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Abstract. In practice, at many instances, it is important to maintain the failure-free performance 
of components in a standby system, as each sudden failure of an operating component can result 
in a failure of a system, e.g., due to imperfect or/and ‘non-instantaneous’ switching on failure and 
related adverse effects. Therefore, the scheduled preventive switching/replacement to the standby 
component that can be executed without these consequences is one of the effective methods for 
increasing reliability characteristics of such systems, especially in the safety-critical applications. 
In this paper, the corresponding optimal strategy for switching is described and justified for the 
cold standby system of two aging components with degradation modeled by the counting Poisson 
and gamma processes. An inspection is carried out at some optimally predetermined time and 
based on the observed degradation switching is performed after the optimally obtained delay. 
Detailed numerical examples illustrate our findings.  
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1. Introduction  

The most conventional type of redundancy in practice is the structural redundancy on the elements’ 
or on the system’s level. When an operating element fails, switching to the operable redundant one 
that was kept in the cold, warm, or hot standby mode is executed.  

In this paper, we consider cold standby systems performing missions of the fixed duration T. 
At many instances, a failure of an operating element is unacceptable, as it results in a direct mission 
failure or substantial economic losses. This is relevant, e.g., for many safety-critical and important 
missions. Some examples of these systems will be given below. In order to extend lifetimes of 
degrading systems with respect to sudden failures of components and, therefore, to increase the 
mission success probability, the preventive switching/replacement (PS) of an operating element 
by the available standby one can be executed in practice.  
     The PS for standby systems was addressed in numerous publications (see, e.g., [1, 2] for some 
general settings). In [3], the reusable PS strategy was considered when after replacement, the 
operable component can be used as a standby in the future. The influence of the lifetime 
distribution parameters on the optimal PS policy was analyzed in [4]. In [5], the postponed PS was 
considered in combination with the imperfect repair. In [6], the PR policy was modeled and 
optimized for a standby system undergoing the preventive and corrective replacements as well as 
periodic backups. In [7], the PS and system inspection policies were investigated for systems with 
degrading standby elements. Periodic switching policies for the cold-standby two-unit system were 
discussed in the recent paper [8], where the concept of virtual age was used for the units in the 
cold-standby ‘recovering’ after the active operation. The reusable strategy for heterogeneous items 
was also studied in [9]. Maximization of the component’s sequencing for cold-standby systems 
with imperfect switching has been addressed in [10]. Some other relevant properties of the cold-
standby systems can be found, e.g., in references [11-14]. 
     Most of the papers on the PS management in the described context were dealing with 
degradation of elements that was modeled by the increasing failure rates and no additional 
information was available (the black-box scenario). In [15] the standby component was already 
switched into operation before the failure of the active one, whereas in [16-17] the probability of 
a first failure of a component in the standby system was maximized by implementing the optimal 
switching strategy. However, in practice, deterioration processes or its proxies can be observed for 
components, at least, at inspections and, therefore, can provide additional, important information 
for obtaining optimal PS times for achieving the components’ failure free performance in a system. 
(Some analogy can be found in the field of the condition-based maintenance (see e.g., [18-20]). 
Therefore, the main contribution of our paper can be formulated as: 
Distinct from the studies of models for preventive switching/replacement reported in the literature, 
in this paper, we are considering maximization of the mission success probability (MSP) in standby 
systems with observable degradation. An inspection is carried out on the active component at the 
optimally obtained time and, depending on the observed degradation and using the developed 
optimal procedure, the time of actual switching to the standby component is found. We also show 
that the suggested approach outperforms the black-box scenario when the time of switching is 
obtained without information on degradation. 
     Optimal switching of components to be discussed in this paper can be also considered in a 
broader context of lifetimes extension in various applications. For instance, lifetime extensions by 
means of the finite number of preventive maintenance (PM) actions for systems with a relatively 
long lifecycle (see, e.g., [21-22], for the basic PM models) were studied in [23-24]. Failures of 
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these systems during operation can result in catastrophic events and, therefore, the lifetime 
extension (increasing the expected lifetime without failure in the operational mode) is an important 
tool for improving reliability in practice.  
     As switching of an operating component to a cold standby in the context of the current paper 
can be also considered as the corresponding PM (replacement), we will briefly discuss this 
interpretation showing that the expected costs for maintenance in the fixed interval of time are 
minimal if maintenance is performed at the time suggested by our optimal strategy. Thus, the PM 
setting provides another practically important application of our methodology (see Remark1 in 
Section 2 and Remark 3 in Section 5). Note that, at many instances, e.g., for the offshore units the 
time of PM should be carefully planned, as it can be very costly to get the PM crew to the cite, 
whereas an inspection can be performed remotely. The proposed method decreases the overall 
costs of the PM operations. We plan to consider this topic in a more generality in the future 
research. Some recent relevant papers with respect to this application (although not in the 
framework of our approach) are [25-30]. Specifically, in [30], the authors consider the risk-based 
adaptive planning of inspections and maintenance in structural systems using stochastic 
optimization.   
     We provide now a practical, cyber-security example that illustrates the setting discussed in our 
paper. Consider n=2 virtual machines (VMs) performing a data processing task in a cloud 
computing environment. Only operating VM has access to the sensitive data. The time needed to 
complete the task is fixed. During this time the operating VM experiences hackers’ attacks. If an 
attack on the operating VM succeeds, hackers get access to the data through this VM and corrupt 
the data. The probability of an attack’s success increases with the number of attacks (or with time), 
as in each attack hackers gain some information about the system protection. This describes the 
corresponding deterioration, which can be measured as a function of the number of attacks (or the 
time of exposure to continuous attack). The mission fails if the data is corrupted. To increase the 
mission success probability the user transfers the task execution to the standby VM (having larger 
level of protection) if deterioration of operating VM reaches some level.  Each cyber-attack leave 
traces and the inspection reveals traces of attacks and, therefore, the level of protection 
degradation. If this level exceeds a threshold, the standby VM is activated in optimally obtained 
time. The standby VM protection has other codes and the attacker should start the attack from the 
start. Degradation can be understood in the sense that an attacker usually uses brute force 
enumeration algorithms to find the keys to protection codes. The more time the attack lasts (or the 
more attacks have been launched) the larger is the probability of the attack’s success. 

Finally, our paper assumes a perfect switching mechanism. Generalizations to a non-perfect 
switching can be worth looking at while considering specific applications. For instance, in the 
recent paper [31] (that can be also used as a survey on conventional switching strategies in standby 
systems), it was shown that the MSP can be increased if the standby component is activated before 
the failure of the main one and both of them remain active after that. Obviously, the MSP can only 
decrease (as compared with the case without pre-activation) if switching is perfect.  
          The paper is organized as follows. In Section 2, we briefly recall the black-box scenario for 
switching of components in the standby system executing a mission of the fixed duration and add 
some relevant remarks for the discussion to follow. Supplementary Section 3 defines two 
degradation processes and relevant relationships, i.e., the Poisson and the gamma process. Section 
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4 discusses the basics of the suggested approach, whereas Section 5 describes the corresponding 
optimization procedures. Final remarks are given in Section 6.  

2. The black-box scenario 

Consider a cold standby system of two i.i.d. components with Cdfs ( )F t  and the failure rate ( )t

Assume that )(t  is increasing, thus ( )F t   belongs to the IFR  class, which  indirectly describes 
the overall degradation processes in components. Let T  denote the fixed duration of a mission or 
a task to be executed. 
     Denote by 1( , )P a T  the mission success probability (MSP), i.e., no components’ failures in 
[0, )T  with one switching at 0 a T  . The sub index “1” stands for “until the first failure of a 
component”.  Then, it is easy to show that 1max ( ( , ))a P a T is attained at / 2a T= . Indeed,  

1
0 0

( , ) exp ( ) exp ( )
a T a

P a T u du u du 
−      

= − −   
      
  .                                   (1) 

After differentiating the sum of integrals and equating the derivative to 0 ,  we get the equation 

( ) ( )a T a = − .                                                       (2) 

which, as ( )t  is increasing, has the unique solution 2a T= . Due to additivity of the integrals, 
additional switching does not increase the probability in (1) [16].  
     For further discussion of the setting with additional information on degradation, we need also 
to consider the case when the components are not statistically identical. In this case, the similar 
reasoning results in the following equation 

1 2( ) ( )a T a = − ,                                                         (3) 

where 1( )t  and 2 ( )t  are the increasing failure rates of the first and the second (standby) 
components, respectively.  Equation (3), under some additional assumptions (see later), also has 
the unique solution that maximizes the probability of survival without failures of components in 
[0, ]T . The diagram describing operation of the described system is given in Fig.1. 
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Fig.1 Operation of a system for two scenarios: failure of the active component before the planned 

switching (upper) and after it (lower) 
 
     For dealing with the case with additional information on degradation, the following observation 
is meaningful. In accordance with the foregoing, the switching for maximizing 1( , )P a T  in (1) is 
scheduled a priory at / 2a T= . Let at time (0, / 2)ia T  the main component be operable and we 
want to schedule the further switching optimally to maximize the remaining survival probability 
of the standby system in [ , )ia T .  In the rest of the paper, ia  will have the meaning of the inspection 
time for observing degradation. Thus, some conditioning is involved in this optimization problem. 
The Cdf of the remaining lifetime of the main component is  

1
( ) ( )( )

( )
i i

i

F a t F aF t
F a
+ −

=  

with the corresponding failure rate 1( ) ( )it t a = + . From (3), denoting the time since inspection 
to switching by *a , 

( *) (( ( *))i ia a T a a + = − + .                                             (4) 

This means that * / 2ia a T+ = , and therefore, switching should be executed again at / 2T . 
Specifically, when / 2ia T= , we have: * 0a = . Therefore, information that the component is 

operable at ia  does not change the optimal switching time.  We will show that the situation is 
different when we have an additional information on the degradation process of a component, as 
the remaining lifetime ‘could be already sufficient’ for the first component to continue to operate 
after / 2ia T= !  
 
Remark 1.  For another practically sound interpretation of our setup, assume that we have a 
standby system of aging components that is executing a task/mission of a fixed duration T. In order 
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to increase the mission success probability one maintenance action is allowed (the case of more 
than one maintenance actions can be also considered, but it is much more cumbersome).  It can be 
either corrective upon failure with the cost fC  or preventive with the cost rC , which, in fact, is 
the cost of perfect repair (replacement or overhaul). Similar to the conventional PM models, 

f r aC C C= + , where  aC  are additional costs associated with the sudden failure of a system. We 
want to minimize the expected maintenance costs (either on failure of the first active component 
or on PM at (0, )a T , whichever comes first). Note that, here we are not considering the costs 
related to the failure of a mission when a system fails in [0, ]T  after the maintenance of any kind. 
So, when to perform the PM that will minimize the expected costs? From our reasoning in this 
section, it follows immediately that the PM should be performed at / 2a T= , as this strategy 
minimizes the probability of a failure of a system that have started operation at 0t =  and, therefore, 
of the expected maintenance costs. This is because the PM cost is smaller than that of the corrective 
maintenance.  
 
3. Degradation processes 
Assume that the observable internal stochastic deterioration process in a component 

0{ , 0}, 0,tW t W =  is characterized by the independent increments and has the monotonically 
increasing sample paths. Then the survival function for the lifetime of a component L can be, 
obviously written as 

( ) ( , ) ( )tP L t F t w P W w  =                                              (5) 

when a failure is defined as reaching/crossing the threshold w. 

3.1. Poisson process of degradation. The survival function that describes the time to the M-th 
event (threshold) in the homogeneous Poisson process (HPP) with rate    is given, e.g., in [32]: 

1

0

( )( , ) exp{ }
!

iM

i

tF t M t
i



−

=

= −  .                                                     (6) 

Thus, (6) can be interpreted as the survival function of a component with M  i.i.d. elements (1 out 
of M cold standby) with the failure rate  . Thus, degradation in a component of our standby system 
is completely defined by the number of failed elements m and can be easily observed in practice. 
In this case, the remaining lifetime of a component is defined by the following Cdf  

1

0

( )( , ) 1 exp{ }
!

iM m

i

tF t M m t
i



− −

=

− = − −  .                                                 (7) 

Indeed, as m is the number of failed elements, then M-m is the number of remaining operable 
components Thus, the system in the future operation, can experience at most M-m-1 failures. 
Otherwise, it fails. 

     Let now degradation be modeled by the counting nonhomogeneous Poisson process (NHPP) 
with rate ( )t  (with current degradation m and the threshold M events). Then, when defining the 
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remaining lifetime, we must also consider the corresponding pdf (occurrence of the m-th event), 
i.e.,  

1( ( ))( , ) ( )exp{ ( )}
( 1)!

mxf x m x x
m


−

= −
−

,                                            (8) 

where 
0

( ) ( )
t

t u du =  . Then, the survival function describing the remaining lifetime is [28] 

0

( ) ( ) ( , )M m x t xF t P W W M m f x m dx


− += −  − ,                                     (9) 

where    
1

0

( ( , ))( ) exp{ ( , )} ; ( , ) ( )
!

x tiM m

x t x
i x

x tP W W M m x t x t u du
i


+− −

+

=


−  − = −  =  . 

3.2. Gamma process of degradation.  The gamma process is widely used in the literature for 
modeling ‘continuous’ degradation (the fatigue in materials, cracks growth, structural engineering 
etc.). It is well-known (see, e.g., references [33-34]) that the nonhomogeneous gamma process 
{ , 0}tW t   with parameters ( ),t  ( 0  , ( ( )t  is a positive increasing function) is described by 

the following pdf of tW  at each time instant t  

( ) ( ) 11( , ) exp( )
( ( ))

t tf y t y y
t

  


−= −


,   0y .                                  (10) 

where 1

0
( ) exp{ }aa z z dz


− = − . 

     The paths of the gamma process are monotone and, therefore, e.g., for the homogeneous case, 
the corresponding lifetime model (reaching the failure threshold w) is defined by the following 
survival function  

1

0

1 ( , )( , ) exp( ) d 1
( ) ( )

w
t t t wF t w x x x

t t
   

 
 

− 
= − = −

  ,                            (11) 

where 1( , ) exp{ }a

x
a x z z dz


− = − and 0, 0    are the shape and the scale parameters, 

respectively. The corresponding remaining lifetime (after reaching the degradation level  w w

) is defined by 

( , ( ))( , ) 1
( )

t w wF t w w
t

 



 −
− = −


.                                              (12) 

4. The degradation-based scenario 

In this section, we will discuss motivation for developing optimal procedures for obtaining times 
of inspection and switching of the next section. We will consider degradation that is modeled by 
the HPP with the failure threshold M. Similar general reasoning applies to the gamma process of 
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degradation. We will demonstrate now that distinct from the black-box scenario, the remaining 
‘resource’ of  the component at time  / 2T  can be used meaning that the switching can be 
administrated later.  
     It was shown that without additional information, the switching  to the standby component 
should be executed at the prescheduled time / 2.a T=  Moreover, as was discussed in Section 2, it 
can be also additionally explained in a different way using the fact that the specific form of 
equation (3) has the unique solution  * / 2ia a T+ = , where (0, / 2]ia T  and the component did 
not fail in [0, ]ia ).  Note that, when / 2ia T= , the component is operable, but according to our 
discussion, the switching should be performed immediately although it still has some remaining 
resource (remaining lifetime). The situation will be different when we observe degradation. 
      Let degradation 0,1,2,..., 2m M= −  be observed at  / 2ia T= . From the properties of the 
Erlangen distribution it follows that both: the remaining lifetime of the first component and the 
standby one have failure rates that are zeroes at origin (when 1m M= −  the failure rate of the 
remaining lifetime is constant and equal to ). Thus, the optimal switching can be postponed in this 
case and performed at / 2 *T a+  , where *a  is the unique solution obtained from (3) that reads 
now 

( *) ( / 2 *)M m Ma T a − = − ,                                             (13) 

where ( ), 1, 2,...k t k =  denotes the failure rate of the corresponding Erlangen distribution with the 
‘failure threshold k’. Fig.1 illustrates how *a  increases when m decreases. Thus, depending on the 
observed at / 2T  degradation m , the value *a   can be quite substantial. This important effect is 
neglected in the black-box scenario! If 1,m M= − the failure rate that corresponds to the 
remaining lifetime of a component  is constant (  ) and the switching had to be performed 
immediately. Indeed, when 1,m M= −  ( ) ( )M m Mt t  − =   for all t. Thus, to maximize  

* /2 *

0 0

exp ( ) exp ( )
a T a

M m Mu du u du 
−

−

      
− −   
      
  , 

we should set * 0a =  in this case.  
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Fig.2. The relationship between *a  and the observed  at / 2T  degradation m for T=5, M=10 and 

various values of the rate  . 

     Now we can go further. As in Section 2 for the black-box case, assume that at the time of 
inspection [0, / 2)ia T the main component is operable and we observe degradation  

0,1,2,..., 2m M= −  .  Thus, we want to schedule the further switching optimally to maximize the 
remaining survival probability of the standby system in [ , )ia T , whereas optimal choice of ia  will 
be addressed in the next section.  Note that, in the black-box scenario, the optimal switching had 
to be performed in any case, at / 2T , as discussed previously. It depends now on the value of the 
observed degradation m. Equation (13) is modified in this case to 

( *) ( ( *))M m M ia T a a − = − + ,                                                  (14) 

where the righthand side is the failure rate for the black-box scenario for the remaining (after ia ) 
lifetime. Thus, when m  is ‘small’, we should expect that  * / 2ia a T+  , which increases the 
remaining MSP as compared with the black-box scenario, for which  switching should be 
performed at / 2T . On the contrary, when it is large,  * / 2ia a T+    and thus the conditionally 
optimal switching should be performed earlier than the black-box one. Finally, when 1,m M= −

similar to what was discussed above, switching should be performed immediately at ia . In any 
case, *a  is increasing when m is decreasing, which follows from (14) and the hazard rate ordering 
for the corresponding Erlangen distributions  

Optimal preventive switching of components in degrading systems



10 
 

1 2 1 2( ) ( ),m mt t m m                                                          (15) 

This fact (as well as the monotonic increase of the failure rates) is well-known (see, e.g., [17]).  

Remark 2. Obviously, when degradation is continuously observed and not only at inspection, the 
optimal switching time is random and equal to the time when degradation of the first component 
reaches the level 1m M= − .  

     It was shown in [35] that the failure rate that corresponds to the survival model (11) is 
increasing. See also [36] for more general results. As the gamma process is the jump process with 
infinite number of jumps in any finite interval of time, the corresponding failure rate is not, 
obviously, zero at origin as for the Poisson degradation case. Therefore, the analogue of equation 
(14) not necessarily has a solution for *a . In this case, the switching should be executed 
immediately at inspection at ia , which corresponds to * 0a = . This will be implemented in the 
corresponding computational procedure of the next section. Note that, Remark 2 is also not 
relevant in this case.  

5. Optimal inspection and switching times  
5.1. Poisson process of degradation 

In the previous section, it was shown that when we observe degradation at some fixed  
[0, / 2),ia T  the optimal switching time *ia a+ maximizes the probability until the first failure 

of a component in the cold standby system of two i.i.d. components,  1( , )iP a T . However, the 

survival probability should be maximized now with respect to the inspection time  ia . As follows 
from our discussion, this optimal solution, obviously, exists.  

The following optimization procedure is proposed: 

Let us first fix [0, ]ia T . 

Case (i). If the first component fails before ia , then the MSP is 0. 

Case (ii). If the first component is operable at ia , we observe the corresponding degradation.  If

0,1,2,..., 2m M= − , then switching is performed at *( , )i ia a a m+ , where *( , )ia a m  is the 
solution of (14). If 1m M= − , switching is performed immediately. The conditional MSP is, 
therefore, given by  

* *( , ) ( , )

0 0

exp ( ) exp ( )
i i ia a m T a a a m

M m Mu du u du 

− −

−

      
− −   
      

  , for 0,1,2,..., 2m M= −  

and 
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0

exp ( )
iT a

M u du

−  
− 
  
 , for 1m M= − . 

The conditional probabilities for the degradation  0,1,2,..., 1m M= −  in [0, )ia  are  

1

0

( )exp{ }
!

( )exp{ }
!

m
i

i

jM
i

i
j

aa
m

aa
j







−

=

−

−

. 

Therefore, the conditional MSP is  

* *( , ) ( , )2

1
0 0 0

0

( )exp{ }
!exp ( ) exp ( )

( )exp{ }
!

i i i

m
ia a m T a a a mM i

M m M jM
m i

i
j

aa
mu du u du

aa
j




 




− −−

− −
=

=

−      
− −    
       −

  


 

1

1
0

0

( )exp{ }
( 1)!exp ( )

( )exp{ }
!

i

M
i

T a i

M iM
i

i
i

aa
Mu du

aa
i









−

−

−

=

−
  − 

+ −  
   −




, 

whereas the corresponding unconditional MSP (which combines cases (i) and (ii)) is 
1

1
0

( )( ) 0 1 exp{ }
!

jM
i

i i
j

aP a a
j




−

=

 
=  − − 

 
  

* *( , ) ( , )2

0 0 0

( )exp ( ) exp ( ) exp{ }
!

i i ia a m T a a a m mM
i

M m M i
m

au du u du a
m


  

− −−

−

=

      
+ − −  −   

      
    

1

0

( )exp ( ) exp{ }
( 1)!

iT a M
i

M i
au du a

M


 

− −  
+ −  − 

−  
  

* *( , ) ( , )2

0 0 0

( )exp ( ) exp ( ) exp{ }
!

i i ia a m T a a a m mM
i

M m M i
m

au du u du a
m


  

− −−

−

=

      
= − −  −   

      
    

1

0

( )exp ( ) exp{ }
( 1)!

iT a M
i

M i
au du a

M


 

− −  
+ −  − 

−  
 . 

Thus, we want to maximize 1( )iP a  with respect to ia  by solving the optimization problem (16) 
that, obviously, has a solution * (0, ) :ia T  

1 0 1( *) max ( )
ii a T iP a P a = .                                                    (16) 
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The following steps describe the implementation of the proposed procedure  

1. Obtain a’priori the optimal time of switching *ia  by solving (16) 

2. If the first component fails before *ia -do nothing as it is the mission failure. 

3. If the first component survives until *ia  and the observed degradation 1m M= − , execute 

switching at *ia . 

4. If the first component survives until *ia  and the observed degradation 0,1,2,..., 2m M= − , 
execute switching at * *( *, )i ia a a m+ , where *( , )ia a m  is obtained numerically as the solution of 
equation (14). 

The following figures illustrate the described procedure. 

 

Fig.3. Optimal inspection times *ia  for T=5 and different values of M and  . 
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Fig. 4. Actual optimal time of switching for M=10, T=5 and different m and  . 

 
Fig.5. Comparisons of the MSPs (T=5) for the black-box and degradation scenarios for different 

values of M and  . 
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     We see now from Fig. 3 that the optimal inspection is scheduled earlier than at / 2T . Its 
monotonicity pattern (as a function of M and  ) is due to the range of the considered parameters 
and the relevant properties of the Poisson distribution, whereas the graphs just show the optimal 
inspection time obtained numerically via the proposed procedure. On the other hand, the increase 
of the optimal inspection time with    can be loosely explained by the fact that  in this case, the 
‘importance’ of the observed  degradation is diminishing and the procedure becomes ‘closer’ to 
the black-box scenario when the switching is performed at / 2T . Fig.4 already depicts the actual 
time of switching as the function of the observed degradation m. We see that, as expected, this 
time decreases with m in the range from approximately 3.5 (for m=0) to 2-2.3 (for different values 
of   and m=8). When m=9, switching should be performed at inspection, which means that 

*(9) 0a = , whereas *ia  should be taken from Fig. 3. Thus, one should obtain the optimal 

inspection time, then observe degradation at this time *ia  and depending on the observed value 
schedule switching at time * *( )ia a m+ .  Fig. 5, for the considered example, justifies superiority 
of the proposed strategy over the black-box switching at / 2 2.5.T =  

Remark 3. Under the assumptions of Remark 1, the results obtained in this section can be used 
for scheduling the PM action as well. However, the implementation is distinct from the black-box 
case. First, the optimal inspection time is obtained by solving the optimization problem. This time 
does not depend on the observed value, however, the actual, PM time does, as illustrated by Figs. 
3 and 4, respectively. Finally, Fig.5 shows that this strategy minimizes the probability of a failure 
of a system that have started operation at 0t =  and, therefore, of the expected operational costs. 
This is because the PM cost is smaller than that of the corrective maintenance.  

Remark 4 The assumption for the degradation process to be Poisson in general is often an 
approximate (excluding the case when degradation is manifested by the number of failed elements 
in a component, when it is “exact”). We use this case for methodological reasons. However, the 
gamma process to be considered as deterioration model is widely used and reported numerously 
in the literature.  

5.2. Gamma process of degradation  

In the previous subsection, the case of the counting HPP for modeling degradation in components 
was discussed. The NHPP case can be also described in the similar (although more cumbersome) 
way. For convenience, the corresponding optimization procedure that takes into account our 
reasoning and discussion at the end of Section 4, is deferred to the Appendix. Note that, we are 
considering the homogeneous gamma process that is characterized by the increasing failure rate 
for the survival model (11) [35, 36]. Thus, using the developed procedure, the optimization 
problem (16) can be solved numerically and illustrated by the following figures.  
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Fig.6.  Optimal times of switching as a function of the observed degradation level at optimal 

inspection time * 1,503ia =  for T=5, 2.6, 12 = = , 1w = . 
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Fig. 7. Comparisons for the MSPs (T=5, 1w = ) for the black-box and degradation scenarios as 
functions of   and fixed 12 = . 

 

 
Fig. 8. Comparisons for the MSPs (T=5, 1w = ) for the black-box and degradation scenarios as 

functions of   and fixed 2.6a = . 

     These graphs, similar to the Poisson degradation case illustrate the efficiency of the proposed 
strategy as compared with the black-box one. Fig. 6 plots the scheduled optimal switching times 
after the optimal inspection time that was scheduled at t=1.503 (recall that the optimal black-box 
switching is at T/2=2.5).  We see that they are decreasing when the observed level of degradation 
at inspection is increasing. This is supported by general considerations, as the larger values of the 
observed degradation imply the larger risk of failure of the operating component that is avoided 
by scheduling switching earlier. Figures 7 and 8 show the superiority of the proposed switching 
strategy over the black-box one and present the corresponding sensitivity analysis with respect to 
the shape parameter a  and the scale parameter  . We see that the optimal MSP 1( *)iP a  is 
decreasing as a  is increasing and   is decreasing. This can be easily explained as the former 
parameter ‘controls’ the intensity of jumps in the gamma process (the larger a  corresponds to the 
larger intensity), whereas smaller values of   correspond to the larger jump values, which 
obviously, also decreases the reliability function of a component.  

6. Concluding remarks 

In many applications, it is necessary to maintain the failure-free performance of components in the 
standby systems, as each sudden failure of an operating component can result in a failure of a 
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system due to imperfect or non-instantaneous switching on failure and related adverse effects. This 
is especially relevant for safety-critical systems or systems, which failures result in substantial 
economic losses as, e.g., for important autonomous missions. 
     To increase the mission success probability (MSP) with the fixed mission time, the optimal 
strategy of switching is developed for the cold standby system of two aging components with 
degradation modeled by the counting Poisson process and the gamma process. The crucial 
assumption for justification of the proposed approach is the IFR property of the distributions that 
describe the time of reaching the fixed threshold for both processes.  
     An inspection is carried out at some optimally predetermined time and the switching is 
performed after that with the optimally obtained delay. These optimal times are derived via the 
suggested procedure for obtaining the MSP and solving (numerically) the corresponding 
optimization problem. The case of more than one possible switching and inspections can be also 
considered in a similar manner, however, it is much more cumbersome.  
     It is most likely that our results can be generalized to the case of the nonhomogeneous 
degradation processes. However, this case needs further studies as, e.g., the monotonicity 
properties of the failure rate for the corresponding threshold survival model defined by the 
nonhomogeneous gamma process are not yet described in the literature. Considering a random 
mission time can constitute another topic for the future research.  
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Appendix.  
The following procedure for solving the optimization problem (16) should be implemented for the 
gamma process of deterioration   

Let us fix the time of inspection, [0, ]ia T . 

Case (i). If the first component fails before ia , then the MSP is 0. 

Case (ii). If the first component is operable at ia , degradation at  
i ia aW w w=   is observed. Thus, 

we have to minimize the sum of integrals  
( )

0
0 0

( ) ( )
i

ai

T a aa

w u du u du 

− −

+  , 

where, as previously, ia a T+   is the time of switching in this case and ( )
aiw t  is the failure rate 

that corresponds to the  survival model (11) with the threshold w and initial degradation 
iaw (see 

the corresponding relationships later). Then we have two possibilities (for the fixed ia ): 

1. 0(0) ( )
aiw iT a  − . 

Observe that 
( ) ( ) ( )

0 0 0
0 0 0 0 ( )

( ) ( ) ( ) ( ( ) ( ) )
i i i

a ai i

i

T a a T a T aa a

w w
T a a

u du u du u du u du u du    

− − − −

− −

+ = + −     . 
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In this case, for any 0a  , 
( )

0
0 ( )

( ) ( ) 0
i

ai

i

T aa

w
T a a

u du u du 

−

− −

−    and 
( )

0
0 ( )

( ) ( ) 0
i

ai

i

T aa

w
T a a

u du u du 

−

− −

− =   if 

0a = . Therefore, *( , ) 0
ii aa a w =  and the switching should be performed immediately.  

2.  If 0(0) ( )
aiw iT a  − , there exists 0a   such that  

( )

0
0 ( )

( ) ( ) 0
i

ai

i

T aa

w
T a a

u du u du 

−

− −

−   . 

Therefore, the optimal *( , ) (0, ]
ii a ia a w T a −  exists, which is the solution of the following 

equation:  
0( *( , )) ( ( *( , )))

a i iiw i a i i aa a w T a a a w = − + .                                (17) 

     Using relationships of Section 3, it can be easily shown that for the homogeneous gamma 
degradation process, we have 

0 2

1 1

0 0

( , )( ) ,
1 exp( ) exp( ) du

( )

w
t t t

A t wt

u u du u u
t

  



 




− −

=
  

− −  
  
 

 

where, 

( ) 1 1

0 0

( , ) ln ln  exp( ) exp( ) ds
w

t t tA t w u u u s s    


− −
  

= − + − −  
  
   

1 1

0

exp( )  ( ln ) s exp( ) ds  dt t tu u s s u    


− −
 

+ − −  
 

 , 

and 

2

1 1

0 0

*( , )
( ) ,

1 exp( ) exp( ) du
( )

i

ai ai

a
w w w

t t t

A t w w
t

u u du u u
t

  



 


− 

− −

−
=
  
 − − 
    
 

 

where 

( ) 1 1

0 0

*( , ) ln ln  exp( ) exp( ) ds
ai

i

w w
t t t

aA t w w u u u s s    

− 

− −
  

− = − + − −  
  

   

1 1

0

exp( )  ( ln ) s exp( ) ds  dt t tu u s s u    


− −
 

+ − −  
 

 . 

If 
i ia aW w= , the corresponding conditional mission success probability is given by  
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*( , ) *( , ) 1

0

1 exp( )
( *( , ))

ai
i a i ai i

i

w w
a a w a a w

i a

u u du
a a w

 
 



−

  −
 
 −
  
 
  

* *( ( , )) ( ( , )) 1
*

0

1 exp( )
( ( ( , )))

i i a i i ai i

i

w
T a a a w T a a a w

i i a

u u du
T a a a w

 
 



 − −  − − −
 

 − 
   − − 
  

Indeed, the first integral defines the probability that after the inspection time ia , the operating 
component did not fail before switching to the second component, whereas the second integral 
defines the probability that the second component does not fail in the rest of the mission time after 
switching. 
The conditional pdf of 

i ia aW w=  given that 
iaW w  is   

1

1

0

1 exp( )
( )

1 exp( )
( )

i i

i i

i i

a a
a a

i
w

a a

i

w w
a

u u du
a

 

 

 


 


−

−

−


 
− 

 


, 0
iaw w  . 

Thus, for Case (ii), the conditional probability for mission success is  

1

0

1
1 exp( )
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i i
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i
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 − 
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−
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and the unconditional mission success probability is 
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