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ABSTRACT

In this paper we study the numerical method for approximating the random periodic solution of
semiliear stochastic evolution equations. The main challenge lies in proving a convergence over an
infinite time horizon while simulating infinite-dimensional objects. We first show the existence and
uniqueness of the random periodic solution to the equation as the limit of the pull-back flows of the
equation, and observe that its mild form is well-defined in the intersection of a family of decreasing
Hilbert spaces. Then we propose a Galerkin-type exponential integrator scheme and establish its
convergence rate of the strong error to the mild solution, where the order of convergence directly
depends on the space (among the family of Hilbert spaces) for the initial point to live. We finally
conclude with a best order of convergence that is arbitrarily close to 0.5.

Keywords Random periodic solution · Stochastic evolution equations · Galerkin method · Discrete exponential
integrator scheme

1 Introduction

The random periodic solution is a new concept to characterize the presence of random periodicity in the long run
of some stochastic systems. On its first appearance in [22], the authors gave the definition of the random periodic
solutions of random dynamical systems and showed the existence of such periodic solutions for a C1 perfect cocycle
on a cylinder. This is followed by another seminal paper [9], where the authors not only defined the random peri-
odic solutions for semiflows but also provided a general framework for its existence. Namely, instead of following
the traditional geometric method of establishing the Poincaré mapping, a new analytical method for coupled infinite
horizon forward-backward integral equations was introduced. This pioneering study boosts a series of work, including
the existence of random periodic solutions to stochastic partial differential equations (SPDEs) [4], the existence of
anticipating random periodic solutions [6, 7], periodic measures [8], etc.

Let us recall the definition of the random periodic solution for stochastic semi-flows given in [9]. Let H be a separable
Banach space. Denote by (Ω,F ,P, (θs)s∈R) a metric dynamical system and θs : Ω → Ω is assumed to be measurably
invertible for all s ∈ R. Denote ∆ := {(t, s) ∈ R

2, s ≤ t}. Consider a stochastic semi-flow u : ∆ × Ω ×H → H ,
which satisfies the following standard condition

u(t, r, ω) = u(t, s, ω) ◦ u(s, r, ω), for all r ≤ s ≤ t, r, s, t ∈ R, for a.e. ω ∈ Ω. (1)

We do not assume the map u(t, s, ω) : H → H to be invertible for (t, s) ∈ ∆, ω ∈ Ω.
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Definition 1.1. A random periodic path of period τ > 0 of the semi-flow u : ∆×Ω×H → H is an F -measurable
map y : R× Ω → H such that

{

u(t, s, y(s, ω), ω) = y(t, ω), ∀t ≥ s
y(s+ τ, ω) = y(s, θτω), ∀s ∈ R

(2)

for any ω ∈ Ω.

Note that Definition 1.1 covers both the deterministic periodic path and the random fixed point (c.f. [1]), also known
as stationary point as its special cases. To see the latter one, one may assume (2) holds for any τ > 0, and define
ŷ(θtω) = y(0, θtω) for t > 0, then one can conclude that u(t, 0, ŷ(ω), ω) = ŷ(θtω) from (2), which coincides with
the definition of random fixed point (also termed as the stationary solution) given in [1]. A well-known example for

stationary solution is given by Y (ω) =
∫ 0

−∞ esdW (s), for the one-dimensional random dynamical system φ(t, ω)x =

xe−t +
∫ t

0
e−(t−s)dW (s, ω) generated from the following Ornstein-Uhlenbeck process:

dy(t) = −y(t)dt+ dW (t), y(0) = x ∈ R, t > 0, (3)

where W : (t, ω) 7→ W (t, ω) is a one-dimensional two-sided Wiener process on (Ω,F ,P), and as a convention, ω is
usually hidden in the notation W (s, ω). One can verify that φ(t, ω)Y (ω) = Y (θtω). If in addition, we add a periodic
drift term to Eqn. (3) such that it reads as

dy(t) = (−y(t) + sin(t))dt+ dW (t), y(s) = x ∈ R, t > 0, (4)

then it is not hard o see the semiflow for (4) is given by ϕ(t, s, x, ω) := xe−(t−s) +
∫ t

s
e−(t−r) sin(r)dr +

∫ t

s
e−(t−r)dW (r). Now define Y (t, ω) =

∫ t

−∞ e−(t−s) sin(s)ds +
∫ t

−∞ e−(t−s)dW (s). one can verify that

Y (t, ω) = φ(t, s, ω)Y (s, ω) and Y (t+ 2π, ω) = Y (t, θ2πω). Indeed,

Y (t+ 2π, ω) =

∫ t+2π

−∞
e−(t+2π−s) sin(s)ds+

∫ t+2π

−∞
e−(t+2π−s)dW (s, ω)

=

∫ t

−∞
e−(t−ŝ) sin(ŝ+ 2π)dŝ+

∫ t

−∞
e−(t−ŝ)dW (ŝ+ 2π, ω)

=

∫ t

−∞
e−(t−ŝ) sin(ŝ)dŝ+

∫ t

−∞
e−(t−ŝ)d(W (ŝ+ 2π, ω)−W (2π, ω))

=

∫ t

−∞
e−(t−ŝ) sin(ŝ)dŝ+

∫ t

−∞
e−(t−ŝ)dW (ŝ, θ2πω) = Y (t, θ2πω)

where we use the measure preserving property of Wiener process stated in Assumption 1.5 in the last two lines.
Therefore Y is a random periodic path for semiflow φ generated from SDE (4).

In general, random periodic solutions cannot be solved explicitly. Even for the simple case as we showcased in Eqn.
(4), one relies on numerical approaches to simulate the random periodic path Y . For the dissipative system generated
from some SDE with a global Lipchitz condition, the convergences of a forward Euler-Marymaya method and a
modified Milstein method to the random period solution have been investigated in [5]. For SDEs with a monotone
drift condition, one benefits a flexible choice of stepsize from applying the implicit method instead [20]. Each of these
numerical schemes admits their own random periodic solution, which approximates the random periodic solution of the
targeted SDE as the stepsize decreases. The main challenge lies in proving a convergence of an infinite time horizon.
In this paper, we consider approximating the random periodic trajectory of SPDEs, where, we encounter an additional
obstacle of simulating infinite-dimensional objects. For this, we employ the spectral Galerkin method (c.f. [13]) for
spatial dimension reduction, construct a discrete exponential integrator scheme based on the spatial discretization and
conclude the existence and uniqueness of random periodic solution from the discrete scheme. To the best of our
knowledge, this is the first study that works on the numerical analysis (Galerkin analysis) of random periodic solutions
for SEEs. The Galerkin-type method has been intensively used to simulate solutions of parabolic SPDEs over finite-
time horizon [10, 11, 12, 14, 15, 17], and it is recently applied to approximate stationary distributions for SPDEs
[2]. For the error analysis of both strong and weak approximation of semilinear stochastic evolution equations (SEEs)
through Galerkin approximation, we refer the reader to the monograph [16].

Let (H, (·, ·), ‖·‖) and (U, (·, ·)U , ‖·‖U ) be two separableR-Hilbert spaces. For a given t0, T ∈ (−∞,∞) with t0 < T
we denote by (Ω,F , (Ft)t∈[t0,T ],P) a filtered probability space satisfying the usual conditions. By (W (t))t∈[t0,T ] we

denote an (Ft)t∈[t0,T ]-Wiener process on U with associated covariance operator Q ∈ L(U), which is not necessarily
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assumed to be of finite trace. Denote by L0
2 = L0

2(H) = L2(Q
1
2 (U), H) the set of all Hilbert-Schmidt operators from

Q
1
2 (U) to H .

Our goal is to study and approximate the random periodic mild solution to SEEs of the form
{

dXt0
t =

[

−AXt0
t + f(t,Xt0

t )
]

dt+ g(t,Xt0
t )dW (t), for t ∈ (t0, T ],

Xt0
t0 = ξ.

(5)

Throughout the paper, we impose the following essential assumptions.

Assumption 1.1. The linear operator A : dom(A) ⊂ H → H is densely defined, self-adjoint, and positive definite
with compact inverse.

Assumption 1.1 implies the existence of a positive, increasing sequence (λi)i∈N ⊂ R such that 0 < λ1 ≤ λ2 ≤ . . .
with limi→∞ λi = ∞, and of an orthonormal basis (ei)i∈N of H such that Aei = λiei for every i ∈ N. Indeed we
have that

dom(A) := {x ∈ H :

∞
∑

n=1

λ2
n(x, en)

2 < ∞}.

In addition, it also follows from Assumption 1.1 that −A is the infinitesimal generator of an analytic semigroup
(S(t))t∈[0,∞) ⊂ L(H) of contractions. More precisely, the family (S(t))t∈[0,∞) enjoys the properties

S(0) = Id ∈ L(H),

S(s+ t) = S(s) ◦ S(t) = S(t) ◦ S(s), for all s, t ∈ [0,∞),

and

sup
t∈[0,∞)

‖S(t)‖L(H) ≤ 1. (6)

Further, let us introduce fractional powers of A, which are used to measure the (spatial) regularity of the mild solution
(9). For any r ∈ [−1, 1] we define the operator A

r
2 : dom(A

r
2 ) = {x ∈ H :

∑∞
j=1 λ

r
j(x, ej)

2 < ∞} ⊂ H → H by

A
r
2 x :=

∞
∑

j=1

λ
r
2

j (x, ej)ej , for all x ∈ dom(A
r
2 ). (7)

Then, by setting (Ḣr, (·, ·)r, ‖ · ‖r) := (dom(A
r
2 ), (A

r
2 ·, A r

2 ·), ‖A r
2 · ‖), we obtain a family of separable Hilbert

spaces. Clearly, for any 0 ≤ r1 < r2 ≤ 1, we have that dom(A) ⊂ Ḣr2 ⊂ Ḣr1 ⊂ H . Note that, H is a subspace of

Ḣ−r for r ∈ [0, 1], and the dual space of Ḣr is isometrically isomorphic to Ḣ−r [16].

Assumption 1.2. The initial value ξ : Ω → H satisfies ξ ∈ L2(Ω,Ft0 ,P;H). Denote by Cξ a constant such that

E[‖ξ‖2] ≤ C2
ξ .

Assumption 1.3. The mappings f : R×H → H and g : R×H → L2
0 are continuous and periodic in time with period

τ . Moreover, there exist κ ∈ (0, 1/2], Cf , Cg, Cf,g ∈ (0,∞) such that

‖f(t, u1)− f(t, u2)‖ ≤ Cf‖u1 − u2‖,
‖f(t1, u)− f(t2, u)‖ ≤ Cf (1 + ‖u‖)|t1 − t2|κ,
‖g(t, u1)− g(t, u2)‖L2

0
≤ Cg‖u1 − u2‖,

‖g(t1, u)− g(t2, u)‖L2
0
≤ Cg(1 + ‖u‖)|t1 − t2|κ,

2(f(t, u1)− f(t, u2), u1 − u2) + ‖g(t, u1)− g(t, u2)‖2L2
0

≤ −Cf,g‖u1 − u2‖2 (dissipative condition)

for all u, u1, u2 ∈ H and t, t1, t2 ∈ [0, τ).

Remark 1. Indeed the condition on f can be weakened to a local Lipschitz condition for the existence and uniqueness
of the random periodic solution. However, to show the continuity of the random periodic solution or to conduct the
numerical analysis, one still need Assumption 1.3.

Remark 2. One will see that the Hölder continuity in temporal variable imposed on both diffusion and drift terms plays
an important role in the numerical analysis part. To be more specific, it partly determines the order of convergence of
the proposed numerical scheme.

Remark 3. Note that the assumption on g excludes identity in L(H). One may refer to [2] for techniques handing a
slight more general assumption on g, which allows g to be constant in L(H).
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From Assumption 1.3 we directly deduce a linear growth bound of the form

‖f(t, u)‖+ ‖g(t, u)‖L2
0
≤ Lf,g(1 + ‖u‖), for all t ∈ R, u ∈ H, (8)

where Lf,g := ‖f(0, 0)‖+ ‖g(0, 0)‖L2
0
+ (Cf + Cg)(1 + τ

1
2 ).

Under these assumptions the SEE (5) admits a unique mild solution Xt0· : [t0, T ] × Ω → H such that it is uniquely
determined by the variation-of-constants formula (c.f. [3])

Xt0
t (ξ) = S(t− t0)ξ +

∫ t

t0

S(t− s)f(s,Xt0
s )ds+

∫ t

t0

S(t− s)g(s,Xt0
s )dW (s), (9)

which holds P-almost surely for all t ∈ [t0, T ].

1.1 The pull-back

To ensure the existence of random periodic solution, we need some additional assumptions on the Wiener process and
on Cf and λ1:

Assumption 1.4. The constant Cf in Assumption 1.3 and the eigenvalue λ1 of A satisfy Cf < λ1.

Assumption 1.5. There exists a standard P-preserving ergodic Wiener shift θ such that θs(ω)(t) = W (t+ s)−W (s)
for s, t ∈ R, ie,

P ◦ (θsW (t))−1 = P ◦ (W (t+ s)−W (s))−1.

Denote by X−kτ
t (ξ, ω) the solution starting from time −kτ . The uniform boundedness of X−kτ

t (ξ, ω) in the L2 sense
can be guaranteed under Assumption 1.1 to 1.4. Further, under Assumption 1.1 to Assumption 1.5, one is able to show

that when k → ∞, the pull-back X−kτ
t (ξ) has a unique limit X∗

t in L2(Ω;H), moreover, X∗
t is the random periodic

solution of SEE (5), satisfying

X∗
t =

∫ t

−∞
S(t− s)f(s,X∗

s )ds+

∫ t

−∞
S(t− s)g(s,X∗

s )dW (s). (10)

Surprisingly, the mild form (10) can be shown well-defined in L2(Ω; Ḣr) for any r ∈ (0, 1). More details about the

proof can be found in Section 3. Besides, the continuity of X−kτ
t (ξ, ω) is characterized in Section 3 for error analysis

in Section 4.

1.2 The Galerkin approximation

Next, we formulate the assumptions and notations on the spatial discretization. To this end, define finite-dimensional
subspaces Hn of H spanned by the first n eigenfunctions of the basis, ie, Hn := {e1, . . . , en}, and let Pn : H → Hn

be the orthogonal projection. Note that Hn ⊂ Ḣr for any r ∈ R. By doing this, we are able to further introduce
the following notations: An = PnA ∈ L(Hn), Sn(t) = PnS(t) ∈ L(Hn), fn = Pnf : R × Hn → Hn and
gn = Png : R×Hn → L2

0(Hn). Then the Galerkin approximation to (5) can be formulated as follows
{

dXn,t0
t =

[

−AnX
n,t0
t + fn(t,X

n,t0
t )

]

dt+ gn(t,X
n,t0
t )dW (t), for t ∈ (t0, T ],

Xn,t0
t0 = Pnξ.

(11)

Applying the spectral Galerkin method results in a system of finite dimensional stochastic differential equations. Note
that for x, y ∈ Hn, we have that Anx = Ax, Sn(t)x = S(t)x and

(

x, fn(t, y)
)

=
(

x, f(t, y)
)

.

Remark 4. It is easy to see there exists an isometry between Hn and R
n. An simply calculation leads to the existence

of a unique strong solution to (11). The uniform boundedness of Xn,−kτ
t as well as the existence of the random

periodic solution to (11) are simple consequences of the corresponding properties of X−kτ
t .

Let us fix an equidistant partition T h := {jh, j ∈ Z} with stepsize h ∈ (0, 1). Note that T h stretch along the real line
because we are dealing with an infinite time horizon problem. Then to simulate the solution to (11) starting at −kτ ,
the discrete exponential integrator scheme on T h is given by the recursion

X̂n,−kτ
−kτ+(j+1)h =Sn(h)

(

X̂n,−kτ
−kτ+jh + hfn

(

− kτ + jh, X̂n,−kτ
−kτ+jh

)

+ gn(−kτ + jh, X̂n,−kτ
−kτ+jh)∆W−kτ+jh

)

, (12)

for all j ∈ N, where the initial value X̂n,−kτ
−kτ = Pnξ. Moreover, if we define

X̄−kτ
t = X̂n,−kτ

−kτ+jh and Λ(t) = −kτ + jh

4
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for t ∈ [−kτ + jh,−kτ + (j + 1)h), it follows that the continuous version of (12) is therefore

X̂n,−kτ
t = Sn(t+ kτ)Pnξ +

∫ t

−kτ

Sn

(

t− Λ(s)
)

fn
(

Λ(s), X̄n,−kτ
s

)

ds

+

∫ t

−kτ

Sn

(

t− Λ(s)
)

gn
(

Λ(s), X̄n,−kτ
s

)

dW (s)

= S(t+ kτ)Pnξ +

∫ t

−kτ

S
(

t− Λ(s)
)

fn
(

Λ(s), X̄n,−kτ
s

)

ds

+

∫ t

−kτ

S
(

t− Λ(s)
)

gn
(

Λ(s), X̄n,−kτ
s

)

dW (s),

(13)

with differential form

dX̂n,−kτ
t = −AX̂n,−kτ

t + S
(

t− Λ(t)
)

fn
(

Λ(t), X̄n,−kτ
t

)

dt

+ S
(

t− Λ(t)
)

gn
(

Λ(t), X̄n,−kτ
t

)

dW (t).
(14)

In Section 4, we show the uniform boundedness of X̂n,−kτ
t by imposing another assumption on Lf,g, Cf , Cg and λ1:

Assumption 1.6. Lf,g < 2λ1,
Cf

λ1
+

Cg√
λ1

< 1.

We conclude the random periodicity of the spatio-temporal discrete scheme (13) in Theorem 4.1 and determine a
uniform and strong order to approximate X−kτ

· (ξ) from (13) in Theorem 4.2. Compared to the convergence in

SDE cases in [5, 20], for the SEE case it is required that the approximation trajectory starting from L2(Ω; Ḣr) with

r ∈ (0, 1) rather than an arbitrary starting point in L2(Ω;H), which guarantees the continuity of the path X−kτ
· (ξ).

An interesting observation from it is, the order of convergence directly depends on the space where the initial point

lives on, ie, L2(Ω; Ḣr). As the rate of the convergence from X−kτ
· (ξ) to the random periodic path X∗

· is dependent
of the initial condition, we end up this paper with Corollary 4.1 which determines a strong but not optimal order for
approximating X∗

· . Corollary 4.1 also implies the best order of convergence can be ever achieved is 1/2 − ǫ with
arbitrarily small ǫ.

2 Preliminaries

In this section we present a few useful mathematical tools for later use.

Proposition 2.1. Under the condition of the infinitesimal generator −A in Assumption 1.1 for the semigroup
(S(t))t∈[0,∞), the following properties hold:

1. For any ν ∈ [0, 1], there exists a positive constant C1(ν) such that

‖A−ν(S(t)− Id)‖L(H) ≤ C1(ν)t
ν for t ≥ 0, (15)

where Id is the identity map from H to H . In addition,

‖A−ν‖L(H) ≤ λ−ν
1 . (16)

2. For any µ ≥ 0, there exists a positive constant C2(µ) such that

‖AµS(t)‖L(H) ≤ C2(µ)t
−µ for t > 0. (17)

3. For any t ≥ 0, ‖S(t)‖L(H) ≤ e−λ1t. For the orthogonal projection Pn, it holds that

‖S(t)(Id − Pn)‖L(H) ≤ e−λn+1t, for t ≥ 0. (18)

Proof. The proof for the first two inequalities can be found in [19]. For the last one, note for any x ∈ H , we have the
decomposition x =

∑∞
i=1(x, ei)ei. Clearly S(t)(Id − Pn) is a linear operator from H to H . Then the induced norm

(indeed we consider its square for convenience) for it is therefore

‖S(t)(Id − Pn)‖2L(H) = sup
x∈H,‖x‖=1

‖S(t)(Id − Pn)x‖2 = sup
x∈H,‖x‖=1

∞
∑

i=n+1

e−2λit(x, ei)
2

≤ e−2λn+1t sup
x∈H,‖x‖=1

∞
∑

i=1

(x, ei)
2 ≤ e−2λn+1t‖x‖2.

5
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As one of the main tools, Gamma function is presented:

Γ(γ) :=

∫ ∞

0

xγ−1e−xdx < ∞ for γ > 0. (19)

3 Existence and uniqueness of random periodic solution

In the following, we will show the boundedness of the solution to SEE (5) and characterize its dependence on the
initial condition, both of which are crucial ingredients for the existence of random periodic solutions. The proof
simply follows Lemma 3.1 and Lemma 3.2 in [20].

Lemma 3.1. For SEE (5) with the given initial condition ξ and satisfying Assumption 1.1 to Assumption 1.4, we have

sup
k∈N

sup
t>−kτ

E[‖X−kτ
t (ξ)‖2] < ∞. (20)

If, in addition, ξ ∈ L2(Ω,F−kτ ,P; Ḣ
r) for some r ∈ (0, 1), then the mild solution X−kτ

t (ξ) introduced in (9) is well

defined in L2(Ω,F−kτ ,P; Ḣ
r) for any k ∈ N, and t > −kτ .

Proof. The fist assertion follows Lemma 3.1 in [20]. It remains to justify the second assertion, by bounding each term

of (9) in L2(Ω,F−kτ ,P; Ḣ
r) with some constant independent of k and t. For the first term on the right hand side of

(9), we have

E[‖A r
2S(t+ kτ)ξ‖2] = E[‖S(t+ kτ)A

r
2 ξ‖2] ≤ E[‖A r

2 ξ‖2].
To bound the second term on the right hand side of (9), we apply the linear growth of f in (8), Proposition 2.1 and
(20), and take θ = 1

2 as follows:

E
[∥

∥A
r
2

∫ t

−kτ

S(t− s)f(s,X−kτ
s )ds

∥

∥

2]

= E
[∥

∥

∫ t

−kτ

A
r
2S

(

θ(t− s)
)

S
(

(1− θ)(t − s)
)

f(s,X−kτ
s )ds

∥

∥

2]

≤ 2L2
f,g

(

1 + sup
k∈N

sup
s≥−kτ

E[‖X−kτ
s ‖2]

)

(

∫ t

−kτ

‖A r
2S

(

θ(t− s)
)

‖L(H)‖S
(

(1− θ)(t− s)
)

‖ds
)2

≤ 2L2
f,gC2

(r

2

)2(
1 + sup

k∈N

sup
s≥−kτ

E[‖X−kτ
s ‖2]

)

(

∫ t

−kτ

(

θ(t− s)
)− r

2 e−λ1(1−θ)(t−s)ds
)2

≤ 2L2
f,gC2

(r

2

)2(
1 + sup

k∈N

sup
s≥−kτ

E[‖X−kτ
s ‖2]

)

λr−2
1

Γ
(

1− r
2

)2

4
,

where we make use of the definition of Gamma function (19) and θ = 1
2 to get

∫ t

−kτ

(

θ(t− s)
)− r

2 e−λ1(1−θ)(t−s)ds =

∫ t+kτ

0

(θs)−
r
2 e−λ1(1−θ)sds ≤ λ

r
2
−1

1

Γ
(

1− r
2

)

2
.

It remains to estimate the last term of (9). To achieve it, we shall apply the Itô isometry, the linear growth of g in (8),
and Proposition 2.1 together with the technique involving Gamma function above:

E
[∥

∥A
r
2

∫ t

−kτ

S(t− s)g(s,X−kτ
s )dW (s)

∥

∥

2]

≤ 2L2
f,g

(

1 + sup
k∈N

sup
s≥−kτ

E[‖X−kτ
s ‖2]

)

∫ t

−kτ

‖A r
2S(t− s)‖2ds

≤ 2L2
f,g

(

1 + sup
k∈N

sup
s≥−kτ

E[‖X−kτ
s ‖2]

)

(2λ1)
r−1Γ

(

1− r
)

2
.

Remark 5. As in [20], it suffices to show (20) through a weaker condition on f, g than the linear growth (8) there exists

a constant L̂f,g such that 2(u, f(t, u)) + ‖g(t, u)‖L2
0
≤ L̂f,g(1 + ‖u‖2), for t ∈ R and u ∈ H .

6
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Lemma 3.2. Assume Assumption 1.1 to Assumption 1.4. Denote by X−kτ
t and Y −kτ

t two solutions of SPDE (5) with
different initial values ξ and η. Then for every ǫ > 0, there exists a t ≥ −kτ such that

E[‖X−kτ
t̃

− Y −kτ
t̃

‖2] < ǫ (21)

whenever t̃ ≥ t.

The existence of the semiflow u for SEE (5) and its continuity with respect to the initial condition, ie, u(t, s, ·, ω) :
H → H being continuous, can be guaranteed by [18]. With Lemma 3.1, Lemma 3.2 and Assumption 1.5, the
existence and uniqueness of the random periodic solution to (5) can be shown following a similar argument in the
proof of Theorem 2.4 in [5].

Theorem 3.1. Under Assumption 1.1 to 1.5, there exists a unique random periodic solution X∗(t, ·) ∈ L2(Ω;H) such
that the solution of (5) satisfies

lim
k→∞

E[‖X−kτ
t (ξ)−X∗

t ‖2] = 0. (22)

Moreover, it holds that the mild form of X∗ given in (10) is well defined in L2(Ω; Ḣr) for any r ∈ (0, 1).

Proof. It remains to show the second assertion. The first conclusion of Theorem 3.1 ensures that for any ǫ, there exists

a K(t) ∈ N such that E[‖X−kτ
t (ξ)−X∗

t ‖2] < ǫ for any k ≥ K(t). Then

lim sup
t∈[0,π]

E[‖X∗
t ‖2] = lim sup

t∈[0,π]

E[‖X∗
t −X−kτ

t (ξ) +X−kτ
t (ξ)‖2]

≤ sup
k∈N

sup
t∈[0,π]

2E[‖X−kτ
t (ξ)‖2] + lim sup

t
lim

k≥K(t)
2E[‖X−kτ

t (ξ)−X∗
t ‖2]

< sup
k∈N

sup
t∈[0,π]

2E[‖X−kτ
t (ξ)‖2] + 2ǫ.

Because ǫ is arbitrary, then lim supt∈[0,π] E[‖X∗
t ‖2] ≤ supk∈N

supt∈[0,π] 2E[‖X−kτ
t (ξ)‖2].

Due to the random periodicity of X∗ and the measure preserving property of θ, it holds that

lim sup
t∈[π,2π]

E[‖X∗
t (·)‖2] = lim sup

t∈[π,2π]

E[‖X∗
t−π(θπ·)‖2] = lim sup

t∈[π,2π]

E[‖X∗
t−π(·)‖2] = lim sup

t∈[0,π]

E[‖X∗
t (·)‖2].

Similarly lim supt∈[−π,0] E[‖X∗
t ‖2] = lim supt∈[0,π] E[‖X∗

t ‖2]. Thus by induction, lim supt∈R E[‖X∗
t ‖2] < ∞.

Then following the same approach in the proof of Lemma 3.1, we can deduce that the mild form of X∗
t is in L2(Ω; Ḣr)

for any r ∈ (0, 1).

The second conclusion of Theorem 3.1 claims that the X∗ lives in an intersection space of L2(Ω; Ḣr), which is much
smaller than L2(Ω;H). Note that the first conclusion of Theorem 3.1 shows the convergence is regardless of the

initial condition ξ, that is, X−kτ
t (ξ) will converge to the unique random periodic solution no matter where it starts

from. This observation is crucial in that one may choose a starting point with preferred properties, for instance, the
continuity shown in Lemma 3.3.

Lemma 3.3. Recall that for a fixed h ∈ (0, 1), Λ(t) := −kτ + jh when t ∈ (−kτ + jh,−kτ + (j + 1)h]. Consider

the mild solution X−kτ
· (ξ) of SEE (5) with given initial condition ξ ∈ L2(Ω,F−kτ ,P; Ḣ

r) for some r ∈ (0, 1) and

satisfying Assumption 1.1 to 1.4. Then for any ν1 ∈
(

0, r/2
]

, there exists a positive constant CX depending on r and
ν1 such that

sup
k∈N

sup
t≥kτ

E[‖X−kτ
t −X−kτ

Λ(t) ‖2] ≤ CX(ν1, r)h
2ν1 .

Proof. One can deduce the following expression from the mild form (9):

X−kτ
t (ξ)−X−kτ

Λ(t) (ξ)

=
(

S(t− Λ(t))− Id
)

S(Λ(t) + kτ)ξ

+

∫ t

Λ(t)

S(t− s)f(s,X−kτ
s )ds+

∫ Λ(t)

−kτ

(

S(t− Λ(t))− Id
)

S(Λ(t)− s)f(s,X−kτ
s )ds

+

∫ t

Λ(t)

S(t− s)g(s,X−kτ
s )dW (s) +

∫ Λ(t)

−kτ

(

S(t− Λ(t))− Id
)

S(Λ(t)− s)g(s,X−kτ
s )dW (s).

(23)

7
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To get the final assertion, we estimate each term on the right hand in E[‖ · ‖2]. For the first term, we have that

E
[
∥

∥

(

S(t− Λ(t))− Id
)

S(Λ(t) + kτ)ξ
∥

∥

2]

= E
[∥

∥A−ν1
(

S(t− Λ(t))− Id
)

A−( r
2
−ν1)S(Λ(t) + kτ)A

r
2 ξ
∥

∥

2]

≤ ‖A−ν1
(

S(t− Λ(t))− Id
)

‖2L(H)‖A−( r
2
−ν1)‖2L(H)‖S(Λ(t) + kτ)‖2L(H)E[‖A

r
2 ξ‖2]

≤ C1(ν1)h
2ν1λ

−(r−2ν1)
1 E[‖A r

2 ξ‖2],
where Proposition 2.1 is applied for the last line. For the second term of (23), by making use of the linear growth
condition on f and Hölder’s inequality, we can obtain

E
[∥

∥

∫ t

Λ(t)

S(t− s)f(s,X−kτ
s )ds

∥

∥

2] ≤ 2L2
f,gh

2
(

1 + sup
k∈N

sup
s≥−kτ

E[‖X−kτ
s ‖2]

)

.

Similarly for the fourth term of (23), through the Itô isometry we have that

E
[∥

∥

∫ t

Λ(t)

S(t− s)g(s,X−kτ
s )dW (s)

∥

∥

2]

=

∫ t

Λ(t)

E
[

‖S(t− s)g(s,X−kτ
s )‖L2

0

]

ds

≤ 2L2
f,gh

(

1 + sup
k∈N

sup
s≥−kτ

E[‖X−kτ
s ‖2]

)

.

For the third term of (23), applying Assumption 1.1, Proposition 2.1, and defining θ = 1/2 yield the following estimate

E
[
∥

∥

∫ Λ(t)

−kτ

(

S(t− Λ(t))− Id
)

S(Λ(t)− s)f(s,X−kτ
s )ds

∥

∥

2]

= E
[∥

∥

∫ Λ(t)

−kτ

A−ν1
(

S(t− Λ(t))− Id
)

Aν1S
(

Λ(t)− s
)

f(s,X−kτ
s )ds

∥

∥

2]

≤ C1(ν1)
2h2ν1

∫ Λ(t)

−kτ

‖Aν1S
(

Λ(t)− s
)

‖L(H)ds

∫ Λ(t)

−kτ

‖Aν1S
(

Λ(t)− s
)

‖L(H)E[‖f(s,X−kτ
s )‖2]ds

≤ 2L2
f,g

(

1 + sup
k∈N

sup
s≥−kτ

E[‖X−kτ
s ‖2]

)

C1(ν1)
2h2ν1

(

∫ Λ(t)+kτ

0

‖Aν1S(θs)S
(

(1− θ)s
)

‖L(H)ds
)2

≤ 2L2
f,g

(

1 + sup
k∈N

sup
s≥−kτ

E[‖X−kτ
s ‖2]

)

C1(ν1)
2h2ν1C2(ν1)

2
(

∫ Λ(t)+kτ

0

(θs)−ν1e−λ1(1−θ)sds
)2

≤ 2L2
f,g

(

1 + sup
k∈N

sup
s≥−kτ

E[‖X−kτ
s ‖2]

)

C1(ν1)
2h2ν1C2(ν1)

2 λ
2(ν1−1)
1 Γ(1− ν1)

2

4
,

(24)

where we change variable to deduce the integral in the fourth line and apply the Gamma function (19) to get the last
line.

For the last term of (23), using the Itô isometry, the linear growth of g in (8) and the definition of the Gamma function
we have that

E
[∥

∥

∫ Λ(t)

−kτ

(

S(t− Λ(t))− Id
)

S(Λ(t)− s)g(s,X−kτ
s )dW (s)

∥

∥

2]

=

∫ Λ(t)

−kτ

E
[

‖A−ν1
(

S(t− Λ(t))− Id
)

Aν1S(Λ(t)− s)g(s,X−kτ
s )‖2L2

0

]

ds

≤ 2L2
f,g

(

1 + sup
k∈N

sup
s≥−kτ

E[‖X−kτ
s ‖2]

)

C1(ν1)
2h2ν1

∫ Λ(t)+kτ

0

‖Aν1S(θs)S
(

(1 − θ)s
)

‖2L(H)ds

≤ 2L2
f,g

(

1 + sup
k∈N

sup
s≥−kτ

E[‖X−kτ
s ‖2]

)

C1(ν1)
2h2ν1C2(ν1)

2 2(2λ1
2ν1−1Γ(1− 2ν1)

2

2
.

(25)

One will see that the continuity of the true solution in Lemma 3.3 plays an important role in later analysis.
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4 The random periodic solution of the Galerkin numerical approximation

This section is devoted to the existence and uniqueness of the random periodic solution for the Galerkin-type spatio-
temporal discretization defined in (13), and its convergence to the random periodic solution of our underlying SPDE
(5).

Lemma 4.1. Under Assumption 1.1 to Assumption 1.3, for the continuous version of the numerical scheme defined
in (13) with stepsize h ∈ (0, 1), it holds that

E[‖X̂n,−kτ
t − X̄n,−kτ

t ‖2] ≤ Cnh
(

1 + E
[
∥

∥X̄n,−kτ
Λ(t)

∥

∥

2])
, (26)

where Cn = 3(λ2
n + 4L2

f,g).

Proof. From (14) we get that

X̂n,−kτ
t − X̄n,−kτ

t

=
(

S
(

t− Λ(t)
)

− Id
)

X̄n,−kτ
t +

∫ t

Λ(t)

S
(

t− Λ(s)
)

fn
(

Λ(s), X̄n,−kτ
s

)

ds

+

∫ t

Λ(t)

S
(

t− Λ(s)
)

gn
(

Λ(s), X̄n,−kτ
s

)

dW (s).

(27)

For the first term on the right hand side, we have that

E[‖
(

S
(

t− Λ(t)
)

− Id
)

X̄n,−kτ
t ‖2]

= E

[∥

∥

∥

n
∑

i=1

(

e−λi(t−Λ(t)) − 1
)(

ei, X̄
n,−kτ
t

)

ei

∥

∥

∥

2]

≤
(

e−λn(t−Λ(t)) − 1
)2
E
[

‖X̄n,−kτ
t ‖2

]

≤ λ2
nh

2
E
[∥

∥X̄n,−kτ
Λ(t)

∥

∥

2]
,

(28)

where we use the fact (1− e−a) ≤ a for a > 0 to derive the last inequality.

For the second term on the right hand side of (27), we have that

E

[∥

∥

∥

∫ t

Λ(t)

S
(

t− Λ(s)
)

fn
(

Λ(s), X̄n,−kτ
s

)

ds
∥

∥

∥

2]

≤
∫ t

Λ(t)

‖S
(

t− Λ(s)
)

‖2L(H)ds

∫ t

Λ(t)

E
[∥

∥fn
(

Λ(s), X̄n,−kτ
s

)∥

∥

2]
ds

≤ 2h2L2
f,g

(

1 + E
[
∥

∥X̄n,−kτ
Λ(t)

∥

∥

2])
,

where we apply the Hölder inequality to deduce the second line and make use of the linear growth of f to get the last
line.

For the last term on the right hand side of (27), through the Itô isometry, Assumption 1.1 and the linear growth of g
we have that

E

[∥

∥

∥

∫ t

Λ(t)

S
(

t− Λ(s)
)

gn
(

Λ(s), X̄n,−kτ
s

)

dW (s)
∥

∥

∥

2]

=

∫ t

Λ(t)

E
[

‖S
(

t− Λ(s)
)

gn
(

Λ(s), X̄n,−kτ
s

)
∥

∥

2

L2
0

]

ds

≤ 2hL2
f,g

(

1 + E
[∥

∥X̄n,−kτ
Λ(t)

∥

∥

2])
.

Lemma 4.2. Under Assumption 1.1 to Assumption 1.3 and Assumption 1.6, let X−kτ
· be the solution of SEE (5) with

the initial condition ξ and X̂n,−kτ
· from (13) be its numerical simulation with the stepsize h satisfying

(

5Lf,g

√

hλn(1 + Cnh) + 2Cf

√

Cn

)
√
h ≤ 2Cf,g. (29)

9
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Then it holds that

sup
k∈N

sup
t>−kτ

E[‖X̂n,−kτ
t (ξ)‖2] ≤ C2

ξ +
4(Cf,g + Lf,g + L2

f,g)

2λ1 − Lf,g
. (30)

If, in addition, ξ ∈ L2(Ω,F−kτ ,P; Ḣ
r) for r ∈ (0, 1), the numerical solution introduced in (13) is well defined in

L2(Ω,F−kτ ,P; Ḣ
r) for any k ∈ N, and t > −kτ .

Proof. Applying the Itô formula to e2λt‖X̂n,−kτ
t (ξ)‖2, where we consider the differential form (14), and taking the

expectation yield

e2λtE[‖X̂n,−kτ
t (ξ)‖2] =e−2λkτ

E[‖ξ‖2] + 2λ

∫ t

−kτ

e2λsE[‖X̂n,−kτ
s ‖2]ds

− 2

∫ t

−kτ

e2λsE
(

X̂n,−kτ
s , AX̂n,−kτ

s

)

ds

+ 2

∫ t

−kτ

e2λsE
(

X̂n,−kτ
s , S

(

s− Λ(s)
)

fn(Λ(s), X̄
n,−kτ
s )

)

ds

+

∫ t

−kτ

e2λsE
[
∥

∥S
(

s− Λ(s)
)

gn
(

Λ(s), X̄n,−kτ
s

)
∥

∥

2

L2
0

]

ds.

(31)

Note that the inner product in the last second term can be further divided into several inner products as follows:

(

X̂n,−kτ
s , S

(

s− Λ(s)
)

fn(Λ(s), X̄
n,−kτ
s )

)

=
(

X̂n,−kτ
s ,

(

S
(

s− Λ(s)
)

− Id
)

fn(Λ(s), X̂
n,−kτ
s )

)

+
(

X̂n,−kτ
s − X̄n,−kτ

s , fn(Λ(s), X̄
n,−kτ
s )− fn(Λ(s), 0)

)

+
(

X̄n,−kτ
s , fn(Λ(s), X̄

n,−kτ
s )− fn(Λ(s), 0)

)

+
(

X̂n,−kτ
s , fn(Λ(s), 0)

)

=:

4
∑

i=1

Vi.

(32)

For V1, we have that

2

∫ t

−kτ

e2λsE[V1]ds = 2

∫ t

−kτ

e2λsE
(

X̂n,−kτ
s ,

(

S
(

s− Λ(s)
)

− Id
)

fn(Λ(s), X̂
n,−kτ
s )

)

ds

≤ 2Lf,gλnh

∫ t

−kτ

e2λsE
[

‖X̂n,−kτ
s ‖(‖X̂n,−kτ

s ‖+ 1)
]

ds

≤ Lf,gλnh

∫ t

−kτ

e2λsds+
5

2
Ĉfλnh

∫ t

−kτ

e2λsE
[

‖X̂n,−kτ
s ‖2

]

ds

≤ Lf,gλnh(1 + 5Cnh)

2λ
(e2λt − e−2λkτ )

+ 5Lf,gλnh(1 + Cnh)

∫ t

−kτ

e2λsE
[

‖X̄n,−kτ
s ‖2

]

ds,

where to deduce the second line we make use of linear growth of f and a similar estimate of (28), and to bound the

term of E
[

‖X̂n,−kτ
s ‖2

]

in terms of E
[

‖X̄n,−kτ
s ‖2

]

to get the last line we make use of the following fact from Lemma
4.1:

E
[

‖X̂n,−kτ
s ‖2

]

≤ 2E
[

‖X̄n,−kτ
s ‖2

]

+ 2E
[

‖X̂n,−kτ
s − X̄n,−kτ

s ‖2
]

≤ 2(1 + Cnh)E
[

‖X̄n,−kτ
s ‖2

]

+ 2Cnh.
(33)

10
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For V2, we have that by the Lipchitz condition of f , the Hölder inequality and Lemma 4.1

2

∫ t

−kτ

e2λsE[V2]ds = 2

∫ t

−kτ

e2λsE
(

X̂n,−kτ
s − X̄n,−kτ

s , fn(Λ(s), X̄
n,−kτ
s )− fn(Λ(s), 0)

)

ds

≤ 2Cf

∫ t

−kτ

e2λsE
[

‖X̂n,−kτ
s − X̄n,−kτ

s ‖‖X̄n,−kτ
s ‖

]

ds

≤ 2Cf

∫ t

−kτ

e2λs
√

E
[

‖X̂n,−kτ
s − X̄n,−kτ

s ‖2
]

E
[

‖X̄n,−kτ
s ‖2

]

ds

≤ 2Cf

√

Cn

√
h

∫ t

−kτ

e2λs
√

(

E
[

‖X̄n,−kτ
s ‖2

]

+ 1
)

E
[

‖X̄n,−kτ
s ‖2

]

ds

≤ 2Cf

√
Cn

√
h

2λ
(e2λt − e−2λkτ ) + 2Cf

√

Cn

√
h

∫ t

−kτ

e2λsE
[

‖X̄n,−kτ
s ‖2

]

ds,

where we use the fact
√

(a2 + 1)a2 ≤ a2 + 1 to deduce the last line.

For V3, together with the last term in (31), we are able to make use of dissipative condition in Assumtion 1.3 such that

2

∫ t

−kτ

e2λsE[V3]ds+

∫ t

−kτ

e2λsE
[∥

∥S
(

s− Λ(s)
)

gn
(

Λ(s), X̄n,−kτ
s

)∥

∥

2

L2
0

]

ds

≤ 2

∫ t

−kτ

e2λsE
[(

X̄n,−kτ
s , fn(Λ(s), X̄

n,−kτ
s )− fn(Λ(s), 0)

)

+
∥

∥gn
(

Λ(s), X̄n,−kτ
s

)

− gn
(

Λ(s), 0
)∥

∥

2

L2
0

]

ds+

∫ t

−kτ

e2λs‖gn
(

Λ(s), 0
)∥

∥

2

L2
0

]

ds

≤ −2Cf,g

∫ t

−kτ

e2λsE
[

‖X̄n,−kτ
s ‖2

]

ds+
L2
f,g

λ
(e2λt − e−2λkτ ),

where we also apply linear growth of g in (8) to deduce the last line.

For V4, we have that by the linear growth of f

2

∫ t

−kτ

e2λsE[V4]ds = 2

∫ t

−kτ

e2λsE
(

X̂n,−kτ
s , fn(Λ(s), 0)

)

ds

≤ 2Lf,g

∫ t

−kτ

e2λsE
[

‖X̂n,−kτ
s ‖

]

ds

≤ Lf,g

λ
(e2λt − e−2λkτ ) + Lf,g

∫ t

−kτ

e2λsE
[

‖X̂n,−kτ
s ‖2

]

ds

Under Assumption 1.6, take λ = λ1 − Lf,g/2. In summary,

e2λtE[‖X̂n,−kτ
t (ξ)‖2]

≤ e−2λkτ
E[‖ξ‖2] + (2λ+ Lf,g − 2λ1)

∫ t

−kτ

e2λsE[‖X̂n,−kτ
s ‖2]ds

−
(

2Cf,g − (5Lf,g

√

hλn(1 + Cnh) + 2Cf

√

Cn)
√
h
)

∫ t

−kτ

e2λsE
[

‖X̄n,−kτ
s ‖2

]

ds

+
Lf,g

√
λnh(1 + 5Cnh) + 2Cf

√
Cnh+ 2L2

f,g + 2Lf,g

2λ
(e2λt − e−2λkτ )

≤ e−2λkτ
E[‖ξ‖2] +

4(Cf,g + Lf,g + L2
f,g)

2λ1 − Lf,g
(e2λt − e−2λkτ ),

where, to deduce the last line, we make use of the choice for h in (29). This leads to

E[‖X̂n,−kτ
t (ξ)‖2] ≤ E[‖ξ‖2] +

4(Cf,g + Lf,g + L2
f,g)

2λ1 − Lf,g
(1− e−2λ(t+kτ)) ≤ C2

ξ +
4(Cf,g + Lf,g + L2

f,g)

2λ1 − Lf,g
.

The second assertion follows the proof of Lemma 3.1.

11



A PREPRINT - JANUARY 25, 2022

Lemma 4.3. Under Assumption 1.1 to Assumption 1.3, denote by X̂n,−kτ
t and Ŷ n,−kτ

t two Galerkin numerical
approximations from (13) of SEE (5) with the same stepsize h ∈ (0, 1) but different initial values ξ and η. Define

Ên,−kτ
t := X̂n,−kτ

t − Ŷ n,−kτ
t and similarly Ēn,−kτ

t := X̄n,−kτ
t − Ȳ n,−kτ

t . Then

E[‖Ên,−kτ
t − Ēn,−kτ

t ‖2] ≤ cnhE[
∥

∥Ēn,−kτ
Λ(t)

∥

∥

2
], (34)

where cn = 3(λ2
n + C2

f + C2
g ).

Proof. From (14), we have that

dÊn,−kτ
t = −AÊn,−kτ

t + S
(

t− Λ(t)
)(

fn(Λ(t), X̄
n,−kτ
t )− fn(Λ(t), Ȳ

n,−kτ
t )

)

dt

+ S
(

t− Λ(t)
)(

gn(Λ(t), X̄
n,−kτ
t )− gn(Λ(t), Ȳ

n,−kτ
t )

)

dW (t).
(35)

The rest of the proof is similar to the proof of Lemma 4.1.

Lemma 4.4. Under the same assumptions as Lemma 4.3. Denote by X̂n,−kτ
t and Ŷ n,−kτ

t two approximations of SEE

(5) with different initial values ξ and η under the same stepsize 2Cf (
√
hλn +

√
cn)

√
h ≤ Cf,g . Then

E[‖X̂n,−kτ
t − Ŷ n,−kτ

t ‖2] ≤ e−2λ1(t+kτ)
E[‖ξ − η‖2].

Proof. Similar as the proof of Lemma 4.2, we apply the Itô formula to e2λ1t‖Ên,−kτ
t ‖2, take its expectation, make

use of the Itô isometry and get

e2λ1tE[‖Ên,−kτ
t ‖2] = e−2λ1kτE[‖ξ − η‖2] + 2λ1

∫ t

−kτ

e2λ1sE[‖Ên,−kτ
s ‖2]ds

− 2

∫ t

−kτ

e2λ1sE
(

Ên,−kτ
s , AÊn,−kτ

s

)

ds

+ 2

∫ t

−kτ

e2λ1sE

(

Ên,−kτ
s , S

(

s− Λ(s)
)(

f(Λ(s), X̄n,−kτ
s )− f(Λ(s), Ȳ n,−kτ

s )
)

)

ds

+

∫ t

−kτ

e2λ1sE
[

‖S
(

s− Λ(s)
)(

g(Λ(s), X̄n,−kτ
s )− g(Λ(s), Ȳ n,−kτ

s )
)

‖2L2
0

]

ds.

(36)

In order to make use of the dissipative condition in Assumption 1.3, we further decompose the following term into
three terms

(

Ên,−kτ
s , S

(

s− Λ(s)
)(

f(Λ(s), X̄n,−kτ
s )− f(Λ(s), Ȳ n,−kτ

s )
)

)

=
(

Ēn,−kτ
s , f(Λ(s), X̄n,−kτ

s )− f(Λ(s), Ȳ n,−kτ
s )

)

+
(

Ēn,−kτ
s ,

(

S
(

s− Λ(s)
)

− Id
)(

f(Λ(s), X̄n,−kτ
s )− f(Λ(s), Ȳ n,−kτ

s )
)

)

+
(

Ên,−kτ
s − Ēn,−kτ

s , S
(

s− Λ(s)
)(

f(Λ(s), X̄n,−kτ
s )− f(Λ(s), Ȳ n,−kτ

s )
)

)

=: U1 + U2 + U3.

Substituting the right hand side into Eqn. (36) and applying the disspative condition in Assumption 1.3 give that

e2λ1tE[‖Ên,−kτ
t ‖2] ≤ e−2λ1kτE[‖ξ − η‖2] + 2(λ1 − λ1)

∫ t

−kτ

e2λ1sE[‖Ên,−kτ
s ‖2]ds

− Cf,g

∫ t

−kτ

e2λ1sE[‖Ēn,−kτ
s ‖2]ds+ 2

∫ t

−kτ

e2λ1sE[U2]ds+ 2

∫ t

−kτ

e2λ1sE[U3]ds.

For the term involving U2, we have that

2

∫ t

−kτ

e2λ1sE[U2]ds ≤ 2Cfλnh

∫ t

−kτ

e2λ1sE[‖Ên,−kτ
s ‖2]ds,

where we bound ‖S
(

s− Λ(s)
)

− Id
)

· ‖ ≤ λnh‖ · ‖ as we deduce the bound in (28) of Lemma 4.1 .

12
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For the term involving U3, we have that

2

∫ t

−kτ

e2λ1sE[U3]ds ≤ 2Cf

∫ t

−kτ

e2λ1sE[‖Ên,−kτ
s − Ēn,−kτ

s ‖‖Ēn,−kτ
s ‖]ds

≤ 2Cf
√
cn
√
h

∫ t

−kτ

e2λ1sE[‖Ēn,−kτ
s ‖2]ds,

where we apply Lemma 4.3 to deduce the last line.

In summary, we have that

e2λ1tE[‖Ên,−kτ
t ‖2] ≤ e−2λ1kτE[‖ξ − η‖2]−

(

Cf,g − 2Cf (
√
hλn +

√
cn)

√
h
)

∫ t

−kτ

e2λ1sE[‖Ēn,−kτ
s ‖2]ds

≤ e−2λ1kτE[‖ξ − η‖2]
because of the choice of stepsize h. Then the assertion follows.

Theorem 4.1. Under Assumptions 1.1 to 1.6, for any h ∈ (0, 1) satisfying

2Cf (
√
hλn +

√
cn)

√
h ≤ Cf,g and

(

5Lf,g

√

hλn(1 + Cnh) + 2Cf

√

Cn

)
√
h ≤ 2Cf,g, (37)

the Galerkin numerical approximation (13) admits a unique random period solution X̂n,∗
t ∈ L2(Ω;H) such that

lim
k→∞

E[‖X̂n,−kτ
t (ξ)− X̂n,∗

t ‖2] = 0. (38)

With Lemma 4.2 and Lemma 4.4, the proof is similar to the proof of Theorem 3.4 in [5].

4.1 The convergence

Theorem 4.2. Under Assumption 1.1 to Assumption 1.3, and Assumption 1.6, let X−kτ
· be the solution of SEE (5)

with the initial condition ξ ∈ L2(Ω,F−kτ ,P; Ḣ
r) for some r ∈ (0, 1), and let X̂n,−kτ

· be its numerical simulation
defined by (13) with the stepsize h satisfying (29). Then for any any ν1 ∈ (0, r/2], there exists a constant C, which

depends on ξ, A, f , g , r, ν1 and the uniform bounds of both X−kτ
· and X̂n,−kτ

· , such that

sup
k∈N

sup
t≥kτ

(

E[‖X−kτ
t − X̂n,−kτ

t ‖2]
)1/2 ≤ C

(

hν1∧κ +
1

√

λr
n

)

, (39)

where ν1 ∧ κ represents the smaller between ν1 and κ.

Proof. From the mild form (9) and the continuous version (13) for the Galerkin numerical approximation we derive
that

X−kτ
t − X̂n,−kτ

t = S(t+ kτ)(Id − Pn)ξ +

∫ t

−kτ

S(t− s)(Id − Pn)f(s,X
−kτ
s )ds

+

∫ t

−kτ

S(t− s)
(

fn(s,X
−kτ
s )− fn

(

Λ(s), X−kτ
Λ(s)

))

ds

+

∫ t

−kτ

S(t− s)
(

fn
(

Λ(s), X−kτ
Λ(s)

)

− fn(Λ(s), X̄
n,−kτ
s )

)

ds

+

∫ t

−kτ

S(t− s)(S(s− Λ(s))− Id)fn(Λ(s), X̄
n,−kτ
s )ds

+

∫ t

−kτ

S(t− s)(Id − Pn)g(s,X
−kτ
s )dW (s)

+

∫ t

−kτ

S(t− s)
(

gn(s,X
−kτ
s )− gn

(

Λ(s), X−kτ
Λ(s)

))

dW (s)

+

∫ t

−kτ

S(t− s)
(

gn
(

Λ(s), X−kτ
Λ(s)

)

− gn(Λ(s), X̄
n,−kτ
s )

)

dW (s)

+

∫ t

−kτ

S(t− s)(S(s− Λ(s))− Id)gn(Λ(s), X̄
n,−kτ
s )dW (s) =:

9
∑

i=1

Ji.

(40)

13
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It remains to estimate each of {Ji}9i=1 in E[‖ · ‖2] with a finite bound that is independent of k and t. For J1, we can
get the following estimate based on Assumption 1.1 and the condition on ξ:

E[‖S(t+ kτ)(Id − Pn)ξ‖2]

= E
[

∞
∑

i=n+1

e−2(t+kτ)λi(ei, ξ)
2
]

= E
[

∞
∑

i=n+1

e−2(t+kτ)λi

λr
n

λr
n(ei, ξ)

2
]

≤ 1

λr
n

E
[

∞
∑

i=1

λr
n(ei, ξ)

2
]

=
1

λr
n

E[‖A r
2 ξ‖2].

For J2, by using the same decomposition for x ∈ H as in J1, the linear growth of f , and the uniform boundedness of

X−kτ
t (see Lemma 3.1), one can see that

E
[
∥

∥

∫ t

−kτ

S(t− s)(Id − Pn)f(s,X
−kτ
s )ds

∥

∥

2]

= E
[
∥

∥

∫ t

−kτ

∞
∑

i=n+1

e−2(t−s)λi(ei, f(s,X
−kτ
s ))ds

∥

∥

2]

≤ E

[(

∫ t

−kτ

e−2(t−s)λn+1

∥

∥

∥

∞
∑

i=n+1

(ei, f(s,X
−kτ
s ))

∥

∥

∥
ds

)2]

≤
∫ t

−kτ

e−2λn+1(t−s)ds

∫ t

−kτ

e−2λn+1(t−s)
E[‖f(s,X−kτ

s )‖2]ds

≤ 2L2
f,g

(

1 + sup
k∈N

sup
t≥−kτ

E[‖X−kτ
t ‖]

) (1− e−2λn+1(t+kτ))2

λ2
n+1

≤ 2

λ2
n+1

L2
f,g

(

1 + sup
k∈N

sup
t≥−kτ

E[‖X−kτ
t ‖]

)

.

To get the upper bound for J3, one shall apply the Hölder inequality and Assumption 1.3, and then make use of Lemma
3.3,

(

E
[∥

∥

∫ t

−kτ

S(t− s)
(

fn(s,X
−kτ
s )− fn

(

Λ(s), X−kτ
Λ(s)

))

ds
∥

∥

2])1/2

≤
(

E
[∥

∥

∫ t

−kτ

S(t− s)
(

fn(s,X
−kτ
s )− fn

(

Λ(s), X−kτ
s

))

ds
∥

∥

2])1/2

+
(

E
[∥

∥

∫ t

−kτ

S(t− s)
(

fn(Λ(s), X
−kτ
s )− fn

(

Λ(s), X−kτ
Λ(s)

))

ds
∥

∥

2])1/2

≤ 2Cf

(
√

1 + sup
k∈N

sup
s≥−kτ

E[‖X−kτ
s ‖2]hκ +

√

CX(ν1, r)h
ν1
)

∫ t

−kτ

‖S(t− s)‖L(H)ds

≤ 1

λ1
2Cf

(
√

1 + sup
k∈N

sup
s≥−kτ

E[‖X−kτ
s ‖2]hκ +

√

CX(ν1, r)h
ν1
)

,

where to get the last line, we use the following estimate based on Proposition 2.1,
∫ t

−kτ

‖S(t− s)‖L(H)ds ≤
∫ t

−kτ

e−λ1(t−s)ds ≤ 1

α
. (41)

Regarding the term J4, by Assumption 1.3 and the estimate (41) one has that

E
[
∥

∥

∫ t

−kτ

S(t− s)
(

fn
(

Λ(s), X−kτ
Λ(s)

)

− fn(Λ(s), X̄
n,−kτ
s )

)

ds
∥

∥

2] ≤
C2

f

λ1
2 sup

k,s
E[‖X−kτ

s − X̂n,−kτ
s ‖2].

For term J5, following the estimate (24) yields

E
[
∥

∥

∫ t

−kτ

S(t− s)(S(s− Λ(s))− Id)fn(Λ(s), X̄
n,−kτ
s )ds

∥

∥

2]

≤ 2L2
f,g

(

1 + sup
k∈N

sup
t≥−kτ

E[‖X̂n,−kτ
t ‖2]

)

C2(ν1)
2C2(ν1)

2 λ1
2(ν1−1)Γ(1 − ν1)

2

4
h2ν1 .

14
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Directly applying the Itô isometry and the estimate (18), we have the bound for J6:

E
[
∥

∥

∫ t

−kτ

S(t− s)(Id − Pn)g(s,X
−kτ
s )dW (s)

∥

∥

2]

≤ 2L2
f,g

(

1 + sup
k∈N

sup
t≥−kτ

E[‖X̂n,−kτ
t ‖2]

)

∫ t

−kτ

‖S(t− s)(Id − Pn)‖2L(H)ds

≤
2L2

f,g

λ2
n+1

(

1 + sup
k∈N

sup
t≥−kτ

E[‖X̂n,−kτ
t ‖2]

)

.

Through the Itô isometry, Assumption 1.1, Assumption 1.3, Lemma 3.3 and a similar estimate as (41), one can derive
the bound for J7 as follows

(

E
[
∥

∥

∫ t

−kτ

S(t− s)
(

gn(s,X
−kτ
s )− gn

(

Λ(s), X−kτ
Λ(s)

))

dW (s)
∥

∥

2])1/2

≤
(

E
[
∥

∥

∫ t

−kτ

S(t− s)
(

gn(s,X
−kτ
s )− gn

(

Λ(s), X−kτ
s

))

dW (s)
∥

∥

2])1/2

+
(

E
[
∥

∥

∫ t

−kτ

S(t− s)
(

gn(Λ(s), X
−kτ
s )− gn

(

Λ(s), X−kτ
Λ(s)

))

dW (s)
∥

∥

2])1/2

≤ 2Cg

(
√

1 + sup
k∈N

sup
s≥−kτ

E[‖X−kτ
s ‖2]hκ +

√

CX(ν1, r)h
ν1
)

(

∫ t

−kτ

‖S(t− s)‖2L(H)ds
)1/2

≤ 2Cg√
2λ1

(
√

1 + sup
k∈N

sup
s≥−kτ

E[‖X−kτ
s ‖2]hκ +

√

CX(ν1, r)h
ν1
)

.

Regarding the term J8, by the Itô isometry, Assumption 1.3 and the estimate (41) one has that

E
[
∥

∥

∫ t

−kτ

S(t− s)
(

gn
(

Λ(s), X−kτ
Λ(s)

)

− gn(Λ(s), X̄
n,−kτ
s )

)

dW (s)
∥

∥

2] ≤
C2

g

2λ1
sup
k,s

E[‖X−kτ
s − X̂n,−kτ

s ‖2].

Finally, applying the Itô isometry and the linear growth of g in Assumption 1.3, and following the estimate (25), we
have the bound for J9 that

E
[∥

∥

∫ t

−kτ

S(t− s)(S(s− Λ(s))− Id)gn(Λ(s), X̄
n,−kτ
s ))dW (s)

∥

∥

2]

≤ 2L2
f,g

(

1 + sup
k∈N

sup
t>−kτ

E[‖X̂n,−kτ
t ‖2]

)

∫ t

−kτ

‖Aν1S(t− s)A−ν1(S(s− Λ(s))− Id)‖2L(H)ds

≤ 2L2
f,g

(

1 + sup
k∈N

sup
t>−kτ

E[‖X̂n,−kτ
t ‖2]

)

C1(ν1)
2h2ν1C2(ν1)

2 (2λ1)
2ν1−1Γ(1− 2ν1)

2

2
.

In total, we have that

sup
k∈N

sup
t≥kτ

(

E[‖X−kτ
t − X̂n,−kτ

t ‖2]
)1/2 ≤

9
∑

i=1

sup
k∈N

sup
t≥kτ

(E[‖Ji‖2])1/2

≤ C(hν1 + hκ +
1

√

λr
n

+
1

λn
+

1

λn+1
) +

(Cf

λ1
+

Cg√
λ1

)

sup
k∈N

sup
t≥kτ

(

E[‖X−kτ
t − X̂n,−kτ

t ‖2]
)1/2

.

Because of
Cf

λ1
+

Cg√
λ1

< 1 from Assumption 1.6, we can conclude the final assertion.

Note in Theorem 4.2, one can take ν1 = r/2 to achieve the fastest convergence.

Corollary 4.1. Assume Assumption 1.1 to Assumption 1.6. Let X∗
t be the random periodic solution of SEE (5)

and X̂n,∗
t be the random period solution of the Galerkin numerical approximation with the stepsize h satisfying (37).

Consider approximating X̂n,∗
· through the sequence {X̂n,−kτ

· (ξ)}k with ξ ∈ L2(Ω,F−kτ ,P; Ḣ
r) for r ∈ (0, 1). Then

there exists a constant C, which depends on A, f , g and r, such that

sup
t

(

E[‖X∗
t − X̂n,∗

t

∥

∥

2
]
)1/2 ≤ C

(

h
r
2
∧κ +

1
√

λr
n

)

. (42)
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Corollary 4.1 implies that the best order of convergence can be achieved is 1/2 − ǫ for an arbitrarily small ǫ > 0 if

κ = 1/2. Moreover, as the mild form of X∗
t is welled defined in

⋂

r∈(0,1) L
2(Ω; Ḣr) shown in Theorem 3.1, and

Ḣr1 ⊂ Ḣr2 for r1 ≥ r2, it is not surprised to observe that the order of convergence would be higher if we adopt the

approximation sequence with initial condition in L2(Ω; Ḣr) under a higher value of r.
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