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1. Introduction

Renewal processes, apart from their mathematical attractiveness, in practice, present an 
adequate operational description for the repairable systems when repair is perfect. In reality, 
this assumption does not hold due to various reasons such as variable environment, aging of 
spare parts, quality of repair facilities, etc. Therefore, in reliability applications, modeling of 
imperfect repair/maintenance was addressed in numerous publications. One of the most popular 
imperfect repair models (age reduction) is based on the notion of virtual age (Kijima, 1989; 
Doyen and Gaudoin, 2004; Finklestein, 2008). As the main goal of this paper is to discuss an 
alternative approach to the virtual age concept reported in the literature on imperfect 
repair/maintenance, we first describe the latter on the level required for the presentation to 
follow. 
     Let an item with the  lifetime T , the Cdf  ( )F t , the survival function ( )F t , the pdf ( )f t  
and the failure rate ( )t   be incepted into operation at t=0. Assume that ( )t   is strictly 
increasing, then its value at t uniquely defines the chronological age of an item, i.e., 1( ( ))t t − = .  
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An item fails at * (0, )t   , which is a realization of T and the repair action is then initiated. 
The perfect repair reduces an item’s age to 0 , whereas the minimal repair (Barlow and Proschan, 
1975) does not change the age and the distribution of the remaining lifetime. The Brown-
Prochan imperfect repair model (1983) combines these two types of repair, i.e., with a given 
probability the repair is perfect and with the complementary one, it is minimal (see also Badía 
and Berrade (2006, 2007, 2009)). Other theoretical option is when repair reduces the age of the 
item at failure to some intermediate level   , i.e., 0 *t    (age reduction), whereas the 
corresponding remaining lifetime is defined in terms of survival functions as 

0

( )( | ) exp ( )
( )

tF tF t x dx
F


  



 +  
= = − + 

  
 .                                         (1) 

Relationship (1) means that the ‘shape’ of the failure rate after this type of imperfect repair 
remains the same and the function is just ‘shifted’ on  in its the argument. The well-known 
Kijima’s models for imperfect repair processes are based on this assumption and consider linear 
age reduction at each imperfect repair (Kijima, 1989, Finkelstein, 1989). See also Doyen and 
Gaudoin (2004), Finkelstein (2007), Tanwar et al (2014). Dijoux et al (2016), Doyen et al 
(2017), Zhao et al (2019) to name a few. Note that the repair in (1) can be also interpreted (and 
it will be important for us in what follows) as: the failed item is replaced by the statistically 
identical one that was operating and did not fail in [0, ] . 
      Perfect repair is usually realized in practice by the replacement of the failed item with the 
new one, minimal repair is also well-justified when, e.g., a small part of a large failed system 
is repaired/replaced.  However, general reduction of age to some intermediate level modeled 
by (1) does not have this practical, justified meaning. It can be considered as a plausible, formal 
model, which possesses tractable properties and also can be successfully used for statistical 
inference (see, e.g., Levitin and Lisniansky (2000), Dijoux et al (2016), de Toledo et al (2015) 
to name a few). In order for the virtual age concept that arises in the problem of imperfect 
repair/maintenance to be sound and practically justified, there should be a clear description of 
the corresponding repair operations that result in (and conform with) relationship (1). In our 
opinion, this is not the case for most repairable systems except for a specific case of minimal 
repair. For instance, the failure rate of the “cold” standby system with n exponentially 
distributed i.i.d. lifetimes of components with failure rates   is given by 
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 The imperfect repair of the failed system means that only 1 k n   components are replaced 
( 1k =  is the ‘minimal repair’  and k n=  is the perfect repair). Obviously, after this type of 
repair, the shape of the failure rate changes and one cannot discuss this setting in terms of the 
model (1). Similar conclusion can be made for the ‘continuous variant’ of this setting when 
degradation of an item is modelled by a gamma process. The failure occurs on reaching the 
predetermined level of degradation, whereas the imperfect repair in this case results in 
decreasing this level to some intermediate value. Other numerous examples can also support 
this claim 
     In this paper, we will discuss a new approach to the imperfect repair modeling based on the 
suggested notion of virtual age that, in our opinion, does not possess the above described 
deficiency of the model based on (1). It will be more specific in terms of the class of lifetime 
distributions that describe degradation of repairable items. This is the price for the more 
informative description of the remaining lifetime than in the black-box scenario (1). We will 
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consider the internal degradation of items due to some internal processes of ‘tear and wear’. 
Thus, when we reduce the wear/degradation, the ‘clock of the wear process’ is also reset 
according to the model to be defined. The external degradation processes (e.g., shocks) does 
not usually possess the property of setting the clock back (as they influence but not influenced 
by item’s operation) and should be considered differently. 
     It should be noted that some models dealing with reduction of the current degradation 
mostly during preventive maintenance (PM) actions were discussed in the literature (see, e.g., 
Zhao et al (2019) and Berenguer et al (2003), to name a few). For instance Kahle (2019) 
discusses linear deterioration reduction and compares it with the corresponding age reduction 
during the PM for a specific Wiener process of degradation. However, as mentioned above, our 
reasoning is different from that reported in the literature, as it employs the new and effective 
notion of virtual age. 
     The paper is organized as follows. In section 2, we describe the model. Section 3 gives some 
examples of degradation processes. Section 4 provides relevant stochastic comparisons. In 
Section 5, the corresponding repair process is described. Section 6 considers the repair process 
in the degradation scale. Finally, some remarks are given in Section 7. 
 
2. Degradation-based imperfect repair    
 
Let a failure of an item with a lifetime 0T   occurs when its degradation induced by the 
internal wear and tear processes exceeds the deterministic threshold level. For instance, when 
the production rate of a production system is deteriorating, the threshold can be easily set as 
some unacceptable level. Thus, it can be not necessarily a failure as such but rather an 
undesirable condition/state. In case of a random threshold (see later), it is usually an ‘ordinary’ 
failure of an item. 
     Assume that the observable (continuously monitored or only at failure) internal 
deterioration process 0{ , 0}, 0tW t W = , has independent increments and is characterized by the 
monotonically increasing sample paths. Then  

( ) ( , ) ( )tP T t F t w P W w  =                                               (2) 

is the survival function of the time to failure when the failure is defined as reaching/crossing 
the level w. 

Remark 1. Generalization of the following to the case of non-monotone stochastic processes 
(e.g., Wiener process with positive drift) can be also considered based on distributions of the 
first passage times for specific processes. Moreover, processes with dependent increments can 
be also discussed. However, here we want to emphasize the suggested novel approach, which 
can be better illustrated by a simpler case of monotone processes with independent increments. 

     Perfect degradation-wise repair brings degradation to 0.  Obviously, there is no minimal 
repair in this case.  Define the imperfect repair as the repair that reduces degradation w to some 
intermediate level w , 0 w w  . See Figure 1 for the change in the degradation level of the 
item under the imperfect repair. 
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Figure 1. The change in the degradation level of the item under the imperfect repair 

 

     This is equivalent mathematically to reducing the threshold to w w− , and returning 
degradation to zero level in the homogeneous case (see below and Section 5). Both 
interpretations of this imperfect repair can exist. However, the initial one is better justified in 
practice due to the observed degradation level after the imperfect repair of this kind.  

      The remaining lifetime (or the residual lifetime) is an important characteristic in reliability 
(Salehi et al., 2012; Belzunce et al. 2008; Hazra et al. 2018). We will consider now two cases: 

a. The process { , 0}tW t   is homogeneous. In this case, due to the property of independent 
increments, the state of an item after repair is completely described by the decreased wear w , 
as the remaining lifetime of an item rT  is, obviously, completely defined by the Cdf 

( ) ( , )wF t F t w w − ,                                                        (3) 

where ( , ) 1 ( , )F t w F t w −  . 

b. The process { , 0}tW t   is non-homogeneous. The following question arises first: what age of 

an item that have started operation at t =0 corresponds to w ?  The remaining lifetime should 
obviously depend on it, whereas in (3), this age was irrelevant due to homogeneity of the 
process. Although it has a different meaning than in imperfect repair Kijima-type models, we 
prefer to call it also the virtual age and denote by ( )VT w .  Using (2), we define it as a random 
variable with the Cdf ( , )F t w . Thus, ( )VT w  describes the time that is needed for the process that 

starts at 0t =  to accumulate wear w . Then the pair { , ( )}Vw T w  completely and unambiguously 
defines the state of an item, whereas the corresponding remaining lifetime is defined by the 
following survival function  

0

( ) ( ) ( , )w x t xF t P W W w w f x w dx


+= −  − ,                                  (4) 
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where ( , ) ( , )f x w F x w
x


=


.  In the non-homogeneous case, the failure after the imperfect 

repair occurs when the degradation process, starting from the virtual age, exceeds the threshold  
w w− . Thus, similar to the homogeneous case, the repair has reduced the threshold from w to 
w w−  for the degradation process starting from the virtual age (in each realization). 
 

     It should be noted that here we also imply some assumptions that we think to be reasonable 
for describing the model. However, in our opinion, they are much more practically justified 
than those of the ‘black-box’ imperfect repair model (1), as they are based on the real observed 
degradation of an item. 

Definition 1. The degradation-based imperfect repair (DIR) is the operation that decreases 
the wear w at failure (corrective maintenance) or at preventive maintenance of an item to the 
value w , 0 w w  .  
     For the homogeneous degradation process, the remaining lifetime after this operation is 
described by the distribution (3).  
    For the nonhomogeneous degradation process { , 0}tW t  , the remaining lifetime is described 
by (4), where ( , )f t w  is the pdf of the virtual age ( )VT w , i.e., of the random time that is needed 

for a statistically identical item  that starts at 0t =  to accumulate wear w . The Cdf of ( )VT w  
is given by ( , )F t w  defined by (2). 

     For the homogeneous case, Definition 1 does not use any additional assumptions, as (3) 
unambiguously defines the remaining lifetime, and, therefore, the model is completely 
justified. In fact, we do not need the virtual age (although it, obviously, formally exists) for this 
case. In the nonhomogeneous case, the remaining lifetime is defined via the virtual age of an 
item that is statistically identical to the initial one and had accumulated wear w . The similar 
assumption, as already mentioned in the Introduction, characterizes (1), but in that case, it is 
much less informative, as age   of an operating item can correspond to any level of 
deterioration *w , 0 *w w  .  One can argue that there can exist a certain dependence on the 
past for an item, as the wear at failure for this specific item is decreased, whereas we define the 
remaining lifetime for the statistically identical item that had gained the same wear w . 
However, as we, in general, do not know (or cannot effectively model) the mechanism of repair 
except for the observed reduced wear, the imposed assumption seems reasonable and not, in 
fact, restrictive for modelling on this general level.  See the last paragraph of “Concluding 
remarks and discussion” for more detail. On the other hand, for specific deterioration processes, 
e.g., for the homogeneous gamma process, one can adjust the introduced notion of virtual age 
to the case when e.g., the corresponding shape parameter is increased after the imperfect repair, 
modelling more intensive degradation afterwards.   
     The way to choose w   depends on the specific application in practice and there can be 
many settings, where the developed general model can be applied. One of the possibilities that 
can be applied in practice is to set as ,0 1w qw q=   . Then, q (distinct from the age-reduction 
models) has a clear ‘physical’ meaning.  
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3. Supplementary examples 

3.1. Poisson process of degradation. As the simplest but meaningful reliability example, 
assume that stochastic degradation is defined by a step function modelled by the corresponding 
homogeneous Poisson process with rate  . Thus, the survival function of the waiting time 
until the M-th event in this process is     

1

0

( )( , ) exp{ }
!

iM

i

tF t M t
i



−

=

= −  , 

which describes reliability of the 1 out of M cold standby system with the i.i.d., exponentially 
distributed components.  
     In what follows, we provide some practical background and examples for the cold standby 
systems. Redundancy is a commonly used technique to ensure high reliability of various 
systems. In a cold standby system, only a minimum number of components are kept in 
operation and the standby ones are switched to the fully operational mode only when the 
operating components fail. Since the cold standby components are not exposed to operational 
stresses, they are not subject to failures in the standby mode and, therefore, the systems with 
this mode of components are more reliable than those with the hot standby or the warm standby 
modes.  The cold standby mode of elements is widely used in practice especially in the mission-
oriented, autonomous and safety-critical systems (spaceships, submarines, nuclear power 
stations, etc).  
     The spare parts sufficiency can be also modelled via the Poisson degradation process, 
whereas the spare parts replenishment is executed when the number of available components 
reaches the predetermined level. In this way, we can speak in terms of imperfect repair of a 
system that consists of the main component and several identical spare parts. A similar slightly 
modified modeling can be applied to the imperfect software debugging when the bugs in the 
software during operation occur in accordance with the Poisson process (Finkelstein (2008)).  
   As the 1 out of M cold standby system described above is composed of M statistically 
identical components, the model parameter   can be estimated just by estimating the 
parameter of the i.i.d. exponentially distributed components having the failure rate  . The 
detailed estimation procedures can be found, e.g., in Meeker and Escobar (2014). 

The failure of a system occurs with the M-th failure of components and degradation is 
completely defined by the number of failed components m and can be easily observed in 
practice. Thus, in accordance with our approach, the virtual  age of a system, which degradation 
after the  imperfect repair has been reduced from M  to m M , is a random variable with the 
Cdf ( , )F t m  and the pdf  ( , )f t m , whereas the remaining lifetime distribution is, obviously,  
given by  

1

0

( )( , ) 1 exp{ }
!

iM m

i

tF t M m t
i



− −

=

− = − −                                                            (5) 

and does not depend on this virtual age.  

     Consider now the nonhomogeneous Poisson process (NHPP) with rate ( )t  and 
degradation described by the number of occurred events with the threshold M and the reduced 
wear m. Thus, the pdf of the corresponding virtual age in this case is  
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1( ( ))( , ) ( )exp{ ( )}
( 1)!

mxf x m x x
m


−

= −
−

, 

where 
0

( ) ( )
t

t u du =  . Then, in accordance with (4), the survival function describing the 

remaining lifetime is 

0

( ) ( ) ( , )m x t xF t P W W M m f x m dx


+= −  −   

where    
1

0

( ( , ))( ) exp{ ( , )} ; ( , ) ( )
!

x tiM m

x t x
i x

x tP W W M m x t x t u du
i


+− −

+

=


−  − = −  =  . 

3.2. Gamma process of degradation.  In the same manner, we can illustrate the introduced 
notion of virtual age for the gamma process of degradation. The gamma process is also widely 
used in the literature for modeling ‘continuous’ degradation (the fatigue in materials, cracks 
growth, structural engineering etc.). More specifically, the gamma process can be applied to 
modeling the degradation processes in aircraft landing gear brakes, in boiler heat exchangers, 
in GaAs lasers, etc. 

In the homogeneous case, 

( , )( , ) 1
( )
t wF t w

t
 




= −


,                                                (6) 

where 1

0
( ) exp{ }aa z z dz


− = − ; 1( , ) exp{ }a

x
a x z z dz


− = − ,  0, 0    are the shape  and scale 

parameters, respectively. The corresponding remaining lifetime is defined by 

( , ( ))( , ) 1
( )

t w wF t w w
t

 



 −
− = −


, 

whereas for the nonhomogeneous gamma process with the non-linear shape function ( )t , the 
corresponding survival function is defined by (4) and (6) and 

(( ( ) ( )), ( ))( ) 1
( ( ) ( ))x t x

t x x w wP W W w w
t x x

  

 
+

 + − −
−  − = −

 + −
. 

Observe that 

( ) ( ) 1

0

1( , ) 1 exp( ) du,
( ( ))

w
x xF x w u u

x
  



−= − −
  

( ) ( ) 1

0

1( , ) 1 exp( ) du
( ( ))

w
x xf x w u u

x x
  



−
 

= − − 
  

  
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2

( ) 1

0

( , )

exp( ) dsx

A x w

s s



−

=
 

− 
 

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where 

( ) ( ) ( ) 1 ( ) 1

0 0

( , ) ln ln  '( ) exp( ) exp( ) ds
w

x x xA x w u x u u s s     


− −
  

= − + − −  
  
   

( ) ( ) 1 ( ) 1

0

exp( ) '( ) ( ln ) s exp( ) ds  dx x xu u x s s u    


− −
 

+ − −  
 

 . 

Then, combining all of these, the corresponding remaining lifetime is given by  

0

( ) ( ) ( , )w x t xF t P W W w w f x w dx


+= −  − . 

     The two most common methods of parameter estimation (in reliability framework) for 
gamma processes, namely, the maximum likelihood and the method of moments, are discussed 
in detail in van Noortwijk (2009), along with the Bayesian analysis when the scale parameter 
of the gamma process is assumed to have an inverted gamma distribution as a prior. See also, 
e.g., Dufresne et al. (1991) and Wang (2009). 

Remark 2. As degradation is decreased to the fixed w , we are not concerned with a possible 
overshooting for the gamma process, i.e., achieving the value larger than w at failure, as in the 
case of the linear reduction is performed. Note that. the inverse-Gaussian process with 
continuous sample paths (no jumps) can be also considered as the specific case for our 
modelling. 

4. Some stochastic comparisons 

In this section, we will discuss some initial stochastic comparisons (mostly in the sense of the 
usual stochastic ordering) involving the virtual age introduced in Section 2 and the 
corresponding remaining lifetime. For general introductions of the concepts of stochastic 
comparison, see Belzunce et al. (2015).  Further, more detailed studies can constitute a topic 
for future research in this specific direction. Note that,  here w , 0 w w   will be considered 
as some intermediate value of the accumulated degradation and not necessarily related to the 
imperfect repair model. Thus, these comparisons will be discussed in a more general setup.  

     For the homogeneous case, in accordance with our notation, 

( ) ( ) ( , ) ( )x t x t wP W W w w P W w w F t w w F t+ −  − =  − = −  .                    (7) 

Thus, for all positive 1 2w w , obviously, 

1 2( , ) ( , )F t w F t w                                                         (8) 

and thus, the remaining lifetime in (7) is decreasing in the sense of the usual stochastic ordering 
(Shaked and Shantikumar, 2007) as w  is increasing.  
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We will compare now the corresponding remaining lifetimes for the nonhomogeneous case. 

Theorem 1. Let x t xW W+ −   be stochastically increasing in x in the sense of the usual stochastic 

order for all fixed 0t  . Then, for  1 20 w w w   , 
(i) 1 2( ) ( )V st VT w T w  

 (ii) 
1 2
( ) ( )w wF t F t , for all 0t  .  

Proof.  
Due to the definition of the virtual age  ( )VT w  in (2), Eq. (8) clearly means that the virtual age 

( )VT w  that corresponds to deterioration w  is increasing in w  in the same stochastic sense, i.e., 

1 2( ) ( )V st VT w T w . 

 Observe that ( ) [ ( ( ))]w VF t E h T w= , where ( ) ( )x t xh x P W W w w+ −  − . As  ( )h x  is a decreasing 

function of x  and 1 2( ) ( )V st VT w T w , it holds that 
1 2
( ) ( )w wF t F t , for all 0t  . 

▀ 
Corollary 1. For the nonhomogeneous Gamma process with convex ( )t  and 0   (see 

Section 3), and  for 1 20 w w w   , 

1 2
( ) ( )w wF t F t , for all 0t  . 

Proof.  

The fact that 
1 1 2 2x t x st x t xW W W W+ +−  − , for 1 2x x ,  follows  from Müller and Stoyan (2002). Thus, 

the assumption in Theorem 1 is satisfied.  

▀ 
Let us compare now the  remaining lifetimes for two items characterized by the degradation 

processes, 1, 2,{ , 0},{ , 0}t tW t W t   when, in both cases, the intermediate level (e.g., to which the 
repair reduces degradation at failure, w) is  the same , i.e., w , 0 w w  . 
 
Theorem 2. Let 1, 1, 2, 2,x t x st x t xW W W W+ +−  −  for all 0, 0x t  , and 2, 2,x t xW W+ −  is stochastically 
decreasing in x in the sense of the usual stochastic order for all fixed 0t  . Then,  

  1 2( ) ( )w wF t F t , for all 0t  , 

where 1 ( )wF t  and 2 ( )wF t  are the survival functions of the remaining lifetimes for  the first and 
the second items. 

Proof.  

From the assumption, 1, 2,t st tW W , 

1 1 1, 2, 2 2( , ) ( ( ) ) ( ) ( ) ( ( ) ) ( , )V t t VF t w P T w t P W w P W w P T w t F t w  =    =   . 

This means that 1 2( ) ( )V st VT w T w , where 1 ( )VT w  and 2 ( )VT w  are the random virtual ages for the 
two processes, respectively. Observe that  
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1 11 1, ( ) 1, ( )( ) [ ( )]
V Vw T w t T wF t E P W W w w+= −  −  

1 12, ( ) 2, ( )[ ( )]
V VT w t T wE P W W w w+ −  −  

                  
2 22, ( ) 2, ( )[ ( )]

V VT w t T wE P W W w w+ −  − 2 ( )wF t= , 

where the expectations, similar to Theorem 1, are with respect to the pdfs of the corresponding 
virtual ages. The first inequality holds due to the assumption that 1, 1, 2, 2,x t x st x t xW W W W+ +−  − , for 

all 0, 0x t  , and the second inequality holds due to the fact that 1 2( ) ( )V st VT w T w  and 

2, 2,x t xW W+ −  is stochastically decreasing in x  in the usual stochastic order sense for all fixed 
0t  .  

▀ 
Corollary 2. Consider two nonhomogeneous Gamma processes with 1 1( ( ), )t   and 2 2( ( ), )t   

(see Section 3). Suppose that 1 1 2 2( ) ( ) ( ) ( )x t x x t x   + −  + −  for all 0, 0x t  , and 1 2  , 

and 2 ( )t  is concave. Then, 1 2( ) ( )w wF t F t , for all 0t  . 

Proof.  

It follows from Müller and Stoyan (2002) that the assumptions in Theorem 2 are satisfied. 

▀ 
     Consider now a random failure threshold W  described by the Cdf ( )G w  and the pdf  ( ).g w  
It is just more convenient to write the following in terms of the distribution functions and not 
survival functions as above. Then the time to failure of an item is described by the following 
Cdf 

0 0

( ) ( , ) ( ) ( ) ( ) [ ( )] [ ( )]t tF t F t w g w dw P W w g w dw E P W W E h W
 

= =  =  =  ,        (9) 

where ( ) ( )th w P W w=  , which is a decreasing function of w . Thus, for two random thresholds 

ordered as 1 2stW W , that is, 2 1( ) ( )G w G w , we have  

1 1 2 2( ) [ ( )] [ ( )] ( )F t E h W E h W F t   , 
which implies the ordering of lifetimes in this case is also in the sense of the usual stochastic 
order. 
     What about the corresponding remaining lifetime for a random failure threshold? Assume 
that no failure had occurred in the degradation interval ˆ[0, )w  and we are looking at ˆ( | )F t w -
the remaining lifetime since the corresponding random time (which is, obviously, the virtual 
age ˆ( )VT w ). In the homogeneous case, ˆ( | )F t w  does not depend on ˆ( )VT w , i.e.,   

ˆ ˆ

ˆ ˆ ˆ ˆ ˆ( | ) ( , ) ( | ) ( ) ( | ) ,t
w w

F t w F t w w g w w dw P W w w g w w dw
 

= − =  −                     (10) 

where ˆ( | )g w w  is the pdf that corresponds to the Cdf 
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ˆ( ) ( )ˆ ˆ( | ) ,
ˆ( )

G w G wG w w w w
G w
−

=  . 

Obviously, (10) reduces to (3) for ŵ w=  and the degenerate ( )G w . 

On the contrary, the remaining lifetime depends on ˆ( )VT w  for the nonhomogeneous case. 
Thus, from (4), 

ˆ( | )
ˆ 0

ˆ ˆ ˆ ˆ( | ) ( ) ( , ) ( | ) [ ( )]x t x W W w
w

F t w P W W w w f x w g w w dxdw E h W
 

+ = −  − =  , 

where ˆ( | )[ ]W W wE    stands for the expectation with respect to the conditional distribution of 

ˆ( | )W W w  and 
0

ˆ ˆ( ) ( ) ( , )x t xh w P W W w w f x w dx


+= −  − , which is decreasing in w .  Consider 

now two random failure thresholds 1 2,W W  with the corresponding Cdfs  1 2( ), ( )G w G w , 
respectively.  It is well known, that the usual stochastic ordering of two random variables does 
not necessarily lead to the usual stochastic ordering of the corresponding remaining lifetimes 
for all values of arguments.  Therefore, we assume the hazard rate ordering. Then,  

1 2 1 2ˆ ˆ( | ) ( | )hrW W G w w G w w   , i.e., 1 1 2 2( | ) ( | )stW W w W W w    

and, similar to (9), the ordering of the corresponding remaining lifetimes in the sense of the 
usual stochastic ordering can be obtained, i.e., 

2 1ˆ ˆ( | ) ( | )F t w F t w . 

As this ordering holds for all realizations of the virtual age ˆ( )VT w , it holds for the 
nonhomogeneous case as well.  

5. Reduction of degradation and the imperfect repair processes 

Consider now the imperfect repair processes based on the notion of imperfect repair suggested 
in this paper. For motivation and further discussion, we must first recall the relevant facts 
describing the geometric process (Lam, 1988, 2007; Pérez‐Ocón and Torres‐Castro, 2002; 
Pérez‐Ocón and Montoro-Cazorla, 2004). Then the generalized renewal process of imperfect 
repairs that is prompted by analogies with the geometric process will be considered. Finally, 
we end this section with a general description of the generalized renewal process of imperfect 
repairs. 
     Let  , 1,2,...nT n =  be a collection of independent lifetimes with the Cdfs ( )nF t   that are called 
cycles and interpreted as the inter-arrival times for the corresponding generalized renewal 
process 

( ) sup{ : }, 0;nN t n S t t=   0
1

, 0
n

n i
i

S T S
=

= = . 

 Assume the specific form of the Cdfs, namely 
1( ) ( ), 1,2,...n

nF t F a t n−= = ,                                                 (11) 
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where ( )F t  is a baseline distribution. Then the defined process is called the geometric process 
(Lam, 1988, 2007). When 1a  , 

1( ) ( ), 0n nF t F t t+  . 

and, therefore, the inter-arrival times are stochastically decreasing and the process is 
converging ( lim [ ]n nE S→   ), if the mean that corresponds to ( )F t  is finite. 
     Thus, the geometric process defined above presents a mathematically tractable model for 
imperfect repair at each cycle. Moreover, the corresponding renewal equations generalizing 
renewal equations for the standard renewal process can be derived and solved in terms of 
Laplace transforms. This process has attracted a lot of attention in reliability applications. For 
instance, various optimal replacement problems can be solved minimizing the long-run cost 
rate when preventive replacement (incepting the new system) is scheduled upon failure after 
the m-th imperfect repair of the described type.  
     On the other hand, from a practical point of view,  it is not clear how a  in  (11), which is, 
in fact, just a scale transformation in the argument of the corresponding Cdf, relates to the real 
‘physical’ action of repair. Similar to our discussion of (1) and Kijima-type imperfect repair 
processes, we can conclude that it can constitute a plausible black-box statistical model. 
However, when we have an additional information, in the form of the observed degradation, it 
is tempting to use the approach discussed in the previous sections of this paper. This approach 
can be justified as a real ‘physical’ operation of reducing degradation of an item and not just a 
statistical model. 
   Let us now generalize one single imperfect repair defined in Section 2 to successive imperfect 
corrective repairs for the degradation model studied in this paper. That is, after the first failure, 
the imperfect repair reduces degradation w  to some intermediate level 1w , and after the second 

failure, the imperfect repair reduces degradation w  to some intermediate level 2w , and so on.  
Consider the homogeneous case, defined by the degradation reduction in (3). Assume that 

with each imperfect repair, the threshold w stays the same but the reduced wear in (3) is 
increasing with each repair, e.g., also in a geometric-type way, i.e.,  

2
1 2(1 ) , (1 ) ,...; ; 0 1.i

iw w w w w w w   = − = − − =                             (12) 

Then, (12) results in the sequence that does not depend on the levels iw , i.e., 

2
1 2 3( , ) ( ) ( , ) ( ) ( , ) ( ),...F t w F t F t w F t F t w F t                            (13) 

Thus, the cycles of this process are stochastically decreasing. Whether it converges in the sense
lim [ ]n nE S→   , as the geometric process above, depends on the underlying degradation process. 
Obviously, the similar to (13), ordering holds for any increasing sequence of degradation levels 
after consecutive repairs, i.e.,  1 2 ...w w  . 

     The cycles  , 1,2,...nT n =  that are described by the Cdfs ( )iF t  in (13) constitute the 

generalized renewal process.  Assume that the mean durations of the cycles i  are finite and 
decrease with i in such a way that the process is converging in the following sense 

1 1
[ ]i i

i i
E T b

 

= =

= =    .                                                 (14) 

and denote 1 ii
T S

=
 .    
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Remark 3. For illustration, consider the homogeneous Poisson process with a sufficiently large 
intensity  , so that degradation levels M and m in (5) can be considered approximately as 
‘continuous’. Let 1/ d =  be the corresponding mean of the inter-arrival times. Then 

1 , 1,2...i
i M d i  −= =   Thus (14), for the process (13) takes place.  

     As in the ordinary renewal theory, the expectation (renewal function), )]([)( tNEtH   is 
of the main interest. By analogy (Lam, 2007; Wang and Pham, 2006), the same general 
equation for the renewal function )(tH  holds: 

( )

1
( ) [ ( )] ( )n

n
H t E N t F t



=

 = ,                                             (15) 

where )()( tF n   is the Cdf of nS , ,...2,1=n  . (1)
1, ( ) ( )F t F t . 

We will show now that in our case this function is infinite, which looks a bit counter-
intuitive, however, similar ‘burstiness’ of the ‘renewal function’ was reported in the literature 
for the standard geometric process in Braun et al (2005). The following result is more general 
than for the specific setting (13)-(14) described above. 

Theorem 3. Assume that the governing lifetime Cdf ( , )F t w  is absolutely continuous, strictly 
positive and strictly increasing for all 0t .  Let the point process 0),( ttN  be converging 
in the sense of (14).  
     Then )]([ tNE  is infinite for all 0t . 

Proof. Similar to Finkelstein (2010), let ( )K t  denote the Cdf of 
1

i
i

T


=

 . It follows from (14) 

that there exists 0  such that 

1
( ) P i

i
K b T b 



=

 
   

 
 .                                            (16) 

As 

1 1
P P

n

i i
i i

T b T b


= =

   
     

   
   

and 

1
( )

n

i
i

N b n T b
=

   , 

we have 
( )P ( ) , 1N b n n   .                                                 (17) 

Thus, from (17), 

1
( ) [ ( )] P( ( ) )

i
H b E N b N b i



=

= =  =  . 

As )(tH  is non-decreasing, it is also infinite for all bt  .  
     To show this property on (0, )  consider first the sum 
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1
1 2

i i
i i

S T T T
 

= =

= = +  . 

     Denote the Cdf of 
2

i
i

T


=

 by 2 ( )K t  and consider the corresponding convolution: 

1 2
0

( ) ( ) ( )
t

K t f x K t x dx= − . 

Thus, there is some 2 0   such that 
1

1 1 2 1 2
0

( ) ( ) ( )
b

K b f x K b x dx


  

−

− = − −  .                                 (18) 

This is because 1( ) 0f x   for 0x  (assumption  of the theorem) and 1
2

[ ]i
i

E T b 


=

= − , whereas 

the latter implies that, similar to (16), there exists 2 0   such that 

2 1 1 2
2

( ) Pr i
i

K b T b  


=

 
−   −  

 
  . 

Therefore, keeping in mind that from (15), 

( )
1 1

1
( ) ( )n

n
H b F b 



=

− = − , 

and using (18) for 1t b = −  in the same way we  used (16) for t b= , we arrive at 

1 1( ) [ ( )]H b E N b − = − =  , 

thus, increasing the interval of convergence to 1[ , )b −  .  

     Exactly in the same manner, we can perform any number of the described above steps. Thus, 
after the n-th reduction of the argument,  

1 1

n n

i i
i i

H b E N b 
= =

    
− = − =     

    
  . 

When n → , due to (14), ( )H t is infinite in any interval [ , ),  where   as small as we 
wish. 

▀ 
Remark 4. For the case when ( )H t =  , the age-replacement PM models based on the 
corresponding expectations are not well defined. However, they can be regularized in some 
way to become well-posed. For instance, if repair is considered to be non-instantaneous, then 
the mean number of renewals in the corresponding generalized alternating renewal process is 
finite in any finite interval. Then the PM is performed after n imperfect repairs and it can be 
defined optimally, e.g., cost-wise. Lam (2007) has considered another (increasing) geometric 
process for modeling the sequence of repair times, which makes sense in applications (see also, 
e.g., Zhang (2002)). Another obvious method is based on truncation of the geometric process 
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when there cannot be more than 1n   ‘geometric renewals’ in the process (Wang and Pham, 
2006).  

     What happens in the non-homogeneous case? Consider the problem first in full generality. 
Let  , 1, 2,...iw i =   be the increasing sequence of degradation levels after the i-th imperfect repair 
such that 

limi iw c w→ =  , 

where 0c   is a constant. Thus, with each imperfect repair its quality is decreasing. Note that, 
if it stays the same, i.e., 1 2 3 ...w w w w= = = =  the corresponding point process  , 1,2,...,iT i =  
where, as above, iT  denote the inter-arrival times, is a ‘classical’ delayed renewal process with 

the first cycle described by the survival function ( , )F t w  in (2), whereas all subsequent cycles 

durations are described by the survival function ( )wF t  in (4). On the other hand, when c w , 
the process converges asymptotically as i →   to the  renewal process with cycles durations 
described by the survival function ( )cF t . 
     When the levels after imperfect repairs are different, in accordance with the virtual age 
model  proposed in this paper, the cycles have survival functions 
 

1( ) ( , )F t F t w= , 

1
0

( ) ( ) ( ) ( , ) , 1
ii w x t x i iF t F t P W W w w f x w dx i



+ += = −  −  , 

where ( , ) ( , )i if x w F x w
x


=


 is the density describing the virtual age on reaching the level 

of degradation iw .  
      However, the most important thing to emphasize here is that the resulting generalized 
renewal process is the process with independent cycles, which dramatically differs from the 
processes of imperfect repair induced by the Kijima-type modeling that have dependent cycles. 
     It immediately follows from Theorem 1 that  

1( ) ( ), 1,2,...i iF t F t i+  =                                              (19) 

in this case means that the cycles of the defined generalized renewal process are stochastically 
decreasing.  

Let (12) hold, but, of course, we do not have (13) now that holds only for the homogeneous 
case. Assume, as in Theorem 1, that the increments x t xW W+ −  are stochastically increasing in x 
in the sense of the usual stochastic ordering. It follows from (2) and (4) that (setting x=0 in 

x t xW W+ − ) 

1
0

( ) ( ) ( , ) ( , )i x t x i i iF t P W W w w f x w dx F t w w


+ += −  −  − .                       (20) 

Therefore, we can define the majorizing renewal-type process with the corresponding arrival 
times that are larger then  , , 1, 2,....i nT i =  Therefore, its renewal function is smaller than that 

of the original one. However, if we choose now in (20) the degradation levels according to 

On degradation­based imperfect repair and induced generalized renewal processes



16 
 

(12), then  under assumptions of Theorem 3,  the majorizing renewal-type process will have 
infinite  ( )H t  for all 0t   and so does the original imperfect repair process for the 
nonhomogeneous process of degradation.  
    The latter part was described for the degradation levels defined by the specific ‘geometric 
form’ (12), whereas the general result for the corresponding generalized renewal process is 
given in (19). As was discussed during definition of the imperfect repair at the end of Section 
2, the choice of degradation levels , 1, 2,...iw i = or the corresponding model for that depends on 
the specific application where imperfect repairs are implemented. This choice can depend on 
the quality of repair facilities, resources, time, etc. The corresponding specific models can be 
developed for relevant applications in the future.   

6. Degradation scale 

As degradation can be monitored and is monotone, we can consider the suggested imperfect 
repair model and the corresponding repair processes not in the usual time scale, but in the 
degradation scale. In this short section, we just outline the suggested approach that can be 
possibly developed in the further research for a more general model.  
     Let an item start operating at 0=t . Assume that the failure on the first cycle occurs on 
reaching the random degradation level 1W  described by the Cdf  ( )G w  and the pdf ( )g w  with 

support in [0, ) . Thus, 1W  can be generally considered as a ‘lifetime’ in this case.  The first 

failure (and the instantaneous imperfect repair) occur at 1w  , which is a realization of 1W  .  
Assume that the imperfect repair decreases this degradation to 1( )q w  , where ( )q w   is an 
increasing continuous function and 0 ( )q w w  . The second cycle of the process starts with  
the degradation level 1 1( )q w =  and the cycle duration 2W  (remaining degradation) has the Cdf  

*
1 1 1 1( | ( )) ( ( ( )) ( ( ))) / ( ( ))G w q w G w q w G q w G q w= + −  . No virtual age of any kind, no additional 

assumptions, just as described above. 
    Let  2 2W w= . Thus, the value of degradation just before the second repair is  1 2( )q w w+  and it 

is  2 1 2( ( ) )q q w w = +  just after the second repair.  In a similar manner, recursively, 

1 0( ), 1, 0n n nq w n  −= +  =                                                 (21) 

or, equivalently, for the corresponding random values   

1 0( ), 1, 0n n nq W n − =  +  = , 

  When ( ) , 0 1q w qw q=   , e.g., (21) reduces to  
1

1
1 2 1

0
...

n
n n n i

n n i
i

q w q w qw q w
−

− −

+

=

= + + + = , 

where, , 1iw i  , are realizations of inter-arrival times iW   in the point process of imperfect repairs, 
defined by the ‘remaining degradation concept’. 

     Thus, the procedure is similar to that in Kijima 2 model (Kijima, 1989) when we consider 
this process in the t-scale. However, as mentioned, the approach in the w-scale is much better 
justified.  By analogy, it can be also shown that when n →  the cycles of this process are 
asymptotically identically distributed (Finkelstein, 2008) in the w-scale. For the linear q(x), the 
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described procedure is similar to the Arithmetic Age Reduction model in Doyen and Gaudoin 
(2004) and numerous aftermath papers. The corresponding PM problems can be also 
considered, however, for that we must go back to the time scale or make additional assumptions. 
This can be performed for the specific problems to be formulated and considered in the future 
research. 

7. Concluding remarks and discussion 

We suggest and justify a new, basic approach to modelling imperfect repair that differs from 
the conventional virtual age models reported in the literature. We consider monotone processes 
of degradation with independent increments.  
     In order to define the state of an item after the imperfect repair that reduces its degradation 
upon failure, a notion of a random degradation-based virtual age is introduced. The 
corresponding remaining lifetime of an item after the imperfect repair is defined only by the 
reduced degradation (homogeneous degradation processes) and additionally, by the random 
virtual age (non-homogeneous processes). 
     We obtain some stochastic comparisons for remaining lifetimes with different thresholds 
and different underlying processes of degradation. The homogeneous and non-homogeneous 
gamma processes are chosen for illustration. Another practically sound option would be the 
inverse Gaussian process. 
     The geometric-type reduction of wear/threshold at each cycle of the corresponding 
generalized renewal-type process is considered and the infiniteness of the analogue of the 
renewal function in this case is proven. Finally, an alternative approach that considers the 
imperfect repair process defined in the degradation scale is outlined. 
     The future research can focus on various generalizations of the developed methodology. For 
instance, deterioration processes with dependent increments can be considered. On the 
applications side, relevant imperfect preventive maintenance models can be also discussed.     

As we discussed In Section 2, for the homogeneous case (e.g., for Levy processes), 
Definition 1 does not use any additional assumptions, as (3) unambiguously defines the 
remaining lifetime, and, therefore, the model is completely justified. For the nonhomogeneous 
case, the onset time of the stochastic process after reduction of degradation becomes crucial 
and we model it by the defined virtual age ( )VT w  independently from the realization of the 
chronological age on failure of an item. We have provided the motivation for this reasonable, 
in our opinion, assumption. In principle, we can assume that, as w  is reduced at failure in 
accordance with, e.g., w qw= , the age at failure should be also reduced in accordance with (1) 
to  *qt = . Then we can carry on with this setting as the basis for the corresponding bivariate 
statistical model. However, all the weaknesses of the age reduction in (1) discussed in the 
Introduction then come in two play. Thus, on one hand, we have the absolutely real/physical 
operation of reducing degradation, whereas, on the other hand, a rather vague assumption that 
the age should be decreased (which is true, but the model for that is not justified). This approach 
can possibly work for inferential matters, which can be also investigated in the future.  
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