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Abstract: The tendency of uncertainty analysis has promoted the transformation of sensitivity analysis 1 
from the deterministic sense to the stochastic sense. This work proposes a stochastic sensitivity analysis 2 
framework using the Bhattacharyya distance as a novel uncertainty quantification metric. The 3 
Bhattacharyya distance is utilised to provide a quantitative description of the P-box in a two-level procedure 4 
for both aleatory and epistemic uncertainties. In the first level, the aleatory uncertainty is quantified by a 5 
Monte Carlo process within the probability space of the cumulative distribution function. For each sample 6 
of the Monte Carlo simulation, the second level is performed to propagate the epistemic uncertainty by 7 
solving an optimisation problem. Subsequently, three sensitivity indices are defined based on the 8 
Bhattacharyya distance, making it possible to rank the significance of the parameters according to the 9 
reduction and dispersion of the uncertainty space of the system outputs. A tutorial case study is provided in 10 
the first part of the example to give a clear understanding of the principle of the approach with reproducible 11 
results. The second case study is the NASA Langley challenge problem, which demonstrates the feasibility 12 
of the proposed approach, as well as the Bhattacharyya distance metric, in solving such a large-scale, strong-13 
nonlinear, and complex problem. 14 

Keywords: sensitivity analysis; uncertainty quantification, uncertainty propagation; Bhattacharyya 15 
distance;  probability box16 

1 Introduction  17 

As uncertainty treatment in model Verification and Validation (V&V) becomes increasingly popular, 18 
the Bhattacharyya distance has been investigated as a promising Uncertainty Quantification (UQ) metric in 19 
stochastic model updating [1]. However, the deterministic methodologies are still widely used in practical 20 
engineering, and the Euclidian distance is probably the most common metric providing a geometric distance 21 
between two single data points. Alternatively, the Bhattacharyya distance is a stochastic metric between 22 
two sets of samples considering their probability distributions. By capturing uncertainty sources from both 23 
experimental and numerical data, the Bhattacharyya distance has been investigated as a more 24 
comprehensive UQ metric [2]. Nevertheless, its application in V&V has been quite limited so far in both 25 
academic and engineering fields. Upon to the authors’ previous work on the role of the Bhattacharyya 26 
distance in stochastic model updating [1], the main objective of this work is to further promote the 27 
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application of the Bhattacharyya distance in stochastic sensitivity analysis (SA) within a two-level 28 
procedure for uncertainty propagation and quantification. 29 

Besides the stochastic model updating [3], the stochastic SA is another key component of V&V, 30 
generally performed prior to model updating, with the purpose to evaluate and rank the significance of the 31 
input parameters according to the system outputs [4]. One of the classical SA techniques is the global 32 
sensitivity based on Sobol’s indices [5,6]. However, as a variance-based approach, it cannot be directly 33 
applied to applications where the parameters are described as imprecise random variables due to both 34 
aleatory and epistemic uncertainties [7]. Despite the recent development on SA techniques (e.g. polynomial 35 
expansion [8], covariance decomposition [9], Bayesian approach [10], analysis of variance [11], etc.), an 36 
extension based on the imprecise probability theory [12–14] is required to achieve a deeper understanding 37 
on both aleatory and epistemic uncertainties’ contributions to the uncertainty of the system outputs [15]. 38 
Uncertainties in simulation and experiment processes can be divided into three sources: 39 

• Uncertainties in parameterisation. The input parameters of the numerical model are imprecisely 40 
determined, such as the materials properties of novel composites, geometry sizes of complex structures, 41 
and random boundary conditions lead by the winds or earthquakes. 42 

• Uncertainties in modelling. The numerical model always contains simplifications and approximations, 43 
such as the linearization of nonlinear behaviours, the hypothesis of frictionless joints, and the 44 
simplification of complex connections. 45 

• Uncertainties in experiments. The measurements are driven by hard-to-control randomnesses, such as 46 
environment noise, measurement system errors, and human subjective judgements. More explanations 47 
of experimental uncertainty can be found in Ref. [16]. 48 

Due to the above unavoidable uncertainty sources, this work focuses on the implementation of a 49 
stochastic SA approach in which the Bhattacharyya distance can be embedded as a comprehensive and 50 
convenient UQ metric by capturing various uncertainty sources. In this work, the input model parameters 51 
are no longer treated as unknown-but-fixed constants, but investigated as four categories according to the 52 
involvement of aleatory uncertainty (natural variation) or/and epistemic uncertainty (lack of knowledge): 53 

I) Parameters without any uncertainty, appearing as explicit constants; 54 
II) Parameters with only epistemic uncertainty, appearing as unknown-but-fixed constants, bounded by a 55 

given interval; 56 
III) Parameters with only aleatory uncertainty, appearing as random variables with fully determined 57 

probability characteristics such as distribution type, mean, variance, etc.; 58 
IV) Parameters with both aleatory and epistemic uncertainties, appearing as imprecise probability variables 59 

with only vaguely determined uncertainty characteristics.  60 

The above parameter categorisation is critical in this work, since different parameter categories have 61 
different representations of their uncertainty characteristics, and thus requiring different treatment for 62 
uncertainty quantification and propagation. To represent the uncertainty space of variables with imprecise 63 
probability, the Probability box (generally known as P-box) is proposed by Ferson et al. [17] as a graphic 64 
representation, which has been widely used in uncertainty analysis [18–20]. In the following context, the 65 
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term “uncertainty space” is utilised as a general expression of the imprecise probability measure of an 66 
uncertain variable. In the typical probability theory, the probability space is defined as the mathematic 67 
triplet (𝛺𝛺,ℱ,ℙ), where 𝛺𝛺 is the complete event space, ℱ is the σ-algebra space of all possible events, ℙ is 68 
the probability measure of the event. The probability space is based on the assumption that the probability 69 
measure ℙ is precisely known, implying only the aleatory uncertainty is considered. In the context of 70 
imprecise probability, however, the aleatory and epistemic uncertainties can occur simultaneously. Hence, 71 
the uncertainty space herein can be seen as an extension of the precise probability space. More detailed 72 
information of the uncertainty space (i.e. imprecise probability space) and P-box can be referred to Ref. 73 
[18]. 74 

The application of P-boxes in SA has been developed, e.g., by Ferson et al. [21] via the Probability 75 
Bounds Analysis (PBA), which is further developed by Alvarez [22] in the non-specificity SA approach. 76 
However, the P-box still requires a quantitative measure to define an explicit ranking index in SA. 77 
Meanwhile, a further investigation of the P-box is required to differentiate the effects of the aleatory and 78 
epistemic uncertainties. In this work, the proposed stochastic SA approach is constructed within a two-level 79 
framework to quantify the aleatory and epistemic uncertainties, along the vertical and horizontal directions 80 
of the P-box. The Monte Carlo simulation and optimisation techniques are respectively utilised in these two 81 
levels to quantify and propagate uncertainties from the system inputs to outputs. The Bhattacharyya distance 82 
acts as the core of the SA framework by providing a quantitative measure of the P-box, which is the 83 
foundation for the proposed sensitivity indices. The three indices, namely the proportional index, the 84 
variance-based index, and the comprehensive index, are utilised to rank the significance of the parameters 85 
according to the reduction and dispersion characteristics of the output uncertainty space.  86 

Two case studies are proposed to demonstrate the feasibility of the overall two-level approach, as well 87 
as the Bhattacharyya distance metric. The first case study, investigating the Ishigami function with an 88 
explicit formulation, allows the readers to achieve a better understanding of the principle of the approach 89 
with reproducible results. The second case study solves the SA task of the NASA UQ challenge problem 90 
[23]. Results of the current work are compared with previously published works [7,24,25] to demonstrate 91 
the Bhattacharyya distance as a competent UQ metric in the proposed stochastic SA approach. 92 

The novelties of this work involve three aspects. First, the Bhattacharyya distance is proposed as a novel 93 
UQ metric, which can be conveniently embedded into the overall SA framework to provide a quantitative 94 
measure of the P-box (i.e. the uncertainty space). Second, this work performs the stochastic SA in the 95 
background of uncertainty treatment, and more specifically, to investigate the significance of an input 96 
according to how much the uncertainty space of the output can be changed, when the uncertainty space of 97 
this input is reduced. Third, the proposed two-level approach provides a clear logic to differentiate the 98 
contributions of the aleatory and epistemic uncertainties to the uncertainty space of the output, by 99 
investigating the P-box along two directions in the two levels, respectively.  100 

The following parts of this paper are organised as follows. Section 2 investigates the typical P-box from 101 
a novel viewpoint: the aleatory and epistemic uncertainty representations along the vertical and horizontal 102 
directions of the P-box, respectively. Section 3 presents the two-level procedure for uncertainty propagation 103 
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and quantification, where the Monte Carlo simulation is performed in the first level for aleatory uncertainty 104 
propagation, and an optimisation is performed in the second level for epistemic uncertainty quantification. 105 
Section 4 explains how to embed the Bhattacharyya distance into the two-level procedure, and subsequently, 106 
three sensitivity indices are defined based on the Bhattacharyya distance. The variation of the results and 107 
calculation cost are also discussed in this section. The Ishigami function and the NASA UQ challenge 108 
problem are investigated in Sections 5 and 6, respectively. Section 7 gives the conclusions and perspectives.  109 

2 P-box representation of the imprecise probability uncertainty space 110 

The P-box provides a clear graphic representation of the uncertainty space of an imprecise random 111 
variable. Since the stochastic SA approach in this work is proposed in the background of imprecise 112 
probability, the distributional P-box is investigated in this section. A distributional P-box is essentially a 113 
family of Cumulative Distribution Functions (CDF) of a random variable, encompassing an infinite number 114 
of CDF curves. The CDF family of a variable p is expressed as  115 

 ℱ(𝑝𝑝) ⊇ ℱ(𝑝𝑝,𝛉𝛉),      𝛉𝛉 ∈ [𝜽𝜽,𝜽𝜽] (1) 116 

where ℱ(𝑝𝑝) is the CDF curves family, 𝛉𝛉 is the distribution coefficients of p. The variable p can fall into 117 
any one of the parameter categories described in Section 1, according to the involvement of different types 118 
of uncertainties. Variables belonging to different categories have different formats of P-boxes, which will 119 
be further investigated in Section 3. For the most complex case when both aleatory and epistemic 120 
uncertainties are involved, i.e. a Category IV variable, the epistemic uncertainty is presented by the interval 121 

[𝜽𝜽,𝜽𝜽]. This interval leads to infinite number of CDF curves within the distributional P-box, and this is the 122 
reason that a P-box is also known as a uncertainty space of an imprecise probability variable p. Fig. 1 123 
illustrates the P-box of a Category IV variable, where the lower and upper bounds of the curve family ℱ 124 

and ℱ can be determined by the interval of the distribution coefficients [𝜽𝜽,𝜽𝜽]. The shape of a CDF curve 125 
(horizontal position and slope) is driven by the mean and variance of a distribution. The horizontal position 126 
of the CDF curve is controlled by the mean value; the slope of the CDF curve is controlled by the variance 127 
value, i.e. the dispersion degree of the distribution. Based on this principle, the bounds of the P-box have 128 
four possibilities as follows: 129 

• The distribution with maximum mean (far right position) and maximum variance (moderate slope); 130 
• The distribution with maximum mean (far right position) and minimum variance (steep slope); 131 
• The distribution with minimum mean (far left position) and maximum variance (moderate slope); 132 
• The distribution with minimum mean (far left position) and minimum variance (steep slope). 133 

The bounds of the P-box can be determined by a simple comparison among the four distributions. Note that, 134 
in some cases the P-box bound is not a complete CDF curve of a specific distribution, but a combination of 135 
multiple CDF curves. A demonstration to determine bounds of P-boxes with different distribution forms is 136 
provided in the first case study (Section 5.2).  137 
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 138 
 (a) Vertical direction for aleatory uncertainty (b) Horizontal direction for epistemic uncertainty 139 

Fig. 1: Investigation of the P-box along two directions 140 
According to the typical categorisation of aleatory and epistemic uncertainties, the aleatory uncertainty 141 

refers to the irreducible uncertainty caused by the natural variation of the system; the epistemic uncertainty 142 
refers to the reducible uncertainty caused by the lack of knowledge. In stochastic SA, it is important to have 143 
a deeper understanding of these two kinds of uncertainties, especially their contributions to the output 144 
uncertainty space. This can be achieved through a further investigation of the P-box. As shown in Fig. 1, 145 
the P-box is investigated along to two directions, i.e. the vertical and horizontal axes, with different 146 
emphases on the aleatory uncertainty and the epistemic uncertainty, respectively.  147 

Fig. 1(a) illustrates the investigation of the P-box along the vertical direction within the overall 148 
probability range [0, 1]. The cumulative probability range 𝜶𝜶 truncated from the vertical axis corresponds 149 
to the truncated area within the P-box. Considering the basic hypothesis that the P-box is a set of infinite 150 
number of CDF curves, each single CDF curve in the P-box represents a precise probability variable with 151 
only aleatory uncertainty. For a single CDF curve in Fig. 1(a), the probability range 𝜶𝜶 corresponds to the 152 
variable interval [𝑝𝑝,𝑝𝑝] containing only aleatory uncertainty information. 153 

The horizontal investigation of the P-Box focuses on a specific probability value 𝛼𝛼∗ within the range 𝜶𝜶, 154 
as shown in Fig. 1(b). In the following context, the quantity with superscript * denotes an explicit constant. 155 
For a single CDF curve, a fixed probability value 𝛼𝛼∗ in the vertical axis corresponds to a fixed variable 156 
value 𝑝𝑝∗ in the horizontal axis. However, because of the epistemic uncertainty, the CDF family contains 157 
infinite number of variable values corresponding to the same probability value 𝛼𝛼∗, and thus comprise into 158 
the variable interval [𝑝𝑝,𝑝𝑝] . This interval, different from the one obtained in Fig. 1(a), contains only 159 

epistemic uncertainty information. 160 

The above two-direction investigation provides a clear logic to differentiate the contributions of the 161 
aleatory and epistemic uncertainties to the P-box of an imprecise probability variable. This investigation is 162 
the basis of the two-level procedure in Section 3 to quantify and propagate the uncertainties from the system 163 
inputs to the outputs.  164 
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3 A two-level procedure for uncertainty propagation and quantification 165 

In this section, a two-level procedure is proposed based on the idea of the two-direction investigation of 166 
the P-box in Section 2. The Monte Carlo simulation and optimisation techniques are utilised in the first and 167 
second levels, focusing on the aleatory and epistemic uncertainties, respectively. Note that, the analysis of 168 
the two kinds of uncertainties cannot be completely separated, but should be performed simultaneously in 169 
a uniform framework. The construction of the two levels into a uniform framework is provided in the end 170 
of this section. 171 

3.1 Level I: Monte Carlo simulation for the aleatory uncertainty 172 

The first level of this overall procedure focuses on the aleatory uncertainty through the Monte Carlo 173 
simulation to randomly sample the probability value 𝛼𝛼∗ along the vertical direction of the P-box, as shown 174 
in Fig. 2. Different categories of parameters have different forms of CDFs/P-boxes, and thus should be 175 
analysed separately. As described in Section 1, there are four parameter categories according to the 176 
involvement of aleatory and/or epistemic uncertainties. The treatment for each parameter category is 177 
explained as follows. 178 

 179 
Fig. 2: Monte Carlo simulation for different categories of parameters 180 

Category I): This category of parameter contains no uncertainty. Its CDF appears as an impulse function 181 
at the fixed position 𝑝𝑝∗, with the amplitude as 1. During Monte Carlo simulation, for arbitrary probability 182 
value 𝛼𝛼1, the corresponding parameter value is always 𝑝𝑝∗. 183 

Category II): As an unknown-but-fixed constant fallen within an interval due to the epistemic uncertainty, 184 
this kind of parameter has a family of impulse functions, bounded by the given interval [𝑝𝑝∗,𝑝𝑝∗]. The P-box 185 

for this kind of parameter appears as a standard rectangle. For randomly sampled value 𝛼𝛼2 , the 186 
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corresponding parameter value is no longer a single value, but a range which always equals to the pre-187 
defined interval [𝑝𝑝∗,𝑝𝑝∗].  188 

Category III): Involving only aleatory uncertainty, this category of parameter is a variable following a 189 
fully determined distribution, and thus it has a single CDF curve. During Monte Carlo simulation, for 190 
arbitrary value 𝛼𝛼3, the corresponding parameter value is a constant, however, varying according to the CDF 191 
curve. The Categories I and III parameters are not affected by the epistemic uncertainty, and thus these 192 
parameters do not need to be updated during a model updating procedure. Nevertheless, the Categories I 193 
and III parameters still require appropriate representation and quantification, such that their contributions 194 
to the output uncertainty space can be clearly differentiate from that of the epistemic uncertainty. 195 

Category IV): Since both aleatory and epistemic uncertainties are involved, this category of parameters 196 
have the normal form P-box as illustrated in Fig. 1. For each sampled probability value 𝛼𝛼4, an interval of 197 
the parameter is obtained during the Monte Carlo simulation. Furthermore, bounds of this interval are 198 
changing according to different instances of 𝛼𝛼4, because of the P-box with curvilinear bounds as shown in 199 
Fig. 2. 200 

In the following context, the term “random set realisation” is utilised to designate the different 201 
realisations (i.e. fixed/varying point or interval) of the parameter. The above parameter categorisation 202 
provides a clear understanding of different kinds of uncertainties’ influences on the resulting random set 203 
realisations. Category I represents ideally deterministic parameter whose random set realisation is always 204 
a constant point. When aleatory uncertainty is involved, the parameter moves from Category I to Category 205 
III, where the random set realisation changes from a fixed point to a changing point, according to different 206 
probability values 𝛼𝛼. The epistemic uncertainty renders the random set realisation no long a point, but an 207 
interval, by moving the parameter from Category I to Category II. Finally, for Category IV parameter, 208 
because of both aleatory and epistemic uncertainties, the resulting random set realisation is an interval with 209 
changing bounds according to arbitrary probability values 𝛼𝛼  during Monte Carlo simulation. As the 210 
outcome of the first level, the random set realisations will be served as constrains of an optimisation problem 211 
in the second level to propagate the uncertainties from the input parameters to the outputs. 212 

3.2 Level II: Optimisation for the epistemic uncertainty 213 

The second level is committed to the epistemic uncertainty contained in the random set realisations, and 214 
to propagate the epistemic uncertainty from the inputs to the outputs. Here the uncertain system refers to 215 
the numerical simulation process containing three key components: input parameters p, outputs x, and 216 
simulator ℎ(∙): 217 

 𝒙𝒙 = ℎ(𝒑𝒑). (2) 218 

The simulator can be a sophisticated finite element model of an engineering structure, or a simple 219 
mathematical function extracted from a complex system. The uncertainty propagation is achieved by 220 
solving an optimisation problem to determine the minimum and maximum of the outputs, using the random 221 
set realisations of the parameters obtained from the first level. The optimisation problem is expressed as: 222 
finding 223 
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 min
𝒑𝒑

{𝒙𝒙 = ℎ(𝒑𝒑)} and max
𝒑𝒑

{𝒙𝒙 = ℎ(𝒑𝒑)}, (3) 224 

using the random set realisations as constraints 225 

 

⎩
⎪
⎨

⎪
⎧𝑝𝑝1

(𝛼𝛼1) = 𝑝𝑝∗                   

𝑝𝑝2
(𝛼𝛼2) ∈ �𝑝𝑝∗,  𝑝𝑝∗�          

𝑝𝑝3
(𝛼𝛼3) = 𝑝𝑝(𝛼𝛼3)               

𝑝𝑝4
(𝛼𝛼4) ∈ [𝑝𝑝(𝛼𝛼4),𝑝𝑝(𝛼𝛼4)]

 (4) 226 

where the superscript * denotes that the value is fixed, the superscript (α) denotes that the value is changing 227 
according to the arbitrary α, the subscripts “1-4” of α and p denote the categories of the parameters.  228 

Note that, Eq. (4) provides the optimisation problem with simple interval constraints without any 229 
complex nonlinear constraint. Furthermore, the interval constraints represent only the epistemic uncertainty, 230 
implying the ranges of the intervals are much smaller the whole domain of definition of the parameters in 231 
the system. Consequently, the optimisation problem can be solved easily and rapidly by the typical 232 
techniques, such as simplex algorithm and interior point method. 233 

 234 
Fig. 3: The two-level procedure for uncertainty quantification and propagation 235 
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The overall two-level procedure for uncertainty quantification and propagation from the inputs to the 236 
outputs is illustrated in Fig. 3. Note that, this procedure contains two levels, but not two steps, because the 237 
optimisation procedure (Level II) is performed for each sampled point α within the Monte Carlo simulation 238 
(Level I). Suppose the sampling size in the Monte Carlo simulation is NMC, NMC random set realisations of 239 
the input parameters will be obtained and the optimisation is executed NMC times, generating NMC pairs of 240 
minimum and maximum output values. The CDFs of minimum and maximum outputs are estimated, and 241 
the P-box of the output is bounded by these fitted CDFs as shown in the bottom of Fig. 3. 242 

The above two-level approach is significant for stochastic SA, since it provides a clear logic for 243 
quantification of both aleatory and epistemic uncertainties, which makes it possible to measure and 244 
differentiate the contributions of these two kinds uncertainties to the output uncertainty space. 245 

4 Sensitivity indices based on the Bhattacharyya distance 246 

4.1 Bhattacharyya distance: a quantification metric for the P-box 247 

The P-box provides a clear representation of the uncertainty space, however, it is still insufficient for 248 
SA because of the following reasons: 249 

• SA requires a quantitative measure of the uncertainty space to give an explicit parameter ranking, while 250 
the P-box is only a graphic representation; 251 

• The estimation of the CDFs based on the output samples is computationally expensive, making a precise 252 
representation of the P-box unpractical for complex systems; 253 

• When multiple outputs are considered in a system, CDFs of the outputs become multi-dimensional, and 254 
the construction of the P-box in a multi-dimensional space is out of imagination. 255 

As a result, the Bhattacharyya distance is proposed as a quantification metric for the P-box, which is 256 
quantitative, distribution-free, and feasible for more than one output. The basic principle of the 257 
Bhattacharyya distance and its application in stochastic model updating have been elaborated in Ref. [1]. 258 
Hence, the current work is not focusing on the evaluation method of the Bhattacharyya distance, but a 259 
stochastic SA framework where the Bhattacharyya distance can be conveniently implanted.  260 

Fig. 4 illustrates the relationship between the Bhattacharyya distance and the P-box representation of a 261 
single output x. Instead of using the estimated CDFs of the output samples to construct the P-box, the 262 
Bhattacharyya distance is proposed to directly evaluate the overlap between the minimum and maximum 263 
output samples. This treatment is executed directly after the two-level procedure in Section 3, where the 264 
minimum and maximum output samples are obtained.  265 

The Bhattacharyya distance between two discrete distributions is defined as 266 

 𝐷𝐷(𝒙𝒙𝑚𝑚𝑚𝑚𝑚𝑚 ,𝒙𝒙𝑚𝑚𝑚𝑚𝑚𝑚) = −log�∑ …∑ �𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚�𝑏𝑏𝑚𝑚1,𝑚𝑚2,…,𝑚𝑚𝑚𝑚�𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚�𝑏𝑏𝑚𝑚1,𝑚𝑚2,…,𝑚𝑚𝑚𝑚�
𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏
𝑚𝑚1=1

𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏
𝑚𝑚𝑚𝑚=1 � (5) 267 

where 𝒙𝒙𝑚𝑚𝑚𝑚𝑚𝑚 and 𝒙𝒙𝑚𝑚𝑚𝑚𝑚𝑚 are the minimum and maximum samples of the outputs; m is the number of the 268 

outputs; 𝑛𝑛𝑏𝑏𝑚𝑚𝑚𝑚  is the number of bins defined for each of the m outputs; 𝑃𝑃𝑃𝑃∎ �𝑏𝑏𝑚𝑚1,𝑚𝑚2,…,𝑚𝑚𝑚𝑚�  is the joint 269 

probability mass function (PMF) of the bin 𝑏𝑏𝑚𝑚1,𝑚𝑚2,…,𝑚𝑚𝑚𝑚. The bin has m subscripts because it is generated under 270 
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a m-dimensional joint-PMF space. The detailed evaluation method of the joint-PMF function can be 271 
referred to Ref. [1]. For theoretically completeness, the evaluation procedure is simply recalled as follows. 272 

 273 
Fig. 4: Relationship between the Bhattacharyya distance and the P-box 274 

1) The output samples 𝒙𝒙𝑚𝑚𝑚𝑚𝑚𝑚 and 𝒙𝒙𝑚𝑚𝑚𝑚𝑚𝑚 appear as matrices with size as 𝒙𝒙∎ ∈ ℝ𝑁𝑁×𝑚𝑚, where N is the number 275 
of data points from Monte Carlo simulation, and m is the number of outputs. Considering the i-th 276 
columns of the two matrices (𝒙𝒙𝑚𝑚𝑚𝑚𝑚𝑚 and 𝒙𝒙𝑚𝑚𝑚𝑚𝑚𝑚), find the lower and upper bounds of all values in both 277 
columns. These lower and upper bounds define an interval 𝐼𝐼𝑚𝑚 (∀𝑖𝑖 = 1, … ,𝑚𝑚) containing all the i-th 278 
output values in 𝒙𝒙𝑚𝑚𝑚𝑚𝑚𝑚 and 𝒙𝒙𝑚𝑚𝑚𝑚𝑚𝑚.  279 

2) Within the defined interval 𝐼𝐼𝑚𝑚 , decide the number of bins 𝑛𝑛𝑏𝑏𝑚𝑚𝑚𝑚 ≅ �𝑁𝑁
10
�, where ⌈∎⌉ denotes the upper 280 

integer of the investigating values; 281 

3) Count the number of points fallen into each bin, i.e. the frequency. Note that, when m is larger than one,  282 
the frequency should be counted in a m-dimensional PMF space, and the total number of bins in this 283 
joint-PMF space is 𝑁𝑁𝑏𝑏𝑚𝑚𝑚𝑚 = 𝑛𝑛𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚. 284 

The above procedure is based on the discrete PMF of data samples and thus is applicable to any sample 285 
set regardless of its exact distribution format. This makes it especially appropriate for the current application 286 
when the sample size after the two-level procedure is too limited to give a precise distribution estimation. 287 
Another advantage of the Bhattacharyya distance is that it provides a scalar measure for all the outputs 288 
simultaneously, which fulfils the expectation as an elaborate, quantitative, and uniform measure of multiple 289 
uncertain outputs. 290 

4.2 Stochastic sensitivity indices 291 

The final objective of the stochastic SA, in the background of uncertainty quantification, is described as: 292 
Quantify the importance of the input according to how much the uncertainty space of the output can be 293 
changed, when the epistemic uncertainty of this input is reduced. This objective is illustrated in Fig. 5 where 294 
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the epistemic uncertainties of the Categories II and IV parameters are completely reduced. For the Category 295 
II parameter, the completely reduction of the epistemic uncertainty leads to an impulse function (the red 296 
vertical line in the figure). For the Category IV parameter, this will lead to a single CDF curve (the red solid 297 
curve in the figure). In the right part of Fig. 5, the change of the output P-box represents the significance of 298 
the input parameters. In order to give a quantitative measure, an explicit sensitivity index based on the 299 
Bhattacharyya distance is required to rank the significance of each input parameter. Three sensitivity indices, 300 
namely the proportional index, the variance-based index, and the comprehensive index, are proposed as 301 
follows. Since the reduction of the epistemic uncertainty is executed to either the Category II parameter or 302 
to the Category IV parameter, the following three sensitivity indices apply to both Categories II and IV 303 
parameters. 304 

 305 
Fig. 5: Reduced output uncertainty space when the epistemic uncertainties of  306 

Categories II and IV parameters are reduced 307 
• The proportional index 308 

As shown in Fig. 5, the most intuitive manner to measure how much the output uncertainty space is 309 
reduced is to calculate the proportion ratio between the reduced uncertainty space and the original one: 310 

𝑆𝑆𝑚𝑚
(𝑝𝑝𝑝𝑝𝑝𝑝) =

𝐷𝐷0(𝒙𝒙) − 𝐷𝐷𝑚𝑚(𝒙𝒙,𝑝𝑝𝑚𝑚)
𝐷𝐷0(𝒙𝒙)

                                                           (6) 311 

where 𝑆𝑆𝑚𝑚
(𝑝𝑝𝑝𝑝𝑝𝑝) is the proportional sensitivity index of the i-th input parameter; 𝐷𝐷0(𝒙𝒙) is the Bhattacharyya 312 

distance of the original uncertainty space of the output; 𝐷𝐷𝑚𝑚(𝒙𝒙,𝑝𝑝𝑚𝑚) is the Bhattacharyya distance of the output 313 
uncertainty space with the epistemic uncertainty of the i-th input parameter completely reduced. 314 

Eq. (6) provides a measure of the parameter significance with a direct and simple principle. However, 315 
an obvious defect of this equation is that different specified input distributions have different influences on 316 
the output uncertainty space. As shown in Fig. 5, there are infinite CDF curves in the P-box of the Category 317 
IV parameter, while different curves lead to different output uncertainty spaces. Only randomly 318 
investigating one single CDF curve from the input uncertainty space is obviously insufficient. A simple 319 
way to deal with this problem is to investigate a series of specified distributions of the parameter, and use 320 
the mean of the output uncertainty spaces to replace the single one in Eq. (6). Hence, the improved 321 
proportional index is expressed as 322 
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𝑆𝑆𝑚𝑚
(𝑝𝑝𝑝𝑝𝑝𝑝) =

𝐷𝐷0(𝒙𝒙) − 𝜇𝜇𝐷𝐷𝑏𝑏(𝒙𝒙,𝑝𝑝𝑚𝑚)
𝐷𝐷0(𝒙𝒙)

                                                               (7) 323 

where 𝜇𝜇𝐷𝐷𝑏𝑏(𝒙𝒙,𝑝𝑝𝑚𝑚) denotes the mean of the multiple Bhattacharyya distance with a series of determined 324 
distributions of 𝑝𝑝𝑚𝑚. As explained by Eq. (1), the CDF family of input parameter is driven by the interval of 325 

its distribution coefficient (e.g. mean or variance) [𝜽𝜽,𝜽𝜽]. Hence these different input distributions can be 326 
specified by assigning a certain number of equidistant values within the coefficient interval. This treatment 327 
is quite sensitive to the number of the coefficients required to describe the P-box. Most distribution types, 328 
e.g. Gaussian distribution 𝑁𝑁(𝜇𝜇,𝜎𝜎2), uniform distribution U(a, b), and Beta distribution Beta(a, b), contain 329 
only two distribution coefficients, and thus the full factorial design is feasible to generate a grid of  330 
equidistant values. In case of complex distributions with three or even more coefficients, the Design of 331 
Experiment (DoE) method is suggested. Considering the typical DoE technique using the orthogonal Latin 332 
squares, when there are four coefficients considered and each coefficient contains eight levels, the full 333 

factorial design results into 84 = 4096 realisations. In contrast, the orthogonal Latin square design only 334 

requires 82 = 64 realisations, which is still the same number as the full factorial design of two-coefficient 335 
case. More information of the orthogonal Latin square DoE method can be referred to Ref. [26]. The 336 
detailed demonstration for the assignment of specified input distributions can be found in Section 5.3.  337 

In the following context, the number of the specified input distributions is assumed as Nsp, and thus 338 
𝜇𝜇𝐷𝐷𝑏𝑏(𝒙𝒙,𝑝𝑝𝑚𝑚) in Eq. (7) is estimated from a set of Bhattacharyya distance samples with size as Nsp. The 339 

Bhattacharyya distance samples with different sizes lead to different 𝜇𝜇𝐷𝐷𝑏𝑏(𝒙𝒙,𝑝𝑝𝑚𝑚), and subsequently, different 340 
sensitivity index values. The variation of the index is investigated in the following subsection.  341 

• The variance-based index 342 

The significance of the input parameter is not only reflected by the reduction degree of the output 343 
uncertainty space, but also reflected by the dispersion degree of the output uncertainty space when the input 344 
P-box is reduced to different single curves. Similar as the above proportional index, a series of specified 345 
distributions of 𝑝𝑝𝑚𝑚 are utilised, and multiple Bhattacharyya distances are obtained for the corresponding 346 
output uncertainty spaces. The dispersion degree of the output uncertainty spaces is measured by the 347 
coefficient of variation of the Bhattacharyya distance samples: 348 

𝑆𝑆𝑚𝑚
(𝑣𝑣𝑚𝑚𝑝𝑝) =

𝜎𝜎𝐷𝐷𝑏𝑏(𝒙𝒙,𝑝𝑝𝑚𝑚)
𝜇𝜇𝐷𝐷𝑏𝑏(𝒙𝒙,𝑝𝑝𝑚𝑚)

                                                                   (8) 349 

where the superscript (var) denote the variance-based index; 𝜎𝜎𝐷𝐷𝑏𝑏(𝒙𝒙,𝑝𝑝𝑚𝑚) is the standard deviation of the 350 

Bhattacharyya distances with the epistemic uncertainty of 𝑝𝑝𝑚𝑚 completely reduced; 𝜇𝜇𝐷𝐷𝑏𝑏(𝒙𝒙,𝑝𝑝𝑚𝑚) is the mean of 351 
the Bhattacharyya distances. 𝜎𝜎𝐷𝐷𝑏𝑏(𝒙𝒙,𝑝𝑝𝑚𝑚) and 𝜇𝜇𝐷𝐷𝑏𝑏(𝒙𝒙,𝑝𝑝𝑚𝑚) are estimated from a set of Bhattacharyya distance 352 
samples with size as Nsp. 353 

• The comprehensive index 354 

As discussed above, the proportional index reflects the reduction degree of the output uncertainty; and 355 
the variance-based index reflects the dispersion degree of the output uncertainty. Clearly, neither of the 356 
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above indices can give a full measure of the significance of the input according to the overall change of the 357 
output uncertainty space. It is reasonable to make a product of these two indices so that a more 358 
comprehensive index is obtained as 359 

𝑆𝑆𝑚𝑚
(𝑐𝑐𝑝𝑝𝑚𝑚) =

𝐷𝐷0(𝒙𝒙)− 𝜇𝜇𝐷𝐷𝑏𝑏(𝒙𝒙,𝑝𝑝𝑚𝑚)
𝐷𝐷0(𝒙𝒙)

 
𝜎𝜎𝐷𝐷𝑏𝑏(𝒙𝒙,𝑝𝑝𝑚𝑚)
𝜇𝜇𝐷𝐷𝑏𝑏(𝒙𝒙,𝑝𝑝𝑚𝑚)

                                                (9) 360 

where the superscript (com) denotes the comprehensive index. A larger proportional index 𝑆𝑆𝑚𝑚
(𝑝𝑝𝑝𝑝𝑝𝑝) indicates 361 

a stronger reduction effect of the input epistemic uncertainty on the output uncertainty; a larger variance-362 

based index 𝑆𝑆𝑚𝑚
(𝑣𝑣𝑚𝑚𝑝𝑝) indicates a larger variation of the output uncertainty space due to different reduction 363 

manners of the input epistemic uncertainty. Consequently, when the comprehensive index 𝑆𝑆𝑚𝑚
(𝑐𝑐𝑝𝑝𝑚𝑚) is larger, 364 

the input parameter 𝑝𝑝𝑚𝑚  is comprehensively more significant to the output uncertainty space, on both 365 
reduction and dispersion effects. 366 

4.3 Variation of the stochastic sensitivity indices 367 

A common feature of the stochastic SA methodologies employing Monte Carlo sampling is that the 368 
resulting sensitivity index is also stochastic. Specifically, the stochastic feature of the three sensitivity 369 
indices in Section 4.2 is derived from two aspects: 370 

1) The evaluation of the Bhattacharyya distance utilises the random samples generated from Monte Carlo 371 
simulation. Different random samples lead to slightly different Bhattacharyya distance values. 372 

2) The definition of the sensitivity indices requires not a single specified parameter distribution (i.e. a 373 
single CDF curve within a P-box), but a series of specified distributions of the parameter. Different 374 
numbers and configurations of the selected CDF curves in the P-box lead to variantion of the sensitivity 375 
indices. 376 

Consequently, it is important to investigate the variation feature of the sensitivity indices, especially, 377 
when the significances of two parameters are comparable. The bootstrap technique [27] is employed herein 378 
to estimate the mean and standard deviation of the stochastic sensitivity indices. Considering the existing 379 
sample set of Bhattacharyya distances with size Nsp described in Section 4.2, the basic principle of bootstrap 380 
technique in this work is to generate a new sample set (termed as “bootstrap sample set”) with the same 381 
size as the existing sample set (i.e. Nsp), using the strategy sampling with replacement. A new value of the 382 
sensitivity index can be calculated based on this bootstrap sample set. Assuming the bootstrap process is 383 
repeated Nbs times, Nbs bootstrap samples are generated, and subsequently a sample set of the sensitivity 384 
index values is obtained with the size as Nbs. In the following case studies, the mean of the sensitivity index 385 
samples is utilised to rank the significance of the input parameters; the standard deviation of the sensitivity 386 
index is provided to assess the variation degree of the index. The smaller the standard deviation, the more 387 
precise the index is within the overall stochastic SA approach. 388 

4.4 Discussion of the calculation cost 389 

The overall two-level procedure requires an optimisation problem to be solved for each Monte Carlo 390 
sample, leading to considerable calculation cost. However, the optimisation problem itself for each sample 391 
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can be solved easily and rapidly using the typical optimisation techniques such as simplex algorithm and 392 
interior point method. The simplicity of the optimisation problem is caused by the following reasons. 393 

• The optimisation problem contains only interval constraints of the parameters, without any complex 394 
and nonlinear constraint. 395 

• The interval constraints for each Monte Carlo sample are determined in the first level in Section 3, 396 
representing only epistemic uncertainty of the P-box. Consequently, the ranges of the interval 397 
constraints are much smaller than the whole domain of definition of the parameters in the system.  398 

These interval constraints with small ranges represent an explicit and reduced searching space, which 399 
provides convenience when solving the optimisation problem. Even for the complex and strong-nonlinear 400 
problem presented in the second case study (Section 6), the optimisation problem can still be solved by the 401 
typical interior point method with the CPU calculation time for less than one second in a desk-top computer. 402 

Although the calculation cost for the optimisation is acceptable, in case of complex numerical models 403 
(e.g. sophisticated finite element models), the meta-models are suggested as a common rule for Monte Carlo 404 
based methodologies. Since each Monte Carlo sampling procedure is independent to each other, the parallel 405 
computation [28] can be utilised in this approach to further reduce the calculation time. 406 

5 Case study I: The Ishigami function 407 

5.1 Problem description 408 

A tutorial case study is given in this section utilising the Ishigami function [29], which is a general 409 
example for SA techniques. The Ishigami function is defined as 410 

 𝑓𝑓(𝐩𝐩) = sin(𝑝𝑝1) + 𝑎𝑎sin2(𝑝𝑝2) + 𝑏𝑏𝑝𝑝34sin (𝑝𝑝1), (10) 411 

where 𝑝𝑝1,𝑝𝑝2, and 𝑝𝑝3 are the input parameters; a and b are the pre-defined coefficients. In this work, the 412 
values of a and b are assigned to be the same as Marrel et al. [30]: a=7 and b=0.1. The uncertainty 413 
characteristic of 𝑝𝑝1−3 is generally set as the uniform distribution on the interval [−𝜋𝜋,𝜋𝜋] in the literature. 414 
However, this uncertainty characteristic cannot fulfil the application in this work, because the fully 415 
determined distribution implies 𝑝𝑝1−3 belong to Category III parameters with only aleatory uncertainty. 416 
Considering the objective of the stochastic SA herein, the epistemic uncertainty is the investigating 417 
emphasis to assess the uncertainty space of an imprecise distribution, rather than a single CDF curve of a 418 
fully determined distribution. As a result, more complex uncertainty characteristics of the parameters are 419 
assigned as listed in Table 1. 𝑝𝑝1and 𝑝𝑝2 are prescribed to follow the uniform distribution, and 𝑝𝑝3 follows the 420 
Gaussian distribution. The distribution coefficients, e.g. the bounds, mean, and variance, are not fully 421 
determined but fallen into intervals. That is to say, 𝑝𝑝1−3 belong to Category IV parameter in this example.  422 

Table 1: Uncertainty characteristics of the input parameters 423 
Category Parameter Distribution Epistemic Coefficient 

IV 𝑝𝑝1~𝑈𝑈(𝑎𝑎1, 𝑏𝑏1) 𝑎𝑎1 ∈ [−4.0,−3.0]; 𝑏𝑏1 ∈ [2.0, 3.0] 
IV 𝑝𝑝2~𝑈𝑈(𝑎𝑎2, 𝑏𝑏2) 𝑎𝑎2 ∈ [−3.0,−1.0]; 𝑏𝑏2 ∈ [3.0, 5.0] 
IV 𝑝𝑝3~𝑁𝑁(𝜇𝜇3,𝜎𝜎32) 𝜇𝜇3 ∈ [0.0, 1.0]; 𝜎𝜎3 ∈ [√5,√2] 
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The uncertainty characteristics shown in Table 1 lead to a stochastic SA task different from the normal 424 
demonstration on the Ishigami function in the literature, and thus a comparison between the current results 425 
and the published results is unavailable. The purpose of this case study is to provide a reproducible result 426 
such that a better understanding on the principle of the overall approach is achieved. Detailed assessment 427 
and comparison between the results of the proposed approach and the published approaches are presented 428 
in the next case study on the NASA UQ Challenge. 429 

5.2 P-boxes of the inputs and outputs 430 

The first step of this demonstration is to determine the P-boxes of the input parameters, based on the 431 
uncertainty characteristics listed in Table 1. The P-box of an imprecise uniform distribution can be easily 432 
determined by the bounds of the epistemic coefficient intervals. As shown in Fig. 6(a), the P-box of p1 is 433 
enveloped by the CDFs of 𝑝𝑝1~U(−4, 2) and 𝑝𝑝1~U(−3, 3). Similarly, the P-box of p2 is enveloped by the 434 

CDFs of 𝑝𝑝2~U(−3, 3) and 𝑝𝑝2~U(−1, 5) as shown in Fig. 6(b). The determination of the P-box of 𝑝𝑝3 is 435 

more complex than the first two, since the upper or lower bound of the P-box is no longer a complete CDF 436 
curve, but a combination of multiple CDF curves as illustrated in Fig. 6(c). 437 

 438 
       (a) The 1st parameter                                         (b) The 2nd parameter 439 

 440 
      (c) The 3rd parameter                                        (d) The output 441 

Fig. 6: The P-boxes of the inputs and output variables 442 
As long as the P-boxes of the input parameters are determined, the two-level procedure can be performed 443 

to propagate the uncertainty from the inputs to the outputs. In this example, 1000 probability data points 444 
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(𝛂𝛂 = [𝛼𝛼1,𝛼𝛼2,𝛼𝛼3]) are sampled during the Monte Carlo simulation in the first level. For each sampled 𝛂𝛂∗, 445 
the intervals of the parameters are determined according to the P-boxes illustrated in Fig. 6(a-c). In fact, for 446 
the first two parameters (𝑝𝑝1 and 𝑝𝑝2 ), different Monte Carlo samples correspond to the intervals with 447 
identical range. For the last parameter (𝑝𝑝3), the range of the interval is changing according to different 448 
Monte Carlo samples, because of the curvilinear bounds of the P-box as shown in Fig. 6(c). 449 

After the intervals of the three parameters are determined, an optimisation problem is solved in the 450 
second level to find the minimal and maximal values of the output. Since the Monte Carlo sample size is 451 
1000, both the minimal and maximal output sample sets contain 1000 data points. The distributions of the 452 
minimal and maximal output samples are estimated using the Kernel Density Estimation (KDE) technique. 453 
The CDFs of the minimal and maximal output are utilised to envelop the P-box of the output as illustrated 454 
in Fig. 6(d). As described in Section 4.1, the Bhattacharyya distance between the minimal samples and the 455 
maximal samples is proposed to provide a quantitative measure of the P-box (i.e. uncertainty space) of the 456 
output. During the calculation of the Bhattacharyya value, the number of bins 𝑁𝑁𝑏𝑏𝑚𝑚𝑚𝑚 is taken as 100, and the 457 
calculated distance value is 2.01. 458 

5.3 Sensitivity indices based on the Bhattacharyya distance 459 

After the output uncertainty space has been quantified by the Bhattacharyya distance, the following step 460 
focuses on how the uncertainty space of the output can be changed when the epistemic uncertainty of a 461 
single input parameter is reduced. Taking 𝑝𝑝1 for example, its epistemic uncertainty is controlled by two 462 
epistemic coefficients, i.e. 𝑎𝑎1 and 𝑏𝑏1 in Table 1. Ten levels of these two coefficients are investigated by 463 
assigning ten equidistant values within their intervals, respectively. The full factorial design results in 100 464 
configurations of 𝑎𝑎1 and 𝑏𝑏1, i.e. Nsp=100 specific CDF curves within the P-box of 𝑝𝑝1 . Because of the 465 
simplicity of each optimisation as explained in Section 4.4, the typical interior point method is sufficient to 466 
solve the problem. For a complete analysis process of the 1st parameter 𝑝𝑝1,  the calculation time is 747.12 467 
s using a desk-top computer with four processors. When the parallel computation is performed at a small 468 
scale computer cluster with 36 processors, the calculation time is reduced to 183.60 s. 469 

The two-level procedure is executed for each single curve of 𝑝𝑝1 meanwhile keeping the full P-boxes of 470 
𝑝𝑝2 and 𝑝𝑝3 . 100 reduced P-boxes of the output are obtained, and accordingly a sample with 100 471 
Bhattacharyya distance values is available. The proportional, variance-based, and comprehensive 472 
sensitivity indices of 𝑝𝑝1 are evaluated according to the equations in Section 4.2, and the bootstrap method 473 
is utilised to estimate the means and standard deviations of these three indices, respectively. The number 474 
of bootstrap samples utilised in this example is Nbs=1000. The same strategy is performed for 𝑝𝑝2 and 𝑝𝑝3, 475 
and the ranking results according to the means of the bootstrap samples are presented in Table 2, where the 476 
superscript denotes the standard deviation of the bootstrap sample. All of the standard deviation values are 477 
dramatically smaller than the corresponding mean values, implying the variation of the index is low, and 478 
thus the ranking results according to the means of the bootstrap samples are precise. 479 

Clearly, different indices lead to different ranking results. According to the proportional index, 𝑝𝑝2 is the 480 
most significant one, implying 𝑝𝑝2  has the largest influence in reducing the output uncertainty space. 481 
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According to the variance-based index, 𝑝𝑝1 is the most significant one, implying different realisation of 𝑝𝑝1 482 
within its epistemic uncertainty space have the largest influence on the variation of the output uncertainty 483 
space. The comprehensive index integrating the effects of the first two indicates the significance ranking 484 
as 𝑝𝑝2 > 𝑝𝑝1 > 𝑝𝑝3. Note that, the significance ranking can be easily changed by the prescribed intervals of 485 
the epistemic coefficients in Table 1. The case study is presented to provide a tutorial demonstration of the 486 
overall stochastic SA approach. Hence, the ranking results in Table 2 are not necessarily to be the same as 487 
results in other literature about the Ishigami function. 488 

Table 2: Ranking results of the parameters of the Ishigami function 489 

Rank 
Results according to different indices 

𝑆𝑆𝑚𝑚
(𝑝𝑝𝑝𝑝𝑝𝑝) 𝑆𝑆𝑚𝑚

(𝑣𝑣𝑚𝑚𝑝𝑝) 𝑆𝑆𝑚𝑚
(𝑐𝑐𝑝𝑝𝑚𝑚) 

1 p2 (0.9125)(0.0017) p1 (0.2957)(0.0278) p2 (0.1642)(0.0107) 
2 p1 (0.5027)(0.0145) p3 (0.2891)(0.0177) p1 (0.1490)(0.0177) 
3 p3 (0.4878)(0.0149) p2 (0.1800)(0.0117) p3 (0.1410)(0.0098) 

 490 

6 Case study II: The NASA UQ challenge problem 491 

6.1 Problem description 492 

Released in 2014, the NASA UQ challenge [23] has been developed as a benchmark problem for 493 
uncertainty treatment techniques, containing multiple sub-problems such as uncertainty characterization, 494 
SA, uncertainty propagation, and robust design. In this case study, the SA sub-problem is solved to 495 
demonstrate performance of the Bhattacharyya distance metric within the proposed stochastic SA approach. 496 
Fig. 7 presents the formulation of the SA problem, including the uncertain parameters p, outputs x, and 497 
multiple simulators ℎ𝑚𝑚(𝒑𝒑) given as black-box models. This system contains 21 uncertain parameters, i.e. 4 498 
Category II parameters (with only epistemic uncertainty), 4 Category III parameters (with only aleatory 499 
uncertainty), and 13 Category IV parameters (with both epistemic and aleatory uncertainties), whose 500 
uncertain characteristics are listed in Table 3. The outputs 𝒙𝒙 ∈ ℝ5 are evaluated by the multiple black-box 501 
models h: 502 

 

⎩
⎪
⎨

⎪
⎧
𝑥𝑥1 = ℎ1(𝑝𝑝𝑚𝑚)     𝑖𝑖 = 1,⋯ , 5;     
𝑥𝑥2 = ℎ2(𝑝𝑝𝑚𝑚)     𝑖𝑖 = 6,⋯ , 10;   
𝑥𝑥3 = ℎ3(𝑝𝑝𝑚𝑚)     𝑖𝑖 = 11,⋯ , 15;
𝑥𝑥4 = ℎ4(𝑝𝑝𝑚𝑚)     𝑖𝑖 = 16,⋯ , 20;
𝑥𝑥5 = 𝑝𝑝21.                                     

 (10) 503 
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 504 
Fig. 7: The formulation and tasks of the SA problem in the NASA UQ challenge 505 

 506 
Table 3: The uncertainty characteristics of the 21 input parameters 507 

Sub-
models 

Parameter Category Distribution Uncertainty characteristics 

h1 

p1 IV Beta 𝜇𝜇1 ∈ [0.6, 0.8],  𝜎𝜎12 ∈ [0.02, 0.04] 
p2 II Constant 𝑝𝑝2 ∈ [0.0, 1.0] 
p3 III Uniform 𝑎𝑎3 = 0,𝑏𝑏3 = 1 

p4, p5 IV 
Multiple 
Gaussian 

𝜇𝜇𝑚𝑚 ∈ [−5.0, 5.0],𝜎𝜎𝑚𝑚2 ∈ [0.0025, 4.0] 
𝜌𝜌 ∈ [−1.0, 1.0], i = 4, 5 

h2 

p6 II Constant 𝑝𝑝6 ∈ [0.0, 1.0] 
p7 IV Beta 𝑎𝑎7 ∈ [0.982, 3.537],  𝑏𝑏7 ∈ [0.619, 1.080] 
p8 IV Beta 𝑎𝑎8 ∈ [7.450, 14.093],  𝑏𝑏8 ∈ [4.285, 7.864] 
p9 III Uniform 𝑎𝑎9 = 0,𝑏𝑏9 = 1 
p10 IV Beta 𝑎𝑎10 ∈ [1.520, 4.513],  𝑏𝑏10 ∈ [1.536, 4.750] 

h3 

p11 III Uniform 𝑎𝑎11 = 0,𝑏𝑏11 = 1 
p12 II Constant 𝑝𝑝12 ∈ [0.0, 1.0] 
p13 IV Beta 𝑎𝑎13 ∈ [0.412, 0.737],  𝑏𝑏13 ∈ [1.000, 2.068] 
p14 IV Beta 𝑎𝑎14 ∈ [0.931, 2.169],  𝑏𝑏14 ∈ [1.000, 2.407] 
p15 IV Beta 𝑎𝑎15 ∈ [5.435, 7.095],  𝑏𝑏15 ∈ [5.287, 6.945] 

h4 

p16 II Constant 𝑝𝑝16 ∈ [0.0, 1.0] 
p17 IV Beta 𝑎𝑎17 ∈ [1.060, 1.662],  𝑏𝑏7 ∈ [1.000, 1.488] 
p18 IV Beta 𝑎𝑎18 ∈ [1.000, 4.266],  𝑏𝑏18 ∈ [0.553, 1.000] 
p19 III Uniform 𝑎𝑎19 = 0,𝑏𝑏19 = 1 
p20 IV Beta 𝑎𝑎20 ∈ [7.530, 13.492],  𝑏𝑏20 ∈ [4.711, 8.148] 

-- p21 IV Beta 𝑎𝑎21 ∈ [0.421, 1.000],  𝑏𝑏21 ∈ [7.772, 29.621] 
 508 

In the background of uncertainty analysis, the stochastic SA in this example has the task as: For the sub-509 
model h1, rank the 4 Category II and IV parameters (i.e. p1, p2, p4, and p5,) according to their significance 510 
on the uncertainty space of x1, when the epistemic uncertainty of the parameter is reduced. And do the same 511 
for other sub-models h2, h3, and h4. 512 
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Differing from the classical SA investigating the variation of unknown-but-fixed constants, the problem 513 
herein is established upon the reduction or variation of the uncertainty space of the imprecise random 514 
variables. This task involves multiple uncertain parameter categories and multiple distribution formats, 515 
which provide a veritable challenge for SA in the uncertainty quantification background. In order to assess 516 
the results, three published works on the NASA UQ challenge problem, namely the papers by Patelli et al. 517 
[7], Pedroni et al. [24], and McFarland [25], are used as references to compare with the results of the current 518 
work. 519 

6.2 Ranking result of p1, p2, p4, and p5 according to x1 520 

The SA results for the first output x1 are shown in Table 4. The optimisation algorithm used in this 521 
example is still the interior point method. The calculation time of a complete analysis process for p1 at a 522 
four-processor desk-top computer is 4342.08 s. When the parallel computation method is employed at a 523 
computer cluster with 36 processors, the calculation time is dramatically reduced to 312.07 s. The 2nd-4th 524 
columns list the results from different references, whose ranking orders are not exactly the same. All these 525 
three works get same conclusion that 𝑝𝑝1 and 𝑝𝑝5 are the first two most important parameters. However, the 526 
rankings about 𝑝𝑝4  and 𝑝𝑝2  are different. This demonstrates that different approaches using different 527 
quantification indices may get different results.  528 

Table 4: The parameter rankings of p1, p2, p4, and p5 according to x1 529 

Rank 
Results in the references Results in the current work 

Patelli [7] Pedroni [24] McFarland [25] 𝑆𝑆𝑚𝑚
(𝑝𝑝𝑝𝑝𝑝𝑝) 𝑆𝑆𝑚𝑚

(𝑣𝑣𝑚𝑚𝑝𝑝) 𝑆𝑆𝑚𝑚
(𝑐𝑐𝑝𝑝𝑚𝑚) 

1 p1 p1 p1 p1 (0.715) p2 (0.215) p1 (0.137) 
2 p5 p5 p5 p5 (0.199) p1 (0.192) p5 (0.036) 
3 p4 p4 p2 p4 (0.166) p5 (0.182) p4 (0.025) 
4 p2 p2 p4 p2 (0.099) p4 (0.154) p2 (0.021) 

 530 

The last three columns of Table 4 present the ranking results of the current work according to three 531 

different indices, namely the proportional index 𝑆𝑆𝑚𝑚
(𝑝𝑝𝑝𝑝𝑝𝑝) , the variance-based index 𝑆𝑆𝑚𝑚

(𝑣𝑣𝑚𝑚𝑝𝑝) , and the 532 

comprehensive index 𝑆𝑆𝑚𝑚
(𝑐𝑐𝑝𝑝𝑚𝑚). The index value is provided in parenthesis after each parameter in the table. 533 

The ranking result according to the proportional index is the same as the results from the first two references. 534 
However, the ranking result according to the variance-based index is different from all of the three results 535 
in the references. Nevertheless, the variance-based index values of these four parameters are similar with 536 
each other, implying the four parameters have comparable influence on the dispersion degree of the output 537 
uncertainty space. This is also the reason that the ranking based on the comprehensive index is the same as 538 
the one according to the proportional index. 539 

 540 

 541 
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6.3 Ranking result of p6, p7, p8, and p10 according to x2 542 

Sensitivity results for x2 are more complex than that for x1, since different referenced works obtain quite 543 
different parameter rankings, as shown in Table 5. The results in the references are different in ranking the 544 
last two parameters (p8 and p10). In the work of McFarland [25], p8 and p10 were regarded to be negligible, 545 
and thus they were not included in McFarland’s ranking result. 546 

In Table 5, the differences are also detected among the results according to the three indices in the 547 
current work. Using the proportional index, p7 is demonstrated as the most significant parameter. However, 548 
in the ranking according to the variance-based index, p6 is the most significant parameter. By integrally 549 
considering both reduction and dispersion effects, the comprehensive index provides the significant ranking 550 
as: 𝑝𝑝7 > 𝑝𝑝6 > 𝑝𝑝8 > 𝑝𝑝10 . Note that this index shows p7 is the most significant parameter, while in the 551 
referenced works, p6 was regarded as the most significant one. 552 

Table 5: The parameter rankings of p6, p7, p8, and p10 according to x2 553 

Rank 
Results in the references Results in the current work 

Patelli [7] Pedroni [24] McFarland [25] 𝑆𝑆𝑚𝑚
(𝑝𝑝𝑝𝑝𝑝𝑝) 𝑆𝑆𝑚𝑚

(𝑣𝑣𝑚𝑚𝑝𝑝) 𝑆𝑆𝑚𝑚
(𝑐𝑐𝑝𝑝𝑚𝑚) 

1 p6 p6 p6 p7 (0.643) p6 (0.187) p7 (0.101) 
2 p7 p7 p7 p6 (0.488) p7 (0.157) p6 (0.091) 
3 p8 p10 -- p8 (0.483) p10 (0.144) P8 (0.070) 
4 p10 p8 -- p10 (0.458) p8 (0.138) P10 (0.063) 

 554 

To explain this difference between the current results and the referenced results, a further investigation 555 
is performed for p6 and p7. Fig. 8 illustrates the samples of the Bhattacharyya distances of the output 556 
uncertainty spaces, when the epistemic uncertainties of p6 and p7 are reduced, respectively. Recall the SA 557 
framework in Fig. 5, the P-box of a parameter is reduced into a single CDF curve, meaning its epistemic 558 
uncertainty is completely reduced, and subsequently the reduction degree of the output P-box is investigated. 559 
However, not only a single specified CDF, but a series of CDFs of this parameter is utilised, leading to a 560 
series of changed P-boxes of the output. In this example, the number of the investigating CDFs is 100. As 561 
shown in Table 3, p6 is a Category II parameter within the interval [0.0, 0.1], and thus 100 values equi-562 
spaced along this interval are assigned. Differently, p7 is a Category IV parameter following imprecise Beta 563 
distribution, whose epistemic uncertainty is driven by 𝑎𝑎7 ∈ [0.982, 3.537]  and  𝑏𝑏7 ∈ [0.619, 1.080] . 564 
Hence 10 equidistant values within each interval of 𝑎𝑎7  and 𝑏𝑏7  are respectively assigned. And the full 565 
factorial design is performed to specify 100 Beta distributions of p6. After these 100 P-boxes of the output 566 
are obtained, the Bhattacharyya distance is utilised to quantify the P-boxes, and thus the histograms for p6 567 
and p7 in Fig. 8 are plotted based on 100 Bhattacharyya distance samples, respectively.  568 
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 569 
Fig. 8: Comparison of the samples of Bhattacharyya distances for p6 and p7 570 

In Fig. 8, the Bhattacharyya distance sample according to p6 is denominated as “Sample-p6”, and the 571 
one according to p7 is denominated as “Sample-p7”. Based on these two samples, two normal distributions 572 
are estimated, whose Probability Density Functions (PDFs) are also illustrated in the figure. Note that, the 573 
samples are not necessarily following normal distribution. The normal PDFs are presented herein to assist 574 
the comparison between these samples. Another important element in Fig. 8 is the dash-dotted vertical line 575 
(denominated as “Original BD), denoting the Bhattacharyya distance value of the original P-box of the 576 
output x2. In other words, when every parameter keeps its epistemic uncertainty, the original output 577 
uncertainty space has the Bhattacharyya distance shown by the dash-dotted vertical line (i.e. 4.61). Now 578 
Fig. 8 can be investigated from two aspects: the reduction and dispersion of the samples. 579 

1) The reduction of uncertainty spaces is reflected by the distance from the samples to the dash-dotted 580 
line. The distance from Sample-p7 to Original BD is larger than that from Sample-p6 to Original BD, 581 
implying the output uncertainty space is much more reduced by reducing the epistemic uncertainty of 582 
p7, rather than p6. This coincides with the ranking result with the proportional index in the 5th column 583 
of Table 5, where p7 is more significant than p6. 584 

2) The dispersion of the uncertainty space is reflected by the variances of the two samples. Sample-p7 (or 585 
PDF-p7) is more centralized than Sample-p6 (or PDF-p6), implying various specified CDF of p6 have 586 
more significant influence on the output uncertainty space. This is why, using the variance-based index, 587 
p6 is demonstrated to be more important than p7 as shown in the 6th column of Table 5.  588 

The above investigation on reduction and dispersion characteristics of the output uncertainty space 589 
provides a clear understanding on the significance of p6 and p7, from different aspects. Consequently, it is 590 
suggested to propose the comprehensive index to combine both aspects of the influence and provide an 591 
integrated evaluation of the parameters. 592 

The parameter ranking according to x3 and x4 are listed in Tables 6 and 7, respectively. The results from 593 
different references, as well as the results from the current work according to different indices, exhibit more 594 
or less differences. However, the situation is the same as the above discussed results for x1 and x2, and hence 595 
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the same investigation procedure can be repeated to analyse the result for x3 and x4. For clarity, the detailed 596 
analysis for x3 and x4 is omitted. 597 

Table 6: The parameter rankings of p12, p13, p14, and p15 according to x3 598 

Rank 
Results in the references Results in the current work 

Patelli [7] Pedroni [24] McFarland [25] 𝑆𝑆𝑚𝑚
(𝑝𝑝𝑝𝑝𝑝𝑝) 𝑆𝑆𝑚𝑚

(𝑣𝑣𝑚𝑚𝑝𝑝) 𝑆𝑆𝑚𝑚
(𝑐𝑐𝑝𝑝𝑚𝑚) 

1 p12 p12 p12 p12 (0.944) p12 (1.129) p12 (1.066) 
2 p15 p13, p15 -- p14 (0.142) p14 (0.215) p14 (0.030) 
3 p14 -- -- p13 (0.058) p13 (0.085) p13 (0.005) 
4 p13 p14 -- p15 (0.458) p15 (0.068) p15 (0.002) 

 599 

Table 7: The parameter rankings of p16, p17, p18, and p20 according to x4 600 

Rank 
Results in the references Results in the current work 

Patelli [7] Pedroni [24] McFarland [25] 𝑆𝑆𝑚𝑚
(𝑝𝑝𝑝𝑝𝑝𝑝) 𝑆𝑆𝑚𝑚

(𝑣𝑣𝑚𝑚𝑝𝑝) 𝑆𝑆𝑚𝑚
(𝑐𝑐𝑝𝑝𝑚𝑚) 

1 p16 p16 p16 p16 (0.737) p18 (0.355) p16 (0.196) 
2 p18 p18 p18 p18 (0.445) p16 (0.265) p18 (0.158) 
3 p17 p17 -- p17 (0.180) p17 (0.185) p17 (0.033) 
4 p20 p20 -- p20 (0.019) p20 (0.143) p20 (0.003) 
 601 

7 Conclusions and perspectives 602 

This work promotes the application of the Bhattacharyya distance as a novel UQ metric in a two-level 603 
stochastic SA framework. The two-level procedure provides a clear logic for investigation of the P-box 604 
representation, where the aleatory uncertainty is quantified through the Monte Carlo simulation in the first 605 
level, and the epistemic uncertainty is propagated from inputs to outputs via optimisation in the second 606 
level. The Bhattacharyya distance plays a critical role in constructing the sensitivity indices by providing a 607 
quantitative measure of the output uncertainty space. All of the three sensitivity indices are capable of 608 
measuring the significance of both Categories II and IV parameters with not only epistemic uncertainty but 609 
also aleatory uncertainty, implying this approach is an extension of the deterministic SA which is only 610 
feasible for interval sensitivities of the unknown-but-fixed constants (i.e. Category II parameters). The three 611 
proposed indices explores different aspects of the sensitivity information of the parameters, that is to say, 612 
1) the proportional index focuses on the reduction effect of the output uncertainty space; 2) the variance-613 
based index focuses on the dispersion degree of the output uncertainty space; and 3) the comprehensive 614 
index measures both reduction and dispersion effects of the output uncertainty space. The different 615 
information conveyed by different indices is significant for decision makers to achieve a better 616 
understanding of the influence of inputs on the outputs from different perspectives.   617 

The tutorial case study utilising the Ishigami function provides a detailed demonstration of the overall 618 
approach with reproducible results. In the second case study with the NASA UQ challenge problem, the 619 
comparison among the references and current work using different indices exhibits the uniform ranking 620 
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tendency, demonstrating the feasibility of the proposed approach. The detailed differences among the 621 
ranking results (even in the references themselves) confirms the natural conclusion that different approaches 622 
using different sensitivity indices result in different rankings. However, this differences do not necessarily 623 
conceal the role of the Bhattacharyya distance as an elaborate, quantitative, and uniform metric for 624 
stochastic SA in the background of uncertainty quantification and propagation.  625 

The current work is based on the first-order SA with the assumption that the investigating parameters 626 
are independent with each other. Consequently, one of the extensions of this work is a second-order SA 627 
investigating the interactions between uncertain parameters. Furthermore, the proposed approach has the 628 
potential to be utilised in the case of tail distributions in the context of reliability analysis, with the necessary 629 
extension using the directional Monte Carlo sampling techniques, e.g. the subset simulation and Markov 630 
chain Monte Carlo algorithm, to achieve a high efficiency for the rare occurrence events. 631 
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