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systems. Our aim is to connect these two streams of studies of the design process by analysing the 
network structure of information flows throughout the stages of complex engineering design projects. 
In particular, we focus on network centralisation measures and on discerning which activities, at each 
point of time, are in position to exert greater influence due to their centrality in the information flow 
network. This approach allows us to show the evolution of control in information flows throughout a 
design project and reveals the existence of patterns connecting information control measures with key 
stages of the engineering design process. In this section we start by making explicit our systems 
approach through an information network model (2.1). We follow by stating our propositions about 
the expected implications of the design process stages in terms of information control and 
centralisation (2.2). We finalise by providing details about the network analysis concepts utilised (2.3). 

2.1 A systems approach to the design process 
Following Eppinger and Browning's approach to complex engineering systems [2012], we characterise 
the engineering design process as a system with three interconnected domains; the process, the 
organisation and the product domain. Each of these domains has its own architecture describing the 
relationship between its elements. In the process domain we find engineering design activities (also 
called tasks) connected by their information dependencies or other kinds of relationships. In the 
organisation domain we find interactions or other types of relations between people participating in the 
engineering design process. Finally, in the product domain we find the product components (grouped 
in subsystems if they exist) connected by different types of interfaces (spatial, energy, information, 
etc.). The architectures of these domains are usually represented and analysed using a design structure 
matrix (DSM) or by means of other network modelling techniques such as network graphs. 
As the three domains relate to the same engineering design project, their architectures are 
interdependent. In fact, although the degree of mirroring between these domains varies across projects 
and organisations, previous studies have provided empirical evidence of this interdependence and have 
discussed the implications of misalignments. Examples of these studies include Morelli et al. [1995] 
describing the interdependence between organisation and process architecture and Sosa et al. [2004] 
applying a similar approach for the product and organisation architecture. Here we make use of this 
interconnectedness between domains to build an integrated and dynamical model of the engineering 
design process. Our specific emphasis is on the process architecture as implemented through the 
organisation architecture. This approach allows us to describe and analyse the actual temporal 
dynamics of the design process in contrast to the traditional form of modelling the process architecture 
based on reported dependencies (which describes instead the desired or believed structure). 

 
Figure 1. Construction of the process architecture as implemented through the organisation 

In order to obtain the process architecture as implemented through the organisation architecture, our 
research approach models the engineering design process as a social process of information 
transformation (following Hubka et al. [1988]). In this process information flows between activities 
are connected and progressively transformed via people participating in the process. The model is 
operationalised as a multi-modal dynamic information network, which in its simplest form includes 
people interconnected via information-driven interactions and people doing information-related work 
in activities. 
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Figure 1 shows in schematic form how the actual process architecture is derived from the combination 
of interactions between members of the project, the process architecture, and the participation of 
people on activities. This composite network is highlighted as a red-dashed line and is a combination 
of the communication network and the activity-people mapping. As the applied analysis is dynamic, in 
reality these connections (edges) change over time, creating a set of snapshots that show the evolution 
of the design process from the point of view of its information network. 
Although to obtain the actual process architecture we could have taken a more traditional process 
DSM approach, asking directly how activities are implemented using expert knowledge as done in 
[Browning 2002], [Eppinger and Browning 2012], the inter-temporal nature of our analysis would 
have made this task overly difficult for the respondents. The problem originates from the multiple 
ways in which activities can be implemented and connected to other activities. In other words, for any 
connection between a pair of activities, many people could be working on each activity, and any 
number of them may interact to implement the connection between their activities. Instead of directly 
gathering this dynamic network of task interactions from experts, our approach gathers first the 
mapping of people to tasks over time, then the interactions between people, and finally composes a 
unified network structure utilising this bottom-up perspective. 
Part of the complexity of large engineering design projects is a result of the multiple intertwined 
processes being executed in parallel. To facilitate interpretation of the results, the process architecture 
subsequently shown here combines low-level activities into larger activity packages based on the 
common work they perform towards developing a particular subsystem or performing a sub-process. 
These activity groups can be seen as cohesive work packages of the design process and in order to 
simplify the terminology, from now onwards we will refer to them simply as activities. 
In terms of the functions that activities perform, we have identified three broad categories: The first 
type are those activities doing engineering design work related to specific modules or subsystems 
under development; we call them modular subsystem activities. The second type corresponds to 
activities specifically designed to integrate two or more modular subsystems; we call them integrative 
subsystem activities. The third type of activities is devoted to the support and coordination of design 
work; we call them integrative work activities and they include aspects such as overall project 
management and procurement. The terminology used here follows Sosa et al. [2003] in identifying 
modular and integrative subsystems. The difference is that we have added the third category, 
integrative work, to recognise areas such as project management, which are expected to play a 
significant role in information control and coordination. 
Using this approach the design process can be described at multiple levels of analysis. In this paper we 
will centre the analysis at the level of activity categories and the whole network of activities. However, 
with the same model and data it is also possible to analyse activities at a higher level of detail or 
elements of the organisational domain, including people, teams and departments. 

2.2 Design process stages and their impact on information control and centralisation 
Systematic models of the engineering design process, implicitly or explicitly, consider a logical 
sequence of stages and a set of activities within each stage. They model in this way a coherent 
evolution of the process with the objective of explaining or improving design practice [Wynn and 
Clarkson 2005, p. 35]. To guide this paper’s discussion we will focus on the overall stages defined in 
Ulrich and Eppinger [2012] whilst applying the system development perspective found in INCOSE’s 
systems engineering SE-V model [Haskins et al. 2011]. Despite this choice, the overarching points 
made here are applicable across different types of staged models. Based on these two models and the 
scope of our research, Figure 2 offers an overview of the stages that will be used as a reference point 
for this study. Our emphasis lies between the stages of conceptual design and system integration, as 
these are the limits of what is usually considered the predominant focus of engineering design 
[Clarkson and Eckert 2005, p. 5]. Consequently strategic planning and implementation are not 
explicitly covered. 
Following the stages overlaid in the SE-V model of Figure 2 and their descriptions found in Ulrich and 
Eppinger [2012], we define a set of propositions about expected patterns of information control and 
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centralisation during each stage. These propositions will be later examined using the approach 
presented in section 2.1 and data obtained in our empirical case study. 

 
Figure 2. Stages of the engineering design process used in the context of this study. Adapted 

from Ulrich and Eppinger [2012] and INCOSE’s SE-V model [Haskins et al. 2011] 

During conceptual design, individuals from multiple functions contribute by providing inputs in the 
context of tasks such as idea generation, the selection of concepts and the preliminary planning of 
technical specifications. As most design considerations here affect the whole system and are usually 
very preliminary, we expect that only a few activities, mostly integrative work, will hold most of the 
information control, coordinating and aggregating information received from other areas. 
During system level design, the overall architecture, agreed to in the conceptual design stage, is 
defined with additional detail, including the decomposition of subsystems into components. 
Preliminary engineering starts with a division of the work into multidisciplinary teams, assigned first 
to a core of relatively integrated subsystems, which usually require high levels of integration [Ulrich 
2011, p. 88]. Because of these characteristics, during this stage we expect the previously high levels of 
information control held by the integrative work activities to decrease slightly. This is consistent with 
the work of the multidisciplinary teams interacting more directly to define the technical details at the 
system level. As the process of decomposition progresses and the subsystem teams gain more 
independence, a more fluid information structure with modular subsystem activities gaining 
information control is expected at the start of the detailed design stage. 
During detailed design, the complete set of specifications is defined for all the components and the 
work is high in detail and granularity. As the degree of technical specialisation needed here reaches its 
peak, the subsystem activities perform more independently and in a relatively modular fashion. The 
assumption is that system level information acquired in previous stages provides enough information 
to enable relatively autonomous subsystem level work. In this stage we expect information control to 
be highly distributed, with no activity centralising the information of the whole project. 
During system integration, components need to be tested and validated at the system level (which is 
the reason why this stage is sometimes named “testing and refinement”). Also all the modular 
subsystem activities have to integrate their results. Consequently, integrative subsystem activities are 
expected to gain information control and integrative work activities should have a higher information 
control than during detailed design. The information centralisation trend is also expected to rise as 
higher levels of integration are reached. 
Table 1 summarises and compares the different features of the four stages in terms of our propositions 
about their characteristic information control and centralisation. In the table we also draw the shapes 
we expect for simplified information networks between activities. As information flow is not a binary 
concept, but rather a continuum of different intensities, we distinguish in the graph between strong and 
weak information flows. 
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case study. The project consisted 
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process of this plant 
with the top management
a summary of the key
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People 
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Integrative work activities:
- Overall project management
- Procurement
- On-site coordination
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betweenness centralisation
and Zhao [200
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the top management
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Integrative work activities:
Overall project management
Procurement 

site coordination 

used to reveal both the evolution of the whole network and the co
within the network. Recent examples of applied temporal network analysis include a visualisation of 
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_ instrumentation diagram (P&ID)
- COMOS (plant engineering platform)
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used to reveal both the evolution of the whole network and the co-evolution of 
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a number of hours (11,742 activity entries)
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- Boiler and equipment design
- External piping design
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- Combustion system design
- Electrical, control and instr. design
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torga et al. 2013]
exploration of temporal patterns in the way designers gather information using students in a controlled 
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4. Analytical results from our case study 
In this section, we present the results of applying temporal network analysis to the information 
network of our case study. Our results describe the evolving design process and are presented at two 
levels of analysis: activity categories (4.1) and the whole information network (4.2). Our focus is on 
the evolving process architecture (activities) as implemented through the organisation architecture 
(people). As a representation of these architectures figure 3 shows four graphs, one per process stage, 
built using the model presented in Figure 1 and the case study data. Black nodes represent the 13 
activity groups and grey nodes the 15 departments (nesting people in their departments in order to 
simplify the visualisation). The edges between departments are work-related information exchanges. 
In turn, the edges between activity groups and departments represent the participation of those 
departments in activities from that group. The structure as a whole describes the sum of information 
flow paths at each stage of the project, and the overall network topology provides an indication about 
relative centralisation of the information at each of the studied stages. 

 
Figure 3. Information network for each of the analysed stages. 

Activity groups and departments are connected following the approach introduced in figure 1 

Through Figure 3, we can see the changing number of departments and activity groups alongside their 
evolving connectivity patterns at an aggregated level of analysis. In this aggregated network topology 
the evolution of information control and centralisation is hidden in the details of the dynamic structure. 
In what follows we show how applying quantitative dynamic network analysis, and in particular 
betweenness centrality and group betweenness centralisation, distinctive patterns emerge that allow us 
to characterise the information control and centralisation at each of the stages, helping to answer 
research question #1. 

4.1 Information control across activity categories 
Figure 4 depicts the evolution of betweenness centrality for each of the three categories of activities 
previously defined. (To do this, we compute betweenness centrality for each activity category as if it 
were a single activity). From this figure we can observe, leaving conceptual design aside, that the 
expected patterns for the evolution of information control between the three activity categories do in 
fact emerge. System level design starts with integrative work holding high information control, which 
declines over time as the modular subsystem activities enter during that stage. Detailed design is 
dominated by development of the modular and integrative subsystems, with a sharp decrease in 
control by integrative work activities. In turn, during the system integration stage, control by activities 
related to integrative work increases, integrative subsystems remain at the levels of detailed design and 
modular subsystems decrease their control over time. 
In the conceptual design stage, we see information control alternating between integrative work and 
modular subsystem activities, whereas only the former had been expected. To understand this result, 
two elements specific to our case study appear to be relevant. First, the volume of activities recorded 
at this stage was low, so we had to use the betweenness centrality of the closest organisational 
department as a proxy of activity betweenness centrality. In practice, this should introduce only minor 
distortions, as the functional groups map closely to the process architecture. Second, the company had 
extensive prior experience in these kinds of projects. This allowed key technical areas (a few modular 
subsystem activities) to lead during the conceptual stage of the project. This result is illustrative of the 
differences between repeated projects, which can leverage previous experience, and new ones. 

Conceptual Design System Level Design Detailed Design System Integration 

= Activity Groups (A)  = People grouped in departments (P) 

A#: 4, P#: 12  A#: 11, P#: 13  A#: 13, P#: 13  A#: 13, P#: 13  
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4.2 Evolution of information centralisation at the project level
Figure 5
after aggregating 
describes the whole network centralisation and can be interpreted as a measure of the distribution of 
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at each of the stages of the project. Conceptual design is characterised b
most of the information control and coordinating inputs from multiple areas
exhibits a similar pattern that decreases over time as detailed design is about to start. Detailed design 
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work (reflected in its low GBC score
the needs 
different 
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Figure 4. Evolution of information control across activity categories
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5. Discussion 
In our empirical results, we found evidence linking the evolving measures of betweenness centrality 
and group betweenness centralisation with the expected information control and centralisation features 
at several stages of the design process. This evidence is consistent at the two levels of analysis 
presented. At the level of activity categories, we see how the three categories exhibit a distinctive 
behaviour over time, matching our prediction for three out of four stages. These patterns not only 
validate our predictions, but also suggest a meaningful macro-level categorisation of activities, 
founded not just on observations and conceptual models but also on their characteristic network 
dynamics. At the whole network level, we see how the changing distribution of the information 
control follows a pattern that can be linked with process modularity and SE-V model stages. 
Although our evidence only comes from one case study, this paper can be seen as a proof of concept 
that both the model and applied methodology are able to produce meaningful results. Furthermore, our 
findings have been validated through interviews and presentations at the company, providing evidence 
that our results are representative of real design process dynamics operating within this engineering 
design project. Through this qualitative feedback, we were also able to explain the patterns that 
differed from those expected for the generic stages, which in most cases had roots in the specific 
features of the project, evidencing the contingent nature of designing. 
One interesting result of the application of this approach is that we not only see the evolution of the 
whole network but also the different trajectories that individual activities follow during the course of 
the project. This shows the intertwined nature of design processes, where multiple activities and 
different time-scales and rhythms operate in parallel at each developed subsystem (which is 
particularly relevant in the lower part of the SE-V model, where detailed design happens). 
A key feature of our approach is the idea of contrasting real designing patterns, in our case the 
evolving structure of the information network, with models of the design process. Aligned with the 
arguments of Clarkson and Eckert [2005, p. 21] about studying the reality of design via “designing 
patterns”, we believe that the deep exploration of such patterns provides valuable insights to 
complement the prescriptive approach of design process models, helping to unveil potential causal 
explanations for the observed design phenomena. 

6. Conclusions 
In this paper we have shown how through a temporal network analysis of the information flows 
between activities we can uncover a view of the design process that provides new insights to connect 
stage models with the dynamics of the process architecture. As a result of this approach, we foresee 
implications for theory development and practice. From the theoretical viewpoint, we have provided 
evidence of relationships among betweenness centrality, group betweenness centralisation, 
information control and design stages, which serves to quantify specific properties for different stages 
of the design process. This enriches previous descriptions and interpretations of the stages and may 
allow design researchers to develop process models that better fit observed project patterns. 
Implications for engineering design practitioners, and especially project managers, include the 
possibility of providing a quantitative overview of real designing patterns, which can be compared 
against prescriptive models. Moreover, when applied at a more detailed activity level, our model 
highlights periods in the process where multiple areas concurrently increase their information control, 
potentially draining resources and generating complex coordination scenarios. Knowing more about 
these periods can help to defer activities that do not need to be concurrently active, while prioritising 
the ones with coupled subsystems that do require concurrency or iterations. 
One limitation of our approach is related to the availability of rich temporal and relational datasets. In 
addition, when these datasets exist, their reliability does not always allow this type of analysis. In 
order to replicate and make scalable the use of this approach in industry, it is necessary to limit the 
time required to gather this information, tap into existing company systems and standardise the 
process. 
Interesting venues for further research in this area include comparisons of betweenness centrality 
measures across different projects and industries. This would allow evaluating if the overall patterns 
are stable or are project or industry specific. In addition, more research is required to explore the 
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evolution of other network measures and their interplay with betweenness centrality. Observed process 
architectures as implemented through organisations could be compared to planned processes. Finally, 
further studies could use dynamic network measures as independent variables and performance as a 
dependent variable in order to establish concrete connections between network structure and results. 
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