the orthonormality condition

 ∭ † ( )· d d d=t t tt¢ ¢ ¢
¢-

¢ ¢ ¢u u re d .m m m mk k
k k r

kk
i 3

s s s s
V
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The electric charge and current densities are


  


  ˆ ( ) ˆ ( ) ˆ ( ) ˆ( ) ˆ ( ) ˆ ( )† †

å år = Y Y = Y Y
= =

q qr r r J r r v r ,
N N

1 1

q q

respectively, where

a= cv

is thefirst-quantisedDirac velocity. The total electric charge and total electric current in the fundamental
domainV are

     

   

      

    

∭

∭

ˆ ˆ ( )

(ˆ ˆ ˆ ˆ )
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ˆ ˆ( )
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respectively, where
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is amean-velocity eigenvalue and
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usualHermitianconjugate

N
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q

is due to Zitterbewegung.
For each non-zero allowedwavevector k≠ 0, we identify the rescaled reciprocal-space Fourier components

 
∭ ∭ˆ

∣ ∣ ∣ ∣
ˆ ( ) ˆ

∣ ∣ ∣ ∣
ˆ( )· ·ll r= =- -

cV c cVk k
r r

k k
J r r

1 1

2
e d

1 1

2
e d .tk

k r
k
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0
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V V


ˆ ( )Y r obeys theDirac equation

 
  

ˆ ( ) { [ ˆ ( ) · ˆ ( )]} ˆ ( )¶Y
¶

= + F - Y
t

h q
r

r v A r ri .

A.5. Electromagneticfield
The electromagnetic field is embodied by the potential four-vector

( ) ( ˆ ( ) ˆ ( ))= FaA cr r A r, ,

where








ˆ ( )

∣ ∣
( ˆ ˆ ) ˆ ( )

∣ ∣
(ˆ ˆ )· † · · † ·å åF = - = +

¹

-

¹

-c

V
a a

cV
r

k
A r

k
a a

2
e e

2
e et t

k
k

k r
k

k r

k
k

k r
k

k r

0 0

i i

0 0

i i

are the scalar and vector potentials, respectively. Note that ˆ ( ) ˆ ( )‡F = Fr r isHermitian in the new sense. The
four-divergence ofAα(r) is
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ˆ ( )
ˆ ( ) · ˆ ( )

ˆ ( ) ˆ ( )( ) ( )
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¶F
¶

+

= L + L
+ -

c t
r

r
A r

r r

1

,

2

where
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are the positive- and negative-frequency parts, respectively. Note that ˆ ( ) ˆ ( )‡
L = Lr r isHermitian in the new

sense and that the reciprocal-space Fourier components ˆ ˆ †
l l= -t tk k make no overall contribution to ˆ ( )L r , as

their contributions to ˆ ( )( )
L

+
r and ˆ ( )( )

L
-

r cancel.
The electric andmagnetic fields are
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respectively. Note that ˆ ( ) ˆ ( )‡=E r E r isHermitian in the new sense.
Let us emphasise here that we are working in theGupta-Bleuler (Lorenz-gauge) formalism [36, 37]. In this

formalism,Maxwell’s equations do not all hold in terms of operators but are expected to holdwith respect to the
newmean. Equations (A1) and (A2) ensure the validity of Gauss’s law formagnetism and the Faraday-Lenz law

· ˆ ( ) ˆ ( )
ˆ ( ) = ´ = -

¶
¶t

B r E r
B r

0 ,

respectively. Instead ofGauss’s law and the Ampère-Maxwell law, however, we obtain
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, A40
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V

respectively. Note that the ‘Q̂V’ and ‘K̂V’ terms in equations (A3) and (A4) emerge onlywhenwe are careful
enough to exclude electromagneticmodeswithwavevector k= 0, as
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It follows from equation (A4) that the total electric current through the surface ¢S satisfies
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A.6.Hamiltonian
The system is governed by theHamiltonian

ˆ ˆ ˆ ˆ= + +H H H H ,matter EMfield EMinteractions

where
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describe thematter, the electromagnetic field and electromagnetic interactions, respectively. Note that ˆ ˆ ‡=H H
isHermitian in the new sense.

The state |Ψ(t)〉 of the system evolves according to Schrödinger’s equation


∣ ( ) ˆ ∣ ( )Y ñ

= Y ñ
t

t
H ti

d

d
.

The time derivative X̂ td d of an arbitrary operator X̂ with no explicit time dependence is given byHeisenberg’s
equation ofmotion



ˆ
[ ˆ ˆ ]=

X

t
H X

d

d

i
, .

A.7. Recovery ofMaxwell’s equations
To recover all ofMaxwell’s equations, wemust focus on the ‘physical’ subspace of theHilbert space, defined such
that

ˆ ( )∣( ) yL ñ =
+

r 0,physical

where |ψphysical〉 is an arbitary physical ket. If the systemoccupies an arbitrary state |Ψphysical(t)〉 comprised solely
of the |ψphysical〉, the newmeans of equations (A3) and (A4) are
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+
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V c
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K E r
, ,

1 ,
, A60

0
2

V

respectively, assuming that the newnorm⟪Ψphysical(t)|Ψphysical(t)⟫ of |Ψphysical(t)〉 is non-zero. Equations (A5)
and (A6) reduce toGauss’s law and theAmpère-Maxwell law, respectively, if and only if

ˆ ˆá ñ = á ñ =Q K0 0,V V

fromwhich our boundary constraints (5), (6) and (11) follow.
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