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Abstract: Non-intrusive Imprecise Stochastic Simulation (NISS) is a recently developed general 

methodological framework for efficiently propagating the imprecise probability models and for 

estimating the resultant failure probability functions and bounds. Due to the simplicity, high efficiency, 

stability and good convergence, it has been proved to be one of the most appealing forward uncertainty 

quantification methods. However, the current version of NISS is only applicable for model with input 

variables characterized by precise and imprecise probability models. In real-world applications, the 

uncertainties of model inputs may also be characterized by non-probabilistic models such as interval 

model due to the extreme scarcity or imprecise information. In this paper, the NISS method is generalized 

for models with three kinds of mixed inputs characterized by precise probability model, non-probabilistic 

models and imprecise probability models respectively, and specifically, the interval model and 

distributional p-box model are exemplified. This generalization is realized by combining Bayes rule and 

the global NISS method, and is shown to conserve all the advantages of the classical NISS method. With 

this generalization, the three kinds of inputs can be propagated with only one set of function evaluations 

in a pure simulation manner, and two kinds of potential estimation errors are properly addressed by 

sensitivity indices and bootstrap. A numerical test example and the NASA uncertainty quantification 

challenging problem are solved to demonstrate the effectiveness of the generalized NISS procedure.  
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1. Introduction 

Uncertainty quantification (UQ) has been widely accepted as an important task in a variety of 
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research and engineering fields. For example, in the analysis and design of large civil engineering 

systems, the uncertainties presented in system excitations (e.g., caused by natural disasters such as 

earthquake and flood), material properties, degradation process modeling, etc., are quite substantial, and 

have to be carefully treated. Commonly, there are two kinds of uncertainties, i.e., aleatory uncertainty 

and epistemic uncertainty [1], while the former one is due to the intrinsic random property of parameters 

or events, thus cannot be reduced by collecting more information, and the later one is caused by the 

incompleteness of knowledge, and can be reduced by further collecting information. The above two kinds 

of uncertainties may appear alone, but in most real-world applications, may occur simultaneously. 

Characterization of the above two kinds of uncertainties with mathematical models is the first key 

problem of UQ.  

Generally, three groups of uncertainty characterization models have been developed, i.e., the precise 

probability model, the non-probabilistic models [2][3], and the imprecise probability models [4]. The 

precise probability model (Category I) is the most classical uncertainty model, and is commonly used for 

characterizing the aleatory uncertainty, which usually requires a large number of data of good quality. 

The non-probabilistic models (Category II), including interval/convex model, fuzzy set theory, etc., can 

be especially useful for characterizing the imprecision of constant-but-unknown variables or for 

situations that the available data for random variables is extremely scarce/incomplete/imprecise [3]. As 

the level of knowledge increases, the interval model will degrade into its true value. The imprecise 

probability models (Category III), such as probability-box (p-box), evidence theory and fuzzy probability 

model, can be regarded as the combination of the former two kinds of models, and can be especially 

useful for separately characterizing the two kinds of uncertainty in a unified model framework [4]. As 

the volume of available information increases, the category III model will shrink to the true cumulative 

distribution function (CDF). The roles of three categories of characterization models are shown in Figure 

1.  

 
Figure 1. The roles of the three categories of characterization models in UQ. 

 

The second key problem is the propagation of the characterization models through the 

computational models so as to quantify the uncertainties of the model responses, and to assess the 

reliability of the systems. This has been a quite big challenge especially when all the three categories of 
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characterization models are present as model inputs. For example, in the NASA multidisciplinary 

Langley UQ challenge problem [5], the subproblem of uncertainty propagations involves 21 inputs 

variables characterized by the three categories of models. Propagation of the category I model has been 

widely studied, and a plenty of methods, such as probability density evaluation [6], importance sampling 

[7], subset simulation [8], line sampling [9] and active learning based surrogate model methods [10], 

have been developed, and shown to be effective for real-world applications. The propagation of Category 

II models has also been studied, and the current methods are mainly driven by optimization algorithms 

[2][3], which are commonly computationally expensive especially for problems with non-convex 

response functions and high-dimensional inputs.  

The propagation of category III models is generally a double-loop process, and several strategies 

have been developed. The simplest procedure is to perform optimization for distribution parameters in 

the outer loop and then propagate the degraded category I model in the inner loop with, e.g., precise 

stochastic simulation method [11]. This strategy has been applied to the NASA Langley challenge 

problem with the utilization of genetic algorithm for outer loop optimization and Monte Carlo simulation 

for the inner loop analysis [12]. The second strategy is based on sampling in the outer loop so as to 

generate a set of interval samples for input variables, and then propagate each interval sample in the inner 

loop by, e.g., interval finite element analysis or optimization algorithms [13]-[15]. This strategy has been 

recently extended to problems with spatial/time-variant inputs [16]-[18]. The third strategy involves 

generating the a set of samples for input variables, and then estimating the performance values (e.g., 

failure probability) w.r.t. different values of the distribution parameters of category III models based on 

a weighting scheme. This strategy, termed as “Extended Monte Carlo simulation”, was originally 

developed by some of the authors in Ref. [19], and was strengthened in Ref. [20]. Although being 

efficient, it does not perform well for problems with high-dimensional inputs. To overcome the above 

shortcoming, a new methodology framework, termed as “Non-intrusive Imprecise Stochastic Simulation 

(NISS)”, has been developed in a set of companion paper [21][22], and two groups of methods, i.e., the 

local NISS methods and the global NISS methods, have been presented. The NISS framework owns 

many advantages. It is applicable for high-dimensional problems with numerical estimation errors being 

properly addressed, and meanwhile, provides good balance for local and global performances. Any 

precise stochastic simulation such as subset simulation and line sampling can be injected into this 

framework so as to properly address different types of problems, and the sensitivity information of the 

epistemic uncertainty is generated as a byproduct. Besides, the NISS framework avoids performing 

optimization on the model response functions, thus can properly address problems with even non-convex 

response functions. However, the current version of NISS is only applicable for problems with inputs 

characterized by category I and category III models. 

The aim of this paper is to generalize NISS to the situation where all the three categories of 

characterization models are involved, and specifically, the interval model in category II and the 

distributional p-box model in category III are concerned. The generalization is realized based on Bayes 

rule and the global NISS method, and is shown to own all the advantages of the original NISS 

method．The truncation errors as well as the influential component functions are identified by the Sobol’ 

sensitivity indices, and the statistical errors are quantified by bootstrap scheme. The proposed method is 
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demonstrated by a toy test example, and is then applied to solve the reliability analysis subproblem of 

the NASA Langley UQ challenge problem.  

The rest of this paper is organized as follows. Section 2 gives briefly reviews the NISS method, 

followed by the generalization of NISS in section 3. In section 4, the toy test example and the NASA 

Langley UQ challenge problem are introduced to demonstrate the proposed method. Section 5 gives 

conclusions and useful discussions.    

2. Brief review of NISS 

In this section, we briefly review the classical NISS method for propagating imprecise probability 

models, and specifically, for distributional p-box model. Let 𝒙𝒙 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛)𝑇𝑇  denote the n-

dimensional vector of random input variables with joint probability density function (PDF) 𝑓𝑓𝐗𝐗(𝒙𝒙|𝜽𝜽), 

where 𝜽𝜽 = (𝜃𝜃𝟏𝟏, 𝜃𝜃𝟐𝟐, … , 𝜃𝜃𝒅𝒅)𝑻𝑻  refers to the d-dimensional vector of non-deterministic distribution 

parameters, each 𝜃𝜃𝑖𝑖 of which is assumed to be an interval parameter with support [𝜃𝜃𝑖𝑖, 𝜃̅𝜃𝑖𝑖]. Let 𝜽𝜽 =

(𝜃𝜃1, 𝜃𝜃2, … , 𝜃𝜃𝑑𝑑)𝑇𝑇  and 𝜽𝜽 = �𝜃𝜃1, 𝜃𝜃2, … , 𝜃𝜃𝑑𝑑�
𝑇𝑇

. With this p-box model, the aleatory uncertainty of 𝒙𝒙 is 

characterized by its joint PDF, while the epistemic uncertainty subjected to incomplete knowledge is 

represented by the hyper-rectangle support of 𝜽𝜽. In real-world applications, the support of 𝜽𝜽 can be 

estimated by confidence interval estimation procedure, and as the data volume of x increases, the support 

of 𝜽𝜽 will shrink, indicating the reduction of epistemic uncertainty. With enough data, the support of 𝜽𝜽 

shrinks into a fixed point, and then the p-box model degrades into a precise probability model 

characterizing only aleatory uncertainty. Without loss of generality, we assume that the input variables 

are independent, and their joint PDF can be expressed as 𝑓𝑓𝐗𝐗(𝒙𝒙|𝜽𝜽) = ∏ 𝑓𝑓X𝑖𝑖(𝑥𝑥𝑖𝑖|𝜽𝜽𝑖𝑖)
𝑛𝑛
𝑖𝑖=1 , where 𝑓𝑓X𝑖𝑖(𝑥𝑥𝑖𝑖|𝜽𝜽𝑖𝑖) 

implies the marginal PDF of 𝑥𝑥𝑖𝑖, and 𝜽𝜽𝑖𝑖 = (𝜃𝜃𝑖𝑖1, 𝜃𝜃𝑖𝑖2, … , 𝜃𝜃𝑑𝑑𝑖𝑖)
𝑇𝑇 indicates the 𝑑𝑑𝑖𝑖-dimensional vector of the 

distribution parameters of 𝑥𝑥𝑖𝑖 . For performing the global NISS procedure, an auxiliary PDF 𝑓𝑓𝚯𝚯(𝜽𝜽) 

should be introduced. In this paper, we assume that each 𝜃𝜃𝑖𝑖 follows independent uniform distribution 

within its respective support [𝜃𝜃𝑖𝑖, 𝜃̅𝜃𝑖𝑖], and the marginal PDF is denoted as 𝑓𝑓Θ𝑖𝑖(𝜃𝜃𝑖𝑖). 

Let 𝑔𝑔(𝒙𝒙) indicate the model response function (also called limit state function for reliability analysis, 

or simply g-function) of the computational model. In this paper, only one-dimensional response is 

exemplified for illustrating the proposed method. We define a sub-domain of input space as 𝑍𝑍(𝑧𝑧) =

{𝒙𝒙: 𝑔𝑔(𝒙𝒙) < 𝑧𝑧}, and then the indicator function corresponding to this sub-domain can be defined as 

𝐼𝐼𝑍𝑍(𝒙𝒙) = 1 if 𝒙𝒙 ∈ 𝑍𝑍(𝑧𝑧); else 𝐼𝐼𝑍𝑍(𝒙𝒙) = 0. For reliability analysis, we assume that the failure happens 

when the model response is less than zero. Then the failure domain can be defined as 𝐹𝐹 = 𝑍𝑍(0), and the 

corresponding indicator function of F is defined as 𝐼𝐼𝐹𝐹(𝒙𝒙) = 1 if 𝒙𝒙 ∈ 𝐹𝐹; else 𝐼𝐼𝐹𝐹(𝒙𝒙) = 0. Based on the 

above definition, the CDF of the model response w.r.t 𝜽𝜽 can be formulated as: 

                      𝐷𝐷Z(𝑧𝑧|𝜽𝜽) = E𝐗𝐗[𝐼𝐼𝑍𝑍(𝒙𝒙)] = ∫ 𝐼𝐼𝑍𝑍(𝒙𝒙)𝐑𝐑𝑛𝑛 𝑓𝑓𝐗𝐗(𝒙𝒙|𝜽𝜽) d𝒙𝒙                      (1) 
, where E𝐗𝐗[∙] indicates the expectation operator w.r.t. x. The failure probability function can then be 

derived as  P𝑓𝑓(𝜽𝜽) = 𝐷𝐷Z(0|𝜽𝜽). 

   The NISS methods are developed based on high-dimensional model representation (HDMR) 

decomposition of  𝐷𝐷Z(𝑧𝑧|𝜽𝜽)  w.r.t. 𝜽𝜽 , where the local NISS methods are based on cut-HDMR 

decomposition and the global ones are devised from random sampling (RS)-HDMR decomposition [23]. 

Here only the simplest global NISS method is reviewed since only this method will be generalized. The 
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RS-HDMR decomposition of  𝐷𝐷Z(𝑧𝑧|𝜽𝜽) reads: 

  𝐷𝐷Z(𝑧𝑧|𝜽𝜽) =  𝐷𝐷Z,0(𝑧𝑧) + ∑  𝐷𝐷Z,Θ𝑖𝑖(𝑧𝑧|𝜃𝜃𝑖𝑖)1≤𝑖𝑖≤𝑑𝑑 + ∑  𝐷𝐷Z,𝚯𝚯𝑖𝑖𝑖𝑖�𝑧𝑧|𝜽𝜽𝑖𝑖𝑖𝑖�1≤𝑖𝑖<𝑗𝑗≤𝑑𝑑 + ⋯+ 𝐷𝐷Z,𝚯𝚯(𝑧𝑧|𝜽𝜽)        (2) 

, where 𝜽𝜽𝑖𝑖𝑖𝑖 = �𝜃𝜃𝑖𝑖, 𝜃𝜃𝑗𝑗�
𝑇𝑇
, and the constant component as well as the first two order component functions 

are formulated as: 

 
 𝐷𝐷Z,0(𝑧𝑧) =  E𝚯𝚯[ 𝐷𝐷Z(𝑧𝑧|𝜽𝜽)]

 𝐷𝐷Z,Θ𝑖𝑖(𝑧𝑧|𝜃𝜃𝑖𝑖) = E𝚯𝚯−𝑖𝑖[ 𝐷𝐷Z(𝑧𝑧|𝜽𝜽)] −  𝐷𝐷Z,0

 𝐷𝐷Z,𝚯𝚯𝑖𝑖𝑖𝑖�𝑧𝑧|𝜽𝜽𝑖𝑖𝑖𝑖� = E𝚯𝚯−𝑖𝑖𝑖𝑖[ 𝐷𝐷Z(𝑧𝑧|𝜽𝜽)] −  𝐷𝐷Z,Θ𝑖𝑖 −  𝐷𝐷Z,Θ𝑗𝑗 −  𝐷𝐷Z,0

          (3) 

In Eq. (3), E𝚯𝚯[∙] indicates the expectation operator w.r.t. 𝜽𝜽, E𝚯𝚯−𝑖𝑖[∙] is the expectation operator 

w.r.t. the (𝑑𝑑 − 1)-dimensional vector 𝜽𝜽−𝑖𝑖 consisting of all the elements of 𝜽𝜽 but 𝜃𝜃𝑖𝑖, and E𝚯𝚯−𝑖𝑖𝑖𝑖[∙] 

refers to the expectation operator w.r.t. 𝜽𝜽−𝒊𝒊𝒊𝒊, which consists of all the components of 𝜽𝜽 but 𝜽𝜽𝑖𝑖𝑖𝑖. The 

expectation of each component other than  𝐷𝐷Z,0 equals to zero, and are mutually orthogonal.  

Given a set of joint samples {𝒙𝒙(𝑘𝑘), 𝜽𝜽(𝑘𝑘)}𝑘𝑘=1,2,⋯,𝑁𝑁 following 𝑓𝑓𝐗𝐗(𝒙𝒙|𝜽𝜽)𝑓𝑓𝚯𝚯(𝜽𝜽), the NISS estimators 

of the RS-HDMR components are given as: 

 

 𝐷𝐷�Z,0(𝑧𝑧) = 1
𝑁𝑁

 ∑ 𝐼𝐼𝑍𝑍(𝒙𝒙(𝑘𝑘))𝑁𝑁
𝑘𝑘=1

 𝐷𝐷�Z,Θ𝑖𝑖(𝑧𝑧|𝜃𝜃𝑖𝑖) = 1
𝑁𝑁

 ∑ 𝐼𝐼𝑍𝑍(𝒙𝒙(𝑘𝑘))𝑁𝑁
𝑘𝑘=1 𝑟𝑟Θ𝑖𝑖(𝜃𝜃𝑖𝑖|𝒙𝒙

(𝑘𝑘), 𝜽𝜽(𝑘𝑘))

 𝐷𝐷�Z,𝚯𝚯𝑖𝑖𝑖𝑖(𝑧𝑧|𝜽𝜽𝑖𝑖𝑖𝑖) = 1
𝑁𝑁

 ∑ 𝐼𝐼𝑍𝑍(𝒙𝒙(𝑘𝑘))𝑁𝑁
𝑘𝑘=1 𝑟𝑟𝚯𝚯𝑖𝑖𝑖𝑖�𝜽𝜽𝑖𝑖𝑖𝑖�𝒙𝒙

(𝑘𝑘), 𝜽𝜽(𝑘𝑘)�

          (4) 

, where 

             
𝑟𝑟Θ𝑖𝑖(𝜃𝜃𝑖𝑖|𝒙𝒙

(𝑘𝑘), 𝜽𝜽(𝑘𝑘)) =
𝑓𝑓𝐗𝐗�𝒙𝒙(𝑘𝑘)|𝜃𝜃𝑖𝑖,𝜽𝜽−𝒊𝒊

(𝒌𝒌)�

𝑓𝑓𝐗𝐗�𝒙𝒙(𝑘𝑘)|𝜽𝜽(𝑘𝑘)� − 1

𝑟𝑟𝚯𝚯𝑖𝑖𝑖𝑖�𝜽𝜽𝑖𝑖𝑖𝑖�𝒙𝒙
(𝑘𝑘), 𝜽𝜽(𝑘𝑘)� =

𝑓𝑓𝐗𝐗�𝒙𝒙(𝑘𝑘)|𝜽𝜽𝑖𝑖𝑖𝑖,𝜽𝜽−𝑖𝑖𝑖𝑖
(𝒌𝒌) �

𝑓𝑓𝐗𝐗�𝒙𝒙(𝑘𝑘)|𝜽𝜽(𝑘𝑘)� −
𝑓𝑓𝐗𝐗�𝒙𝒙(𝑘𝑘)|𝜃𝜃𝑖𝑖,𝜽𝜽−𝒊𝒊

(𝒌𝒌)�

𝑓𝑓𝐗𝐗�𝒙𝒙(𝑘𝑘)|𝜽𝜽(𝑘𝑘)� −
𝑓𝑓𝐗𝐗�𝒙𝒙(𝑘𝑘)|𝜃𝜃𝑗𝑗,𝜽𝜽−𝒋𝒋

(𝒌𝒌)�

𝑓𝑓𝐗𝐗�𝒙𝒙(𝑘𝑘)|𝜽𝜽(𝑘𝑘)� + 1
        (5) 

The above estimators are all unbiased, and their variances can be easily derived, as shown in Ref. [21]. 

One should note that the ratio function in Eq. (5) are derived based on the assumption that the auxiliary 

distributions of 𝜽𝜽 are all uniform. If non-uniform distribution is assumed, the ratio functions are still 

made of density functions, but the formulations will be different.  

The accuracy of NISS may also be affected by the RS-HDMR truncation, and as indicated in Refs. 

[21] and [24], the truncation errors can be subtly assessed by the Sobol’ sensitivity indices. Due to the 

orthogonality of the RS-HDMR component functions, taking variance to both side of Eq. (2) yields 

[24][25]: 

𝑣𝑣𝑣𝑣𝑣𝑣[ 𝐷𝐷Z(𝑧𝑧|𝜽𝜽)] = ∑ 𝑣𝑣𝑣𝑣𝑣𝑣[ 𝐷𝐷Z,Θ𝑖𝑖(𝑧𝑧|𝜃𝜃𝑖𝑖)]1≤𝑖𝑖≤𝑑𝑑 + ∑ 𝑣𝑣𝑣𝑣𝑣𝑣� 𝐷𝐷Z,𝚯𝚯𝑖𝑖𝑖𝑖(𝑧𝑧|𝜽𝜽𝑖𝑖𝑖𝑖)�1≤𝑖𝑖<𝑗𝑗≤𝑑𝑑 + ⋯+ 𝑣𝑣𝑣𝑣𝑣𝑣[𝐷𝐷Z,𝚯𝚯(𝑧𝑧|𝜽𝜽)]  

(6) 

Based on the above variance decomposition, the Sobol’ sensitivity index can be defined for each 

component function. For the first- and second-order component functions, the Sobol’ indices are defined 

as [25][26]: 

 𝑆𝑆Θ𝑖𝑖 =
𝑣𝑣𝑣𝑣𝑣𝑣[ 𝐷𝐷Z,Θ𝑖𝑖(𝑧𝑧|𝜃𝜃𝑖𝑖)]

𝑣𝑣𝑣𝑣𝑣𝑣� 𝐷𝐷Z�𝑧𝑧�𝜽𝜽��                              (7) 

and 

 𝑆𝑆𝚯𝚯𝑖𝑖𝑖𝑖 =
𝑣𝑣𝑣𝑣𝑣𝑣� 𝐷𝐷Z,𝚯𝚯𝑖𝑖𝑖𝑖�𝑧𝑧|𝜽𝜽𝑖𝑖𝑖𝑖��

𝑣𝑣𝑣𝑣𝑣𝑣� 𝐷𝐷Z�𝑧𝑧�𝜽𝜽��                          (8) 
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The Sobol’ indices for higher order component functions can be similarly defined. These sensitivity 

indices can be easily computed by numerically integrating the NISS estimators in Eq. (4). In the classical 

global NISS procedure, the Sobol’ indices are served for three purposes. As the Sobol’ indices measure 

the relative importance of each RS-HDMR component function, the component functions with very small 

values of Sobol’ indices can be neglected while synthesizing the estimate of failure probability function. 

Based on the interpretation of Sobol’ indices, the first-order index 𝑆𝑆𝑖𝑖 measures the contribution of the 

epistemic uncertainty of 𝜃𝜃𝑖𝑖 to the epistemic uncertainty of response CDF, and the second-order index 

𝑆𝑆𝚯𝚯𝑖𝑖𝑖𝑖 measures the second-order interaction contribution between 𝜃𝜃𝑖𝑖 and 𝜃𝜃𝑗𝑗. Thereof, the Sobol’ indices 

can also be used for identifying the main sources of epistemic uncertainty present in model response 

CDF, thus can be especially useful for further collecting information and for specifying the important 

parameters to be calibrated in inverse uncertainty quantification. Besides, 1−∑ 𝑆𝑆Θ𝑖𝑖1≤𝑖𝑖≤𝑑𝑑 − ∑ 𝑆𝑆𝚯𝚯𝑖𝑖𝑖𝑖1≤𝑖𝑖<𝑗𝑗≤𝑑𝑑  

measures the truncation error of the second-order RS-HDMR decomposition. If this value is less than a 

pre-specified threshold (say 0.03), it is asserted that the truncation error is small. 

   For reliability and rare event analysis, the subset simulation as well as active learning procedure have 

both been injected into the NISS framework, and shown to be effective and of wide applicability [22]. 

The main drawback of the above NISS method is the inapplicability to category II models. In the next 

section, we discuss the necessity of the generalization of NISS for mixed uncertain variables, and then 

develop a simple but effective strategy for realizing the generalization.  

3. Generalization of NISS 

3.1 Discussions on non-probabilistic models 

Aside for the precise and imprecise probability models, several non-probabilistic models, such as 

interval/convex models [2][3], fuzzy set theory [2][27], and possibility theory derived from fuzzy sets 

[27], have also been developed for characterizing uncertainty. In this paper, we take the independent 

interval model of category II as an example. The non-probabilistic models are important complements 

to the precise and imprecise probability models in the following two situations. 

• Situation 1: constant-but-unknown variable. In this situation, we know that the variable 

under consideration is a constant, but due to measurement error, ambiguity, subjective of expert 

opinion, etc., we don’t know the exact value of this constant. The available information is a 

collection of intervals. Based on this assumption, the variable has only epistemic uncertainty, 

which should be characterized by the intersection of this collection of intervals under the 

assumption that each interval includes the true value of the variable. A typical example of this 

situation is the reliability analysis of existing structures. The dimension and material property 

parameters of an existing structures are unquestionably deterministic, but due to measurement 

errors, these parameters should be modeled as interval variables.   

• Situation 2: random variable subjected to extreme lack of information. In this situation, the 

variable under consideration is a random variable, but due to the extreme lack of information, 

we cannot generate a proper imprecise probability model with confidence. In this situation, both 

aleatory and epistemic uncertainties are present, but as the epistemic uncertainty is dominant, it 

is better to model the variable with non-probabilistic models such as interval model. This 

situation often occurs in the design of future structures when new materials are utilized, and we 

http://www.youdao.com/w/ambiguity/#keyfrom=E2Ctranslation
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have only small number of inaccurate experimental data (modeled by intervals) on the material 

property parameters. We can simply model the uncertainty of the parameter by the union of the 

collected intervals. 

Otherwise, if the amount and quality of the available data for a random variable allow us to model its 

aleatory and epistemic uncertainties with imprecise probability models, we’d better use the imprecise 

probability models since they are more informative. The above two situations are schematically 

illustrated in Figure 1. 

In practical applications, the three categories of input variables, i.e., the non-probabilistic variables, 

the imprecise random variables and the precise random variables, may exist simultaneously in the same 

analysis task, and it is necessary to extend the NISS method to such situation. In the next subsection, we 

present the generalization. 

3.2 The developed method 

Let denote by 𝒚𝒚 = (𝑦𝑦1, 𝑦𝑦2, … , 𝑦𝑦𝑚𝑚)𝑇𝑇 the m-dimensional independent interval variables with hyper-

rectangular support �𝒚𝒚, 𝒚𝒚�� =×𝑖𝑖=1
𝑚𝑚 �𝑦𝑦𝑖𝑖, 𝑦𝑦𝑖𝑖� , where ×  indicates the Cartesian product, �𝑦𝑦𝑖𝑖, 𝑦𝑦𝑖𝑖�  is the 

support of 𝑦𝑦𝑖𝑖  with 𝑦𝑦𝑖𝑖 > 𝑦𝑦𝑖𝑖 , 𝒚𝒚 = (𝑦𝑦1, 𝑦𝑦2, … , 𝑦𝑦𝑚𝑚)𝑇𝑇  is the vector of the lower bounds, and 𝒚𝒚 =

�𝑦𝑦1, 𝑦𝑦2, … , 𝑦𝑦𝑚𝑚�
𝑇𝑇 is the vector of upper bounds. Then, the model response function is written as 𝑔𝑔(𝒙𝒙, 𝒚𝒚), 

and the indicator function 𝐼𝐼𝑍𝑍(𝒙𝒙, 𝒚𝒚) and 𝐼𝐼𝐹𝐹(𝒙𝒙, 𝒚𝒚) can be similarly defined. In this section, we take the 

failure probability function P𝑓𝑓(𝜽𝜽, 𝒚𝒚) as an example to discuss the generalization of NISS. By definition, 

the failure probability function is formulated as: 

 P𝑓𝑓(𝜽𝜽, 𝒚𝒚) = E𝐗𝐗[𝐼𝐼𝐹𝐹(𝒙𝒙, 𝒚𝒚)] = ∫ 𝐼𝐼𝐹𝐹(𝒙𝒙, 𝒚𝒚)𝐑𝐑𝑛𝑛 𝑓𝑓𝐗𝐗(𝒙𝒙|𝜽𝜽) d𝒙𝒙                (9) 
With the above setting, the epistemic uncertainties of model inputs are characterized by the hyper-

rectangles 𝛉𝛉 ∈ �𝜽𝜽, 𝜽𝜽� and 𝒚𝒚 ∈ �𝒚𝒚, 𝒚𝒚�. Similarly, for implementing the global NISS method, we need to 

attribute an auxiliary distribution for each 𝑦𝑦𝑖𝑖 . Without loss of generality, we assume that each 𝑦𝑦𝑖𝑖 

follows independent uniform distribution, and denote the corresponding marginal PDF as 𝑓𝑓Y𝑖𝑖(𝑦𝑦𝑖𝑖) , and 

the joint PDF as 𝑓𝑓𝐘𝐘(𝒚𝒚) = ∏ 𝑓𝑓Y𝑖𝑖(𝑦𝑦𝑖𝑖)
𝑚𝑚
𝑖𝑖=1 . The effects of the auxiliary distribution will be discussed later.  

   With RS-HDMR, the failure probability function P𝑓𝑓(𝜽𝜽, 𝒚𝒚) can be decomposed as: 

P𝑓𝑓(𝜽𝜽, 𝒚𝒚) = P𝑓𝑓,0 + �  P𝑓𝑓,Θ𝑖𝑖(𝜃𝜃𝑖𝑖)
1≤𝑖𝑖≤𝑑𝑑

+ �  P𝑓𝑓,𝚯𝚯𝑖𝑖𝑖𝑖�𝜽𝜽𝑖𝑖𝑖𝑖�
1≤𝑖𝑖<𝑗𝑗≤𝑑𝑑

+ �  P𝑓𝑓,Y𝑖𝑖(𝑦𝑦𝑖𝑖)
1≤𝑖𝑖≤𝑚𝑚

+ �  P𝑓𝑓,𝐘𝐘𝑖𝑖𝑖𝑖�𝒚𝒚𝑖𝑖𝑖𝑖�
1≤𝑖𝑖<𝑗𝑗≤𝑚𝑚

+ �  P𝑓𝑓,Θ𝑖𝑖,Y𝑗𝑗�𝜃𝜃𝑖𝑖, 𝑦𝑦𝑗𝑗�
1≤𝑖𝑖≤𝑑𝑑,1≤𝑗𝑗≤𝑚𝑚

+ ⋯+  P𝑓𝑓,𝚯𝚯,𝐘𝐘(𝜽𝜽) 

     (10) 

where 

 

P𝑓𝑓,0 =  E𝚯𝚯,𝐘𝐘�P𝑓𝑓(𝜽𝜽, 𝒚𝒚)�
 P𝑓𝑓,Θ𝑖𝑖(𝜃𝜃𝑖𝑖) = E𝚯𝚯−𝑖𝑖,𝐘𝐘�P𝑓𝑓(𝜽𝜽, 𝒚𝒚)� − P𝑓𝑓,0

 P𝑓𝑓,𝚯𝚯𝑖𝑖𝑖𝑖�𝜽𝜽𝑖𝑖𝑖𝑖� = E𝚯𝚯−𝑖𝑖𝑖𝑖,𝐘𝐘�P𝑓𝑓(𝜽𝜽, 𝒚𝒚)� −  P𝑓𝑓,Θ𝑖𝑖 −  P𝑓𝑓,Θ𝑗𝑗 − P𝑓𝑓,0

 P𝑓𝑓,Y𝑖𝑖(𝑦𝑦𝑖𝑖) = E𝚯𝚯,𝐘𝐘−𝑖𝑖�P𝑓𝑓(𝜽𝜽, 𝒚𝒚)� − P𝑓𝑓,0

 P𝑓𝑓,𝐘𝐘𝑖𝑖𝑖𝑖�𝒚𝒚𝑖𝑖𝑖𝑖� = E𝚯𝚯,𝐘𝐘−𝑖𝑖𝑖𝑖�P𝑓𝑓(𝜽𝜽, 𝒚𝒚)� −  P𝑓𝑓,Y𝑖𝑖 −  P𝑓𝑓,Y𝑗𝑗 − P𝑓𝑓,0

 P𝑓𝑓,Θ𝑖𝑖,Y𝑗𝑗�𝜃𝜃𝑖𝑖, 𝑦𝑦𝑗𝑗� = E𝚯𝚯−𝑖𝑖,𝐘𝐘−𝑗𝑗�P𝑓𝑓(𝜽𝜽, 𝒚𝒚)� −  P𝑓𝑓,Θ𝑖𝑖 −  P𝑓𝑓,Y𝑗𝑗 − P𝑓𝑓,0

          (11) 

, and E𝚯𝚯,𝐘𝐘[∙] indicates the expectation operator w.r.t. both 𝜽𝜽 and 𝒚𝒚, E𝚯𝚯−𝑖𝑖,𝐘𝐘[∙] refers to the expectation 
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taken w.r.t. 𝜽𝜽−𝒊𝒊 and y, etc.  

   For estimating the RS-HDMR component functions in Eq. (11), we need first to generate a joint 

sample set 𝑆𝑆 = {(𝒙𝒙(𝒌𝒌), 𝜽𝜽(𝒌𝒌), 𝒚𝒚(𝒌𝒌))}𝑘𝑘=1,2,⋯,𝑁𝑁  following joint PDF 𝑓𝑓𝐗𝐗(𝒙𝒙|𝜽𝜽)𝑓𝑓𝚯𝚯(𝜽𝜽)𝑓𝑓𝐘𝐘(𝒚𝒚) . As (𝒙𝒙, 𝜽𝜽) is 

independent of y, their samples can be generated independently, and the procedure is given as follows. 

• Generation of joint samples for (𝒙𝒙, 𝜽𝜽) . Generate a sample matrix 𝐔𝐔 =

(𝑢𝑢𝑘𝑘𝑘𝑘)𝑘𝑘=1,⋯𝑁𝑁,𝑖𝑖=1,⋯,(𝑛𝑛+𝑑𝑑)  with 𝑁𝑁  rows and (𝑛𝑛 + 𝑑𝑑)  columns by, e.g., Latin hypercube 

sampling, each column of which follows independent uniform distribution between 0 and 1; 

Then, generate the sample 𝜃𝜃𝑖𝑖
(𝑘𝑘)  for each 𝜃𝜃𝑖𝑖  by 𝜃𝜃𝑖𝑖

(𝑘𝑘) = 𝐷𝐷Θ𝑖𝑖
−1(𝑢𝑢𝑘𝑘(𝑛𝑛+𝑖𝑖)) , where 𝐷𝐷Θ𝑖𝑖

−1(∙) 

indicates the inverse CDF of 𝜃𝜃𝑖𝑖; At last, create the sample 𝑥𝑥𝑖𝑖
(𝑘𝑘) = 𝐷𝐷X𝑖𝑖

−1(𝑢𝑢𝑘𝑘𝑘𝑘|𝜽𝜽𝑖𝑖
(𝑘𝑘)), where 𝐷𝐷X𝑖𝑖

−1(∙

|𝜽𝜽𝑖𝑖
(𝑘𝑘)) is the inverse CDF of 𝑥𝑥𝑖𝑖 with its distribution parameters fixed at 𝜽𝜽𝑖𝑖

(𝑘𝑘). 

• Generation of samples for 𝒚𝒚 . Generate a sample matrix 𝐕𝐕 = (𝑣𝑣𝑘𝑘𝑘𝑘)𝑘𝑘=1,⋯𝑁𝑁,𝑖𝑖=1,⋯,𝑚𝑚 , each 

column of which is independently and uniformly distributed between 0 and 1; Then, compute 

the sample 𝑦𝑦𝑖𝑖
(𝑘𝑘)for each 𝑦𝑦𝑖𝑖 by 𝑦𝑦𝑖𝑖

(𝑘𝑘) = 𝐷𝐷Y𝑖𝑖
−1(𝑣𝑣𝑘𝑘𝑘𝑘), where 𝐷𝐷Y𝑖𝑖

−1(∙) is the inverse CDF of 𝑦𝑦𝑖𝑖. 

The NISS estimators of the component functions P𝑓𝑓,0,  P𝑓𝑓,Θ𝑖𝑖(𝜃𝜃𝑖𝑖) and  P𝑓𝑓,𝚯𝚯𝑖𝑖𝑖𝑖�𝜽𝜽𝑖𝑖𝑖𝑖� in Eq. (11) are 

similar to those in Eq. (4), and are formulated as: 

 

P�𝑓𝑓,0 = 1
𝑁𝑁

 ∑ 𝐼𝐼𝐹𝐹(𝒙𝒙(𝑘𝑘), 𝒚𝒚(𝑘𝑘))𝑁𝑁
𝑘𝑘=1

 P�𝑓𝑓,Θ𝑖𝑖(𝜃𝜃𝑖𝑖) = 1
𝑁𝑁

 ∑ 𝐼𝐼𝐹𝐹(𝒙𝒙(𝑘𝑘), 𝒚𝒚(𝑘𝑘))𝑁𝑁
𝑘𝑘=1 𝑟𝑟Θ𝑖𝑖(𝜃𝜃𝑖𝑖|𝒙𝒙

(𝑘𝑘), 𝜽𝜽(𝑘𝑘))

 P�𝑓𝑓,𝚯𝚯𝑖𝑖𝑖𝑖(𝜽𝜽𝑖𝑖𝑖𝑖) = 1
𝑁𝑁

 ∑ 𝐼𝐼𝐹𝐹(𝒙𝒙(𝑘𝑘), 𝒚𝒚(𝑘𝑘))𝑁𝑁
𝑘𝑘=1 𝑟𝑟𝚯𝚯𝑖𝑖𝑖𝑖�𝜽𝜽𝑖𝑖𝑖𝑖�𝒙𝒙

(𝑘𝑘), 𝜽𝜽(𝑘𝑘)�

         (12) 

The NISS estimators of  P𝑓𝑓,Y𝑖𝑖(𝑦𝑦𝑖𝑖) ,  P𝑓𝑓,𝐘𝐘𝑖𝑖𝑖𝑖(𝒚𝒚𝑖𝑖𝑖𝑖) and  P𝑓𝑓,Θ𝑖𝑖,Y𝑗𝑗(𝜃𝜃𝑖𝑖, 𝑦𝑦𝑗𝑗)  cannot be established in the 

similarly way since each 𝑦𝑦𝑖𝑖  is an interval input variable other than the distribution parameter of a 

potential category III model.  

By definition, E𝚯𝚯,𝐘𝐘−𝑖𝑖[P𝑓𝑓(𝜽𝜽, 𝒚𝒚)]  can be regarded as a conditional failure probability with the 

condition that 𝑦𝑦𝑖𝑖  is fixed, and P𝑓𝑓,0  is the corresponding unconditional probability. Thus, based on 

Bayes’ rule, the component function  P𝑓𝑓,Y𝑖𝑖(𝑦𝑦𝑖𝑖) can be derived as: 

  P𝑓𝑓,Y𝑖𝑖(𝑦𝑦𝑖𝑖) = E𝚯𝚯,𝐘𝐘−𝑖𝑖[P𝑓𝑓(𝜽𝜽, 𝒚𝒚)] − P𝑓𝑓,0 = P𝑓𝑓,0
𝑓𝑓Y𝑖𝑖�𝑦𝑦𝑖𝑖�𝐹𝐹�
𝑓𝑓Y𝑖𝑖(𝑦𝑦𝑖𝑖)

− P𝑓𝑓,0 = P𝑓𝑓,0𝑟𝑟Y𝑖𝑖(𝑦𝑦𝑖𝑖|𝐹𝐹)       (13) 

, where 𝑟𝑟Y𝑖𝑖(𝑦𝑦𝑖𝑖|𝐹𝐹) = 𝑓𝑓Y𝑖𝑖(𝑦𝑦𝑖𝑖|𝐹𝐹) 𝑓𝑓Y𝑖𝑖(𝑦𝑦𝑖𝑖)⁄ − 1 , and 𝑓𝑓Y𝑖𝑖(𝑦𝑦𝑖𝑖|𝐹𝐹)  indicates PDF of 𝑦𝑦𝑖𝑖  conditional on the 

failure domain 𝐹𝐹 = {(𝒙𝒙, 𝒚𝒚): 𝑔𝑔(𝒙𝒙, 𝒚𝒚) < 0}. The conditional probability density function 𝑓𝑓𝑌𝑌𝑖𝑖(𝑦𝑦𝑖𝑖|𝐹𝐹) is, in 

general, not known analytically and hence, it can be estimated by any density estimation method, e.g., 

kernel density estimation, based on the failure samples of 𝑦𝑦𝑖𝑖. In other words, this conditional probability 

density is approximated as 𝑓𝑓𝑌𝑌𝑖𝑖(𝑦𝑦𝑖𝑖|𝐹𝐹) ≈ 𝑓𝑓𝑌𝑌𝑖𝑖(𝑦𝑦𝑖𝑖|𝐹𝐹, 𝑆𝑆), where 𝑓𝑓𝑌𝑌𝑖𝑖(⋅) denotes the estimated density, which 

is deduced based on the sample set 𝑆𝑆. Then, the NISS estimator for  P𝑓𝑓,Y𝑖𝑖(𝑦𝑦𝑖𝑖) can be derived as: 

  P�𝑓𝑓,Y𝑖𝑖(𝑦𝑦𝑖𝑖) = P�𝑓𝑓,0𝑟̂𝑟Y𝑖𝑖(𝑦𝑦𝑖𝑖|𝐹𝐹, 𝑆𝑆)                          (14) 
where 𝑟̂𝑟𝑌𝑌𝑖𝑖(𝑦𝑦𝑖𝑖|𝐹𝐹, 𝑆𝑆) = 𝑓𝑓𝑌𝑌𝑖𝑖(𝑦𝑦𝑖𝑖|𝐹𝐹, 𝑆𝑆)/𝑓𝑓𝑌𝑌𝑖𝑖(𝑦𝑦𝑖𝑖) − 1 . Similarly, the NISS estimator of  P𝑓𝑓,𝐘𝐘𝑖𝑖𝑖𝑖(𝒚𝒚𝑖𝑖𝑖𝑖)  can be 

derived as: 

  P�𝑓𝑓,𝐘𝐘𝑖𝑖𝑖𝑖�𝒚𝒚𝑖𝑖𝑖𝑖� = P�𝑓𝑓,0𝑟̂𝑟𝐘𝐘𝑖𝑖𝑖𝑖�𝒚𝒚𝑖𝑖𝑖𝑖�𝐹𝐹, 𝑆𝑆�                   (15) 
where 𝑟̂𝑟𝐘𝐘𝑖𝑖𝑖𝑖(𝒚𝒚𝑖𝑖𝑖𝑖|𝐹𝐹, 𝑆𝑆) = 𝑓𝑓Y𝑖𝑖𝑖𝑖(𝒚𝒚𝑖𝑖𝑖𝑖|𝐹𝐹, 𝑆𝑆) 𝑓𝑓Y𝑖𝑖𝑖𝑖(𝒚𝒚𝑖𝑖𝑖𝑖)� − 𝑓𝑓Y𝑖𝑖(𝑦𝑦𝑖𝑖|𝐹𝐹, 𝑆𝑆) 𝑓𝑓Y𝑖𝑖(𝑦𝑦𝑖𝑖)� − 𝑓𝑓Y𝑗𝑗(𝑦𝑦𝑗𝑗|𝐹𝐹, 𝑆𝑆) 𝑓𝑓Y𝑗𝑗(𝑦𝑦𝑗𝑗)� + 1, and 
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𝑓𝑓Y𝑖𝑖𝑖𝑖(𝒚𝒚𝑖𝑖𝑖𝑖|𝐹𝐹, 𝑆𝑆) is the conditional joint PDF of 𝒚𝒚𝑖𝑖𝑖𝑖  estimated from the sample set 𝑆𝑆 , which will be 

discussed in the next subsection.  

   Next we derive the NISS estimators for the second-order component function  P𝑓𝑓,Θ𝑖𝑖,Y𝑗𝑗(𝜃𝜃𝑖𝑖, 𝑦𝑦𝑗𝑗). By 

definition, E𝚯𝚯−𝑖𝑖,𝐘𝐘−𝑗𝑗[P𝑓𝑓(𝜽𝜽, 𝒚𝒚)]  can also be regarded as the conditional failure probability with the 

condition that 𝑦𝑦𝑗𝑗 is fixed, and based on the Bayes rule, it can be further derived as:  

 E𝚯𝚯−𝑖𝑖,𝐘𝐘−𝑗𝑗�P𝑓𝑓(𝜽𝜽, 𝒚𝒚)� = E𝚯𝚯−𝑖𝑖,𝐘𝐘�P𝑓𝑓(𝜽𝜽, 𝒚𝒚)�
𝑓𝑓Y𝑖𝑖�𝑦𝑦𝑖𝑖�𝐹𝐹�
𝑓𝑓Y𝑖𝑖(𝑦𝑦𝑖𝑖)

= � P𝑓𝑓,Θ𝑖𝑖(𝜃𝜃𝑖𝑖) + P𝑓𝑓,0�
𝑓𝑓Y𝑖𝑖�𝑦𝑦𝑖𝑖�𝐹𝐹�
𝑓𝑓Y𝑖𝑖(𝑦𝑦𝑖𝑖)

           (16) 

Thus,  P𝑓𝑓,Θ𝑖𝑖,Y𝑗𝑗�𝜃𝜃𝑖𝑖, 𝑦𝑦𝑗𝑗� is derived as: 

         P𝑓𝑓,Θ𝑖𝑖,Y𝑗𝑗�𝜃𝜃𝑖𝑖, 𝑦𝑦𝑗𝑗� = � P𝑓𝑓,Θ𝑖𝑖(𝜃𝜃𝑖𝑖) + P𝑓𝑓,0�𝑟𝑟Y𝑖𝑖(𝑦𝑦𝑖𝑖|𝐹𝐹) −  P𝑓𝑓,Y𝑗𝑗�𝑦𝑦𝑗𝑗�                 (17) 
, and its NISS estimator can be derived as: 

    P�𝑓𝑓,Θ𝑖𝑖,Y𝑗𝑗�𝜃𝜃𝑖𝑖, 𝑦𝑦𝑗𝑗� = � P�𝑓𝑓,Θ𝑖𝑖(𝜃𝜃𝑖𝑖) + P�𝑓𝑓,0�𝑟̂𝑟Y𝑖𝑖(𝑦𝑦𝑖𝑖|𝐹𝐹, 𝑆𝑆) −  P�𝑓𝑓,Y𝑗𝑗�𝑦𝑦𝑗𝑗�               (18) 
   Till now, we have got the NISS estimators for all the first- and second-order component functions 

based on only one set of joint samples as well as their response values. Thus, the total number of required 

g-function calls is 𝑁𝑁. Naturally, the above generalized NISS procedure owns all the advantages of the 

classical global NISS procedure. The utilization of Bayes rule for the above generalization is partly 

inspired by Ref. [28], in which the Bayes rule was utilized for estimating the global reliability sensitivity 

indices developed by the second author in Ref. [29]. Similarly, the idea of applying Bayes rule for 

deducing the dependence of the failure probability with respect to a parameter has been explored in Refs. 

[30] and [31]. 

The truncation errors as well as the relative importance of each component can be assessed by the 

Sobol’ indices computed from the NISS estimators of the respective component functions, and we don’t 

repeat it for simplicity. It is important to note that the Sobol’ indices associated with the uncertain 

parameters of category II actually stem from the auxiliary probability distributions and hence, are 

interpreted as representative of the overall impact of those uncertain parameters on the response of 

interest. Such clarification is important from a theoretical point of view, as Sobol’ indices are defined for 

random variables (and not uncertain parameters of category II). The statistical error of each NISS 

estimator can be assessed by deriving their respective variance, and the details can be found in Refs. [21] 

and [22]. In this paper, we implement the NISS method with bootstrap scheme so that the variance of 

each estimator can be computed in a different way. The procedure of performing the bootstrap for NISS 

is given as follows. 

Step 1: Generate a joint sample set 𝑆𝑆 = {(𝒙𝒙(𝒌𝒌), 𝜽𝜽(𝒌𝒌), 𝒚𝒚(𝒌𝒌))} of size 𝑁𝑁, and compute the corresponding 

response values 𝑔𝑔(𝑘𝑘). 

Step 2: Randomly generate a new sample set of size 𝑁𝑁 from {(𝒙𝒙(𝒌𝒌), 𝜽𝜽(𝒌𝒌), 𝒚𝒚(𝒌𝒌), 𝑔𝑔(𝑘𝑘))}𝑘𝑘=1,2,⋯,𝑁𝑁 with 

replacement, and estimate all the component functions as well as their respective Sobol’ indices 

based on this new sample set. 

Step 3: Repeat Step 2 for 𝑛𝑛𝑏𝑏(e.g., 50) times so that we can obtain 𝑛𝑛𝑏𝑏 estimates for each component 

function and each Sobol’ index, and then compute the mean values and variances for each 

component function and the corresponding Sobol’ index based on their 𝑛𝑛𝑏𝑏 estimates.  

With the mean value and variance of each component function, we can easily compute the standard 
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deviation (STD) and confidence interval of each component function and sensitivity index, based on the 

fact that each estimator following Gaussian distribution.  

   With the above procedure, we can synthesize the failure probability function by adding all the 

influential component functions, and also estimate the confidence bounds of  P𝑓𝑓(𝜽𝜽, 𝒚𝒚) based on the 

STDs. Third and higher order component functions as well as their corresponding sensitivity indices can 

be similarly estimated without calling the g-function any more. Based on the synthesized failure 

probability function P�𝑓𝑓(𝜽𝜽, 𝒚𝒚) or the confidence interval of P𝑓𝑓(𝜽𝜽, 𝒚𝒚), one can estimate the bounds of the 

failure probability. While the mean estimate P�𝑓𝑓(𝜽𝜽, 𝒚𝒚) is used, the bounds may be either underestimated 

or overestimated due to the statistical error of P�𝑓𝑓(𝜽𝜽, 𝒚𝒚). However, the effects of the statistical errors on 

the bounds can be easily assessed since the statistical error of  P�𝑓𝑓 at any fixed location of (𝜽𝜽, 𝒚𝒚) can 

be computed. Besides, we can also estimate the lower bound of P𝑓𝑓 based on the lower bound of the 

confidence interval of P𝑓𝑓(𝜃𝜃, 𝑦𝑦), and use the upper bound of the confidence interval to estimate the upper 

bound of P𝑓𝑓. With this strategy, the generated bounds include the real bounds with specific level of 

confidence. For both strategies, the bounds are estimated by numerical optimization procedure. If 

P𝑓𝑓(𝜃𝜃, 𝑦𝑦) is proven by the Sobol’ indices to be additive, then only one-dimensional optimization problems 

need to be solved; while P𝑓𝑓(𝜃𝜃, 𝑦𝑦) is also governed by low order interaction terms, then commonly only 

low-dimensional optimization problems need to be solved. This feature can largely improve the global 

convergence for estimating bounds.   

   The auxiliary distribution is one of the key setting for implementing NISS. Theoretically, we can use 

any types of probability distribution, and this will not affect the formulation of the failure probability 

function as well as the failure probability bounds, but they do affect the RS-HDMR decomposition in Eq. 

(10) as well as the distribution of Monte Carlo samples. For reliability analysis, it also affects the number 

of samples included in the failure domain. We will discuss carefully in the first test example the influence 

of the different types of auxiliary distribution.      

The detailed procedure of NISS is then summarized in Figure 2. In this diagram, the statistical error 

for the estimate of each component function is assessed by STD in the “Estimation” step, and the 

truncation error of the synthesized estimation of P𝑓𝑓(𝜽𝜽, 𝒚𝒚) is measured by sensitivity indices in the 

“Products” step.    
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Figure 2. Diagram of the generalized NISS procedure 

 

   Although the above NISS procedure needs only one set of g-function calls, it is still computational 

expensive for rare event analysis. However, the computational burden can be largely relieved by injecting 

subset simulation and/or active learning procedure into the NISS framework, and by implementing it in 

a parallel scheme. One can refer to Ref. [22] for the details of injection of subset simulation into the NISS 

framework for estimating the component functions of 𝜽𝜽 . This strategy can also be extended for 

estimating the component functions of 𝒚𝒚, as well as their interaction component functions with 𝜽𝜽. This 

extension involves performing subset simulation, in the joint space of (𝒙𝒙, 𝜽𝜽, 𝒚𝒚), for estimating P𝑓𝑓,0, and 

then estimate the conditional density 𝑓𝑓Y𝑖𝑖(𝑦𝑦𝑖𝑖|𝐹𝐹) based on the failure samples generated with Markov 

Chain Monte Carlo (MCMC), so as to estimate the component function  P𝑓𝑓,Y𝑖𝑖(𝑦𝑦𝑖𝑖) by Eq. (13). Further, 

the active learning procedure can be injected into the above Monte Carlo simulation or subset simulation 

based NISS framework, and with this improvement, the computational cost can be largely reduced (see 

Ref. [22] for details).  

One should also note that NISS in its current form is not applicable for interval analysis. In traditional 

interval analysis, only category II inputs are involved, and the target is to estimate the bounds of model 

response. However, for implementing NISS, it is required at least one category I or category III input is 

involved, that is, the model inputs must deliver probability distribution information, and the target is to 

estimate the bounds of probabilistic responses (e.g., failure probability and response distribution 

function), instead of the bounds of model response.   

3.3 Conditional density estimations 

As can be seen from Eq. (14) and Eq. (15), for interval variables, the performance of the estimators 

of the corresponding component functions depends on the estimation of the conditional PDFs 𝑓𝑓Y𝑖𝑖(𝑦𝑦𝑖𝑖|𝐹𝐹) 
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and 𝑓𝑓Y𝑖𝑖𝑖𝑖(𝒚𝒚𝑖𝑖𝑖𝑖|𝐹𝐹). Thus, in this subsection, we give some useful discussion on the estimations of these two 

conditional PDF. As has been interpreted in subsection 3.2, both conditional PDFs are estimated based 

on the failure sample of the interval variables. For univariate PDF 𝑓𝑓Y𝑖𝑖(𝑦𝑦𝑖𝑖|𝐹𝐹), many non-parametric 

density estimation procedures have been developed, and in this paper, we suggest using the kernel density 

estimation (KDE) in Ref. [32] or the function ‘ksdensity’ in Matlab.  

For bivariate joint PDF 𝑓𝑓Y𝑖𝑖𝑖𝑖(𝒚𝒚𝑖𝑖𝑖𝑖|𝐹𝐹), we can still use the 2-dimensional KDE developed in Ref. [32] 

to implement the method. Besides, in many situation of practical applications, the conditional samples 

of two interval variables may be independent with each other, thus before estimating 𝑓𝑓Y𝑖𝑖𝑖𝑖(𝒚𝒚𝑖𝑖𝑖𝑖|𝐹𝐹), we can 

also perform a hypothesis test on the dependence based on the failure samples of 𝑦𝑦𝑖𝑖 and 𝑦𝑦𝑗𝑗. In section 

7 of our review paper [25], several hypothesis test techniques on variable dependencies have been 

introduced, and one can refer to this review for more details. If 𝑦𝑦𝑖𝑖  and 𝑦𝑦𝑗𝑗  are independent, then 

𝑓𝑓Y𝑖𝑖𝑖𝑖(𝒚𝒚𝑖𝑖𝑖𝑖|𝐹𝐹) = 𝑓𝑓Y𝑖𝑖(𝑦𝑦𝑖𝑖|𝐹𝐹)𝑓𝑓Y𝑗𝑗(𝑦𝑦𝑗𝑗|𝐹𝐹) , and the ratio function in Eq. (15) can be further derived as 

𝑟𝑟𝐘𝐘𝑖𝑖𝑖𝑖(𝒚𝒚𝑖𝑖𝑖𝑖|𝐹𝐹) = 𝑟𝑟Y𝑖𝑖(𝑦𝑦𝑖𝑖|𝐹𝐹)𝑟𝑟Y𝑗𝑗(𝑦𝑦𝑗𝑗|𝐹𝐹), indicating that the second-order component function of 𝑦𝑦𝑖𝑖  and 𝑦𝑦𝑗𝑗 

can be derived based on their respective first-order component functions. If the samples of  𝑦𝑦𝑖𝑖 and 𝑦𝑦𝑗𝑗 

are not independent, one can also use the Copula transformation which reads [33]: 

 𝑓𝑓Y𝑖𝑖𝑖𝑖(𝒚𝒚𝑖𝑖𝑖𝑖|𝐹𝐹) = 𝑐𝑐𝑖𝑖𝑖𝑖(𝑢𝑢𝑖𝑖, 𝑢𝑢𝑗𝑗)𝑓𝑓Y𝑖𝑖(𝑦𝑦𝑖𝑖|𝐹𝐹)𝑓𝑓Y𝑗𝑗(𝑦𝑦𝑗𝑗|𝐹𝐹)                 (19) 
to estimate the joint PDF 𝑓𝑓Y𝑖𝑖𝑖𝑖(𝒚𝒚𝑖𝑖𝑖𝑖|𝐹𝐹), where 𝑐𝑐𝑖𝑖𝑖𝑖(𝑢𝑢𝑖𝑖, 𝑢𝑢𝑗𝑗) is the Copula density function of 𝑦𝑦𝑖𝑖 and 𝑦𝑦𝑗𝑗, 

which can be estimated by parametric Copula (e.g., Clayton, Frank, or Gumbel) combined with any 

distribution parameter estimation procedures, based on the failure samples of 𝑦𝑦𝑖𝑖 and 𝑦𝑦𝑗𝑗. 

4. Test examples and applications 

4.1 A toy test example 

Consider a toy example with the following limit state function: 

 𝑔𝑔(𝒙𝒙, 𝑦𝑦) = 𝑦𝑦3 3⁄ + 𝑥𝑥12 2⁄ + 𝑥𝑥2 + 1                      (20) 
where 𝑦𝑦 is an interval variable with support [0, 1]; 𝑥𝑥1 is a Gaussian random variable characterized by 

a p-box model, of which the support of the mean parameter 𝜇𝜇1 is [−1, 1], and the support of STD 𝜎𝜎1 

is [0.8, 1.2]; 𝑥𝑥2 is a standard Gaussian random variable with zero mean and unit STD. With the above 

assumption, the epistemic uncertainties of input variables are characterized by the intervals 𝑦𝑦 ∈ [0, 1], 

𝜇𝜇1 ∈ [−1, 1] and 𝜎𝜎1 ∈ [0.8, 1.2], while the aleatory uncertainties are characterized by the probability 

distributions of 𝑥𝑥1 and 𝑥𝑥2. The purpose of analysis is to estimate the failure probability function w.r.t. 

the three epistemic parameters 𝑦𝑦, 𝜇𝜇1 and 𝜎𝜎1. 

For implementing NISS, we need first to specify the auxiliary probability distribution. Theoretically, 

the type of auxiliary distribution will not affect the failure probability function P𝑓𝑓(𝑦𝑦, 𝜇𝜇1, 𝜎𝜎1) and the 

bounds of failure probability, however, it may affect the formulation of each component function. As 

illustrated in subsection 3.2, we can simply assume that 𝑦𝑦 follows uniform distribution between 0 and 

1. However, it is found that, with this assumption, the end regions are not sufficiently well represented, 

especially the left one of the first-order component function P𝑓𝑓,𝑦𝑦. This is due to the lack of samples in 

the left end region. Here three kinds of auxiliary distribution are introduced for 𝑦𝑦, each of which has 

support [−0.2, 1.2]. The first one is uniform distribution, and it is abbreviated as “Unif”. The second 
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one is truncated normal distribution with mean 0.5 and STD 0.35, and is denoted by “Trun-Norm”. The 

third one is U-quadratic distribution with density function: 

𝑓𝑓Y(𝑦𝑦) =
450
343

(𝑦𝑦 − 0.5)2 + 0.5 

The density functions of three auxiliary distributions are shown in figure 3. The auxiliary distribution of 

𝜇𝜇1 and 𝜎𝜎1 are both set to be uniform. Then we set 𝑁𝑁 = 1e5 and 𝑛𝑛𝑏𝑏 = 20, and generate the joint 

sample set using Latin hypercube sampling.   

 

Figure 3 Density functions of the three auxiliary distributions of 𝑦𝑦. 
 

The NISS procedure is implemented with Bootstrap scheme, and the results of the constant HDMR 

component as well as the first- and second- order Sobol’ indices corresponding to each of the three 

auxiliary distribution are displayed in Table 1, together with the STDs for indicating the convergence of 

the estimates. As can be seen, for each of the three auxiliary distributions, the relative contribution of 

each component function is quite similar, and the interaction effects of the three epistemic parameters 

are quite small. This indicates that the first-order HDMR decomposition provides good approximation 

for the failure probability function. It can also be seen that, among the three epistemic parameters, 𝑦𝑦 is 

the most important one, and then 𝜇𝜇1 and 𝜎𝜎1, indicating that reducing the epistemic uncertainty of 𝑦𝑦 

leads to the most reduction of the epistemic uncertainty of failure probability. This information is quite 

important for further collecting information on input variables.  

 

Table 1. NISS results of the toy example, where the superscripts indicates the STDs of estimates  
Distribution 

type 

P𝑓𝑓,0 S𝑦𝑦 S𝜇𝜇1 S𝜎𝜎1 S𝑦𝑦𝑦𝑦1 S𝑦𝑦𝑦𝑦1 S𝜇𝜇1𝜎𝜎1 Bounds of 

P𝑓𝑓 

Unif .071(8.8e-4) .695(1.9e-2) .2072(1.4e-2) .0793(5.1e-3) .0068(2e-4) .0026(1e-4) .0091(7e-4) [.039, .113] 

Trun-Norm .075(8.7e-4) .689(1.6e-2) .1983(1.1e-2) .0746(5.2e-3) .0351(1e-3) .0002(1e-6) .0033(2e-4) [.036, .109] 

U-quad .070(7.0e-4) .711(2.0e-2) .179(1.2e-2) .0655(4.9e-3) .0109(8e-4) .0072(3e-4) .0014(1e-4) [.037, .102] 

 

  The first-order component functions for each kind of auxiliary distribution are estimated by the NISS 

estimators and the Bootstrap procedure, and the estimations as well as the 95.45% confidence intervals 

are shown in Figure 4, together with the reference solutions computed by double-loop crude MCS 

procedure with 105 samples in each iteration. For the three auxiliary distributions, the resulted first-order 
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component of  𝑦𝑦 shows very small difference. It is also seen that the estimates of all the three component 

functions computed by the NISS procedure match well with their reference solutions, and all the three 

confidence intervals are tight enough. Thus, all the three first-order component functions are effectively 

estimated by NISS. It is also shown in the first line of Figure 4 that, comparably, around the point 𝑦𝑦 = 0, 

the estimation error of P𝑓𝑓,𝑦𝑦  is a little bit larger for each kind of auxiliary distribution. This can be 

improved by setting the lower bound of the auxiliary distribution of 𝑦𝑦 a smaller value, say -0.5. Such 

results are not shown here for the sake of brevity.  

   Although the second-order component functions are not very influential, we still display their 

estimates as well as the 95.45% confidence intervals in Figure 5. As can be seen, all the three component 

functions are accurately estimated, and for each kind of auxiliary distribution, the second-order 

component functions are quite similar. One can also find that the ranges of the variations of the three 

second-order component functions are smaller than those of the first-order component functions. Based 

on the synthesized mean estimate of P𝑓𝑓(𝑦𝑦, 𝜇𝜇1, 𝜎𝜎1), the bounds of failure probability is computed by 

genetic algorithm for each auxiliary distribution, and the results are listed in the last column of Table 1. 

As can be seen, the bounds generated by the three auxiliary distributions match well. 

 
Figure 4. First-order component functions generated based on the three kinds of auxiliary distributions.  
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Figure 5. Second-order component functions of the toy example, where the in-between the surfaces 

indicate the mean estimates, and the other two surfaces indicate the 95.45% confidence intervals. 

4.2 The NASA Langley multidisciplinary UQ challenge problem 

The NASA Langley UQ challenge problem, released in 2014, describes a real-world aeronautics 

application. The simulation model aims at simulating the dynamics of remotely operated twin-jet aircraft 

called Generic Transport Model. One can refer to Ref. [5] for more details on the description of the 

simulation model. This challenge problem has been dealt with by many researchers (e.g., see Ref. 

[12][34][35] for details). The challenge problem consists of five subproblems, where the uncertainty 

propagation and reliability analysis are both important parts. The problem statement of the 

multidisciplinary reliability analysis is described in Figure 6. The problem is divided into three parts. 

The first part comprises five fixed discipline analysis, where each of the former four discipline analysis 

is characterized by a simulation model ℎ𝑖𝑖(∙) with five input variables, and for the fifth discipline 

analysis, the response equals the univariate input variable. The response of each discipline analysis is 

independent with that of the other discipline analysis. The second part is the cross-discipline analysis. 

This analysis involves eight failure modes, each of which is characterized by a limit state function 𝑔𝑔𝑖𝑖(∙) 

with the five response variables of the fixed discipline analysis as inputs. Thus, the responses of the eight 

limit state functions are not independent. The third part is the reliability analysis. The eight failure modes 

are in series, which means that the failure of any mode results in the failure of the whole system. Thus, 

a composite limit state function ω(∙, ∙) is defined as the maximum of the eight limit state functions. In 

Figure 5, the vector 𝒅𝒅 indicates the design variable in the fifth challenge problem (robust design), and 

in the reliability analysis setting, it is fixed at a pre-specified point 𝒅𝒅𝑏𝑏𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂. Thus, the failure probability 

is defined as the probability of ω being larger than zero. 

Based on the above description, the inputs variables are in fact the 21 input variables 𝑝𝑝1~𝑝𝑝21 of the 
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fixed discipline analysis, and their settings are listed in Table 2. In the first released version of the problem, 

these 21 inputs variables are grouped into three categories depending on their characterization models. 

Category I indicates the precise random variables with only aleatory uncertainty. Category II represents 

the interval variables with only epistemic uncertainty. Category III implies the imprecise random 

variables with mixed aleatory and epistemic uncertainties. In this paper, there are two main differences 

of the variable setting with the initial released version. The first difference is on the five inputs of the 

first discipline analysis. In the initial setting, the categories of the five input variables are the same as 

those set in Table 2, but the bounds of epistemic intervals are much larger. In the first released version, 

the first discipline analysis is used for the subproblem of “model updating”, and it is required that the 

other subproblems should be solved based on the results of this subproblem. Thus, instead of using the 

initial setting, we use the results of model updating in Ref. [34], for the first five input variables, as shown 

in Table 2.  The second difference is on the support of the three interval variables 𝑝𝑝6, 𝑝𝑝12 and 𝑝𝑝16. In 

the initial setting, the support of each variable is [0, 1], however, this paper, it is changed to [0.2, 0.8], 

as shown in Table 2. The reason is that, the simulation models don’t allow the value of each input variable 

to exceed the bounds [0, 1] , however, as indicated by the toy example, the support of auxiliary 

distribution of each interval variable should better be larger than its real support so that better 

convergence can be obtained around the end point of real bound. One should note that this modification 

is not due the limitation of the NISS method, but is due to the limit of the setting of this problem. In other 

real-world applications, the physically allowed interval of one interval variable is commonly wider than 

the uncertainty support, making it possible to set the support of the auxiliary distribution wider than the 

uncertainty support. As shown in Table 2, with the above setting, we have 31 epistemic parameters, and 

they are denoted as 𝜃𝜃1~𝜃𝜃31, and then the system failure probability will be a function on these 31 

parameters, and the purpose of this example is to estimate this failure probability function as well as the 

related failure probability bounds. It should be noted that for the sake of compactness, all epistemic 

parameters in Table 2 are labeled as 𝜃𝜃𝑖𝑖, 𝑖𝑖 = 1, … ,31; nonetheless, parameters 𝜃𝜃3, 𝜃𝜃9 , 𝜃𝜃16 and 𝜃𝜃23 

should have been actually labeled as 𝑦𝑦1, 𝑦𝑦2, 𝑦𝑦3 and 𝑦𝑦4, respectively. 

 
Figure 6. Description of the NASA multidisciplinary UQ challenge problem and the related reliability 

analysis sub-problem 
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Table 2 Uncertain parameters of the NASA UQ challenge problem, where 𝜃𝜃1~𝜃𝜃31  indicates the 

epistemic parameters.  

Input variables Category Uncertainty model 

𝑝𝑝1 III Unimodal Beta, 0.6783 ≤ 𝜃𝜃1 = 𝜇𝜇1 ≤ 0.7097, 0.0387 ≤ 𝜃𝜃22 =

σ12 ≤ 0.0397 

𝑝𝑝2 II Interval, 𝜃𝜃3 = 𝑝𝑝2 ∈ [0.9399,0.9902] 

𝑝𝑝3 I Uniform, [0, 1] 

𝑝𝑝4,  𝑝𝑝5 III Normal, 3.4493 ≤ 𝜃𝜃4 = 𝜇𝜇4 ≤ 4.5812, 0.4190 ≤ 𝜃𝜃52 = σ42 ≤

2.7209, −1.5306 ≤ 𝜃𝜃6 = 𝜇𝜇5 ≤ −0.9106, 0.2157 ≤ 𝜃𝜃72 = σ52 ≤

0.6914, −0.4370 ≤ 𝜃𝜃8 = 𝜌𝜌 ≤ 0.7008 

𝑝𝑝6 II Interval, 𝜃𝜃9 = 𝑝𝑝6 ∈ [0.2, 0.8] 

𝑝𝑝7 III Beta, 0.982 ≤ 𝜃𝜃10 = 𝑎𝑎 ≤ 3.537, 0.619 ≤ 𝜃𝜃11 = 𝑏𝑏 ≤ 1.080 

𝑝𝑝8 III Beta, 7.450 ≤ 𝜃𝜃12 = 𝑎𝑎 ≤ 14.093, 4.285 ≤ 𝜃𝜃13 = 𝑏𝑏 ≤ 7.864 

𝑝𝑝9 I Uniform, [0, 1] 

𝑝𝑝10 III Beta, 1.520 ≤ 𝜃𝜃14 = 𝑎𝑎 ≤ 4.513, 1.536 ≤ 𝜃𝜃15 = 𝑏𝑏 ≤ 4.750 

𝑝𝑝11 I Uniform, [0, 1] 

𝑝𝑝12 II Interval, 𝜃𝜃16 = 𝑝𝑝12 ∈ [0.2,0.8] 

𝑝𝑝13 III Beta, 0.412 ≤ 𝜃𝜃17 = 𝑎𝑎 ≤ 0.737, 1.000 ≤ 𝜃𝜃18 = 𝑏𝑏 ≤ 2.068 

𝑝𝑝14 III Beta, 0.931 ≤ 𝜃𝜃19 = 𝑎𝑎 ≤ 2.169, 1.000 ≤ 𝜃𝜃20 = 𝑏𝑏 ≤ 2.407 

𝑝𝑝15 III Beta, 5.435 ≤ 𝜃𝜃21 = 𝑎𝑎 ≤ 7.095, 5.287 ≤ 𝜃𝜃22 = 𝑏𝑏 ≤ 6.945 

𝑝𝑝16 II Interval, 𝜃𝜃23 = 𝑝𝑝16 ∈ [0.2, 0.8] 

𝑝𝑝17 III Beta, 1.060 ≤ 𝜃𝜃24 = 𝑎𝑎 ≤ 1.662, 1.000 ≤ 𝜃𝜃25 = 𝑏𝑏 ≤ 1.488 

𝑝𝑝18 III Beta, 1.000 ≤ 𝜃𝜃26 = 𝑎𝑎 ≤ 4.266, 0.553 ≤ 𝜃𝜃27 = 𝑏𝑏 ≤ 1.000 

𝑝𝑝19 I Uniform, [0, 1] 

𝑝𝑝20 III Beta, 7.530 ≤ 𝜃𝜃28 = 𝑎𝑎 ≤ 13.492, 4.711 ≤ 𝜃𝜃29 = 𝑏𝑏 ≤ 8.148 

𝑝𝑝21 III Beta, 0.421 ≤ 𝜃𝜃30 = 𝑎𝑎 ≤ 1.000, 7.772 ≤ 𝜃𝜃31 = 𝑏𝑏 ≤ 29.621 

 

With the simple random sampling, we generate 5×104 joint samples for (𝑝𝑝1,⋯ , 𝑝𝑝21, 𝜃𝜃1,⋯ , 𝜃𝜃31), and 

compute the response value of limit state function 𝜔𝜔(𝒑𝒑, 𝒅𝒅𝑏𝑏𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂) for each joint sample, to implement 

the NISS procedure in a bootstrap manner. The number of bootstrap replication is set to be 30. Thus the 

total number of function calls is 5e4. With these samples, the constant RS-HDMR component of the 

failure probability is computed as 0.2319 with the STD being 0.0017.  

 With the same set of samples, the non-normalized first-order Sobol’ indices are computed, and the 

results are shown in Figure 7, together with the STD of each estimate. As can be seen, all the sensitivity 

indices are robustly estimated. The results show that, among the 31 epistemic parameters, only a small 

number of them are influential, and the six most influential components are those of 𝜃𝜃16, 𝜃𝜃1, 𝜃𝜃3, 𝜃𝜃23,  𝜃𝜃9 

and 𝜃𝜃5. The summation of the sensitivity indices of the other 25 first-order component functions is 

smaller than one percent of the summation of the sensitivity indices of these six most influential. Thus, 
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we need only to consider the six most influential first-order component function. The sensitivity indices 

also reveals that, among the 31 epistemic parameters, the epistemic uncertainty of 𝜃𝜃16  (i.e., 𝑝𝑝12 ) 

contributes the most to the epistemic uncertainty of failure probability. Thus, for reducing the bounds of 

the failure probability, one should collect more information on 𝑝𝑝12. Based on the same set of samples, 

the six first-order component functions are estimated, and the estimates as well as the 95.45% confidence 

intervals are shown in Figure 8. It is shown that the confidence interval of each component function is 

narrow enough, indicating that each component function is accurately estimated by NISS. 

 
Figure 7. The first-order normalized sensitivity indices computed by NISS procedure 

 

 
Figure 8. The first-order component functions of the NASA UQ challenge problem 

 

Next, we go into the second-order component functions. As has been discussed in subsection 3.3, for 

the second-order component function of two interval input variables, we need to estimate their joint PDF 

based on their samples belonging to the failure domain. We randomly select 1e3 sample points for each 

pair of interval variables from their failure samples, and transform these data into copula scale by using 

the function ‘ksdensity’ in Matlab, and then plot the samples in pair in Figure 9. As can be seen, for each 
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pair of interval variables, the sample points are uniformly distributed in the unit square space [0, 1]2, 

indicating that each pair of interval variables are independent in the failure domain. Then, based on the 

discussion in subsection 3.3, the second-order component functions of each pair of interval variables can 

be easily estimated by their first-order component functions, and we don’t need to estimate the joint PDF. 

The six most influential second-order component functions are then estimated with the same set of 

samples, and the estimates as well as the 95.45% confidence intervals are displayed in Figure 10. As can 

be seen, compared with the first-order component functions, all the second-order component functions 

can be neglected.  

 

 
Figure 9 Pairwise scatter and histogram plots of the failure data of the four interval variables 𝑝𝑝2, 𝑝𝑝6, 

𝑝𝑝12 and 𝑝𝑝16 in copula scale (unit square), where the transformation to copula scale is realized by the 

“ksdensity” function.   

 

Based on mean estimate of the failure probability function synthesized with the six influential first-
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order component functions and the two most influential second-order component functions, the bounds 

of failure probability are estimated to be [0.1221, 0.3121]. Since the settings of the interval variables are 

different to the original ones, and the results of model updating of the first discipline vary from paper to 

paper, thus it not possible to compare the results with the published results in, e.g., Refs. [11] and [35]. 

To demonstrate the correctness of our result, we also estimate the failure probability bounds by the 

interval Monte Carlo simulation (IMCS) developed in Ref. [13], which has also been utilized in Ref. [35] 

for estimating the failure probability bounds of the NASA challenge problem. This method involves a 

double-loop procedure. In the outer loop, the interval samples are generated for the input variables, while 

in the inner loop, the interval analysis is performed for generating the bounds of limit state function for 

each interval sample. The failure probability bounds are then estimated based on the samples of response 

bounds. Due to the large computational cost, this procedure is implemented in a parallel scheme on a 48-

core computer station. One should note that, the bounds estimated by IMCS in this example are more 

conservative since in this method, the parameterized p-box model is by default replaced by a non-

parameterized p-box model with the bounds as the parameterized ones. This simplification is necessary 

in IMCS for generating interval samples in the outer loop. Similar to Ref. [35], 1000 interval samples 

are generated in the outer loop, and the genetic algorithm is utilized in the inner loop, to implement the 

IMCS method. The reference bounds are estimated to be [0.055, 0.337], which exactly include the bounds 

generated by NISS. Based on the above analysis, it should be believed that the bounds computed by NISS 

are correct.  

 
Figure 10. The six most influential second-order component functions 

 

5. Conclusions and discussions 

This paper has developed a strategy for generalizing the NISS method, recently developed for 

efficiently propagating the imprecise probability models, to the general case where three categories of 

characterization models (i.e., precise probability models, non-probabilistic models, and imprecise 

probability models) are all involved, and specifically, the estimation of failure probability function and 
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bounds are exemplified. The truncation errors of estimates are quantified by Sobol’ sensitivity indices, 

which are also found to be useful for measuring the relative importance of the component functions as 

well as each epistemic parameter. Both the toy test example and the NASA Langley challenge have 

demonstrated the effectiveness of the proposed method.      

The NISS method owns many advantages, and the most appealing one is that only one set of function 

calls are needed for implementing the whole analysis, and both types of estimation errors are properly 

addressed without extra computational cost. Being a pure stochastic simulation procedure, it is easy to 

implement it in a parallel scheme, making it more efficient for large-scale real-world applications. The 

only limitation of the generalization of the NISS reported here is that, for the component functions of 

interval variables, there is a need to do non-parametric density estimation, which, for first-order 

component functions, can be addressed with kernel density estimation, but for higher order component 

functions, may face challenge. However, the estimation of bivariate density functions can be properly 

addressed by statistic dependence or parameterized Copula, as has been shown in subsection 3.3 and 4.2. 

The success of NISS for high-dimensional problems is supported by the following facts. For most 

real physic processes, the model behavior is mainly governed by a low-dimensional manifold, and this 

manifold is mostly governed by individual and/or low-order interaction effects. The introduction of the 

RS-HDMR decomposition as well as the Sobol’ sensitivity indices enables to identify this manifold and 

the influential effects without extra computational cost. Further, the RS-HDMR decomposition makes it 

possible to derive NISS estimators for the component functions of the epistemic parameters presented in 

both category II and category III models.  

Open problems still exist. For example, the distribution-free category III models such as non-

parametric p-box model are also widely used when the distribution type is not known due to lack of 

knowledge; the multivariate dependence may exist in category II model due to the natural constraints of 

model parameters; time-variant and spatial inputs are also commonly in real-world applications. There 

is a need to extend the method to the above situations. Besides, the uncertainty-based design optimization 

problem, e.g., the robust optimization subproblem in the NASA Langley UQ challenge problem [11], 

and the sensitivity analysis under mixed uncertain environment [36], can also be addressed by the NISS 

method, which will be presented in the future work. 
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