
1 

 
 

New Shape Function Solutions for Fracture Mechanics Analysis of 

Offshore Wind Turbine Monopile Foundations 

Mathieu Bocher
1
, Ali Mehmanparast

1*
, Jarryd Braithwaite

1
, Mahmood Shafiee

1
 

 

1
Offshore Renewable Energy Engineering Centre, Cranfield University, Cranfield, 

Bedfordshire MK43 0AL, UK. 

*Corresponding author: a.mehmanparast@cranfield.ac.uk 

Abstract 

Offshore wind turbines are considered one of the most promising solutions to provide 

sustainable energy. The dominant majority of all installed offshore wind turbines are tied up 
to the seabed using monopile foundations. To predict the lifetime of these structures, reliable 
values for shape function and stress intensity factor are needed. In this study, finite element 

simulations have been performed for a wide range of monopile geometries with different 
dimensions, crack lengths as well as depths to evaluate shape function and stress intensity 
factor solutions for monopiles and an empirical equation is developed. The new solutions 
have been verified through comparison with the existing solutions provided by Newman & 

Raju for small hollow cylinders. The empir ical shape function solutions developed in this 
study are employed in a case study and the results have been compared with the existing 
shape function solutions. It is found that the old solutions provide inaccurate estimations of 
fatigue crack growth in monopiles and they underestimate or overestimate the fatigue life 

depending on the shape function solution employed in the structural integrity assessment. The 
use of the new solution will result in more accurate monopile designs as well as life 
predictions of existing monopile structures. 

Keywords: stress intensity factor; shape function; fatigue crack growth; inspection; 
monopile; offshore wind turbine 

Nomenclature 

a Crack depth 
b Half width (in a plate) 
c Half crack length (in a semi-elliptical crack) 
D Pipe or monopile Diameter 

E Elastic Young’s modulus 
F Normalised stress intensity factor in Newman & Raju solution 
h Pipe height 
𝐼𝑧 Second moment of area along the 𝑧 axis 

𝐾 Stress intensity factor 
𝑀𝑍 Bending moment along the 𝑧 axis 

Q  Non-dimensional shape factor  
𝑅𝑖𝑛 Inner radius 

𝑅𝑜𝑢𝑡 Outer radius 
t Thickness 

y Distance from the neutral axis 
Y Shape function 
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𝜎 Applied stress 

𝜎𝑏 Bending stress 
𝜎𝑡 Tensile stress 

𝜎𝑚𝑎𝑥 Maximum bending stress  
v Poisson’s ratio 

Φ  Circular crack tip angle 
BM Based Metal 
FE Finite Element 

FP Finite Plate 
HAZ Heat Affected Zone 
HC Hollow Cylinder 
LEFM Linear Elastic Fracture Mechanics 

MP MonoPile 
N&R Newman & Raju Shape Function Solution 
OPEX OPerational EXpenditure 
SIF Stress Intensity Factor 

1 Introduction 
The offshore wind industry has grown exponentially in recent years due to the global energy 

demand and targets set by the European Union to fulfil at least 20% of its total energy needs 
with renewables by 2020 [1]. With large capital costs through the manufacture and 
installation of offshore wind farms, the levelised cost of energy (LCoE) is high, making it 
difficult for wind energy to be price-competitive in the energy market. The UK’s Department 

for Business, Energy & Industrial Strategy (BEIS) (formerly known as Department of Energy 
and Climate Change (DECC)) have set a challenge for offshore wind to achieve a levelised 
cost of electricity, which is a measure of the overall competitiveness of different generating 
technologies, of £100/MWh by 2020 [2]. Surprising LCoE reductions in 2016, to as low as 

€49.9/MWh for the Kriegers Flak and other similar projects in Europe have resulted in 
exceeding the initial targets and making offshore wind energy prices competitive with 
onshore wind and alternative sources of energy [3]. Therefore, due to reduction in prices as 
well as availability of more spaces for installation, better wind flows, and less noise it is 

expected that the development of offshore wind farms will exponentially increase in the 
coming years. In 2016, 12.5GW of new wind energy capacity was installed in the European 
Union, of which 1.6GW were installed offshore, increasing the total installed offshore wind 
energy capacity to 12.6GW [4]. Currently wind energy accounts for 17% of Europe’s total 

installed power generation capacity, overtaking coal as the largest form of power generation 
[4].  
With the growing interest in expansion of offshore wind energy in Europe and worldwide, an 
important area that needs to be considered is the structural design and integrity enhancement 

of offshore wind turbines, which can contribute to further reduction of the levelised cost of 
offshore wind energy. Knowing that fatigue and corrosion-fatigue are the dominant failure 
mechanisms in offshore structures due to the constant exertion of cyclic loading from wind 
and wave, the uncertainties involved in fracture mechanics analysis of fatigue crack growth, 

particularly for foundations which are at a higher risk of failure, must be minimised. Support 
structures make up around 35% of the total cost of an offshore wind project [5] and monopile 
foundations in particular have been used for around 75% of offshore wind turbine 
installations, making them an important area for research and development. Design standards 

for offshore monopiles, which are suitable foundation type for water depth of up to 40m [6], 
have been developed from the oil and gas industry as this is the only sector with experience 
of similar offshore structures. The structures used in the oil and gas industry however are 
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much smaller than wind turbine monopile foundations which are generally 3-7m in diameter. 
These standards have been derived from the testing of piles of up to 1.22m in diameter [7], 
the results of which have been used to scale up the designs, bringing with them uncertainties 

in the structural behaviour as well as creating the possibility of over-engineering and different 
failure modes. The thickness and the diameter of monopiles depend on various parameters 
such as the water depth, soil composition and characteristics, size of the wind turbine and 
environmental conditions. The diameter and thickness of some of the current monopiles in 

various offshore wind farms across Europe have been reported by Laszlo Arany et al [8] and 
this data is summarised in Figure 1.  
Offshore wind turbine monopiles are fabricated by rolling, and then, welding relatively thick 
structural steel plates in a longitudinal direction to produce “cans” and subsequently welding 

these cans in a circumferential direction. Characterisation of the surface flaws which often 
occurs in the form of semi-elliptical shaped cracks initiating at the outer surface of the 
circumferential weld region and propagating in through-thickness direction need to be 
carefully considered in the design and inspection of offshore wind turbine monopile 

foundations. Accurate characterisation of fatigue crack initiation and growth in monopiles 
can significantly improve the fracture mechanics-based inspection of the current assets, 
reduce maintenance efforts, reduce the Operational expenditure (OPEX) and optimise the 
design of future generation of monopiles. A key parameter which is used in fracture 

mechanics analysis of monopiles is the shape function which is used to calculate the stress 
intensity factor (SIF) and subsequently characterise the fatigue crack growth behaviour of the 
material and build fracture-mechanics based inspection plans accordingly. The shape function 
and stress intensity factor solutions for various elliptical and semi-elliptical cracks in infinite, 

finite and semi-infinite bodies have been investigated by many researchers. For example 
Irwin provided solutions for an elliptical crack in an infinite body in [9] using the solution of  
Sneddon and Green [10] and Wigglesworth [11]. Smith et al [12, 13], Shah and Kobayashi 
[14] made similar attempts to obtain stress intensity factor solutions for circular, semi-

circular and elliptical cracks in a semi-infinite body. Moreover, Miyamoto and Miyoshi [15] 
and Tan and Fenner [16] investigated stress intensity factor solutions for a semi-elliptical 
crack, in a finite plate using the finite element method and in pressurised cylinders using 
boundary integral equation method, respectively. Although various researchers have 

experimentally investigated the fatigue crack growth behaviour in hollow cylindrical 
structures with circumferential semi-elliptical cracks at the outer surface [17-20], the only 
relevant fracture mechanics shape function and SIF solutions available to analyse 
experimental data for such geometry are those proposed by J.C. Newman & I.S. Raju (N&R) 

in 1986 [21]. However, the range of normalised dimensions given in [21] is way below those 
in monopiles (see Figure 1). The current practice to estimate SIFs in monopiles is to employ 
the solutions available for finite plate under tension in another publication by N&R [22], but 
the accuracy of this simplified assumption to use finite plate solutions for cylindrical 

monopiles has been never examined. Hence, the aim of this study is to investigate and 
propose new accurate shape function and stress intensity factor solutions for offshore wind 
turbine monopile geometries through finite element (FE) modelling, by considering their 
actual dimensions. The procedure to develop the new solutions are described in this paper 

and the results are compared with the old solutions proposed by N&R.  

2 Existing Stress Intensity Factor Solutions for Semi-Elliptical 

Cracked Geometries  

The stress intensity factor, K, is the linear elastic fracture mechanics (LEFM) parameter used 
to describe the stress distribution ahead of the crack tip when the deformation at the crack t ip 
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region is dominantly elastic. In 1961, Paris showed that this fracture mechanics parameter 
can also be used to characterise the crack growth behaviour under fatigue loading conditions 
[23]. The stress intensity factor for mode I fracture mechanics loading conditions, where the 

applied load is normal to the crack plane, can be described in the general form as [24] 

𝐾𝐼 = 𝜎√𝜋𝑎𝑌 (1) 

where 𝜎 is the global applied stress, 𝑎 is the crack depth and 𝑌 is the shape function, which 

depends on the geometry of the cracked structure. The existing stress intensity factor 
solutions for semi-elliptical cracks in various geometries subjected to different loading 
conditions are described below.  

2.1 Stress intensity factor solution for an embedded elliptical crack in an 
infinite solid under tension 

In 1957, G.R. Irwin [25] used Sneddon’s earlier work [10] to show that the stress and strain 
variation ahead of the crack tip in an elastic solid can be described using the stress intensity 
factor, K, suggesting the below equation to define the stress intensity factor 𝐾(Φ) along the 

crack front for an embedded elliptical crack in an infinite cracked body under tensile stress 𝜎 
[9, 26]. 

𝐾(Φ) = 𝜎√
𝜋𝑎

𝑄
(

𝑎2

𝑐²
𝑐𝑜𝑠2(Φ) + 𝑠𝑖𝑛²(Φ))

1
4⁄

 (2) 

This equation is valid for the crack configuration shown in Figure 2, in which a and c are the 
semi-elliptical half crack depth and half crack length, respectively, and Φ is the circular crack 

tip angle, with respect to the horizontal axis, inside the ellipse. In Equation (2), the term Q is 
the shape factor for an ellipse and is given by the square of the complete elliptic integral of 
the second kind.  

2.2 Stress intensity factor solution for a semi-elliptical surface crack in a 
finite plate under tension 

In 1979, J.C. Newman & I.S. Raju proposed an empirical stress intensity factor equation for a 
semi-elliptical surface crack in a finite plate under tensile stress 𝜎𝑡 [22] in the following form: 

𝐾 = 𝜎𝑡√
𝜋𝑎

𝑄
𝐹 (

𝑎

𝑡
,
𝑎

𝑐
,
𝑐

𝑏
, Φ) (3) 

This equation was proposed for a semi-elliptical cracked geometry schematically shown in 
Figure 3, where a is the crack depth, c is the half crack length,  t is the plate thickness, h is the 
half height, b is the half width of the plate and Φ is the circular crack tip angle inside the 

semi-ellipse. In Equation (3), the non-dimensional shape factor Q for the semi-ellipse can be 
approximated by using the estimated equation of 𝑄 given in [27]: 

𝑄 = 1 + 1.464(𝑎
𝑐⁄ )1.65 for (𝑎

𝑐⁄ ≤ 1) (4) 

Also, in Equation (3) the non-dimensional boundary condition factor F can be calculated 
using the following equation: 

𝐹 = [𝑀1 + 𝑀2 (
𝑎

𝑡
)

2

+𝑀3 (
𝑎

𝑡
)

4

] 𝑔𝑓𝜙𝑓𝑤 (5) 

where; 
 

𝑀1 = 1.13 − 0.09 (
𝑎

𝑐
) (6) 
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𝑀2 = −0.54 +
0.89

0.2 + (𝑎/𝑐)
 (7) 

𝑀3 = 0.5 −
1.0

0.65 + (
𝑎
𝑐

)
+ 14 (1.0 −

𝑎

𝑐
)

24

 (8) 

𝑔 = 1 + (0.1 + 0.35 (
𝑎

𝑡
)

2

)(1 − sin (Φ))
2
 (9) 

𝑓𝜙 = [(
𝑎

𝑐
)

2

cos²(Φ) + sin²(Φ)]
1/4

 (10) 

𝑓𝑤 = [𝑠𝑒𝑐 (
𝜋𝑐

2𝑏
√

𝑎

𝑡
)]

1/2

 (11) 

Equation (3) is valid for c/b < 0.5, 0 < a/c ≤ 1.0, 0 ≤ a/t < 1.0 and 0 ≤ Φ ≤ π. 

2.3 Stress intensity factor solution for a circumferential semi-elliptical 
surface crack in a hollow cylinder under bending load 

In 1986, J.C. Newman & I.S. Raju proposed stress intensity factor solutions for 
circumferential semi-elliptical surface cracks in pipes (i.e. hollow cylinder (HC)) and rods 
under bending stresses [21]. The geometry considered for a pipe in [21] is shown in Figure 4 

(top view) and Figure 5 (side view) where a is the crack depth, c is the half circumferential 
semi-elliptical crack length, t is the thickness, Rin is the inner radius of the hollow cylinder, h 
is the half height and D is the outer diameter (i.e. which is 2×Rout where Rout is the outer 
radius) of the hollow cylinder. The crack plane in this study was considered normal to the 

pipe axis and the crack front was assumed to meet the free surface at a 90 ˚ angle. This 
assumption was motivated by previous studies which have shown that in rods under remote 
tension, the crack front was intersecting the free surface at nearly right angles. To obtain the 
stress intensity factor, N&R used three-dimensional FE analysis with Poisson’s ratio of 0.3 as 

the elastic property. They chose a large enough height (i.e. length) 2ℎ for the pipe to have 
negligible effects on stress intensity factor solutions. The coordinate system used in this study 
is schematically shown in Figure 6 where the definition of the Φ angle with respect to the 

horizontal x-axis can be observed. N&R defined the stress intensity factor at any point at the 
crack front as  

𝐾 = 𝜎𝑏√𝜋
𝑎

𝑄
𝐹 (12) 

where 𝜎𝑏 is the bending stress, a is the crack depth, Q is the non-dimensional shape factor 
and F is the non-dimensional boundary condition factor. N&R have presented their results in 

terms of the normalised stress intensity factor (𝐾/(𝜎𝑏√𝜋𝑎/𝑄) at the maximum crack depth 

(see point A in Figure 4) and at the point which the crack front meets the free surface (see 

point B in Figure 4). They have also shown the normalised stress intensity factor solutions as 
a function of the parametric angle (2Φ/𝜋) for some of the examined dimensions. A summary 
of N&R normalised stress intensity factor, F, solutions for a circumferential semi-elliptical 

surface crack in a hollow cylinder under bending stress is given in Table 1. Note that the 
results presented in reference  [21] are valid for 1 ≤ Rin ⁄t ≤ 10, 0.6 ≤ a/c ≤ 1.0, 0.2 ≤ a/t ≤ 0.8. 

3 Finite Element Model Set up for the Monopile Geometry  

As seen above, the stress intensity factor solutions for a circumferential semi-elliptical 
surface crack in a hollow cylinder under bending stress given by N&R [21] are only valid for 
1 ≤ Rin ⁄t ≤ 10. However, the range of the normalised radius for monopiles given in Figure 1 is 
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23 ≤ Rin ⁄t ≤ 52 (i.e. 24 ≤ Rout ⁄t ≤ 53). Another simplified assumption is to take the monopile 
as a finite plate under tensile stress due to the large size of the geometry and use the solutions 
for semi-elliptical outer surface cracks provided in [22], though the accuracy of this 

assumption needs to be examined as the plate geometry does not represent the actual 
monopile geometry with a curved outer surface. Therefore, there is a need to work out 
accurate shape function and stress intensity factor solutions for the actual monopile 
dimensions using FE simulations.  In this study, the monopile geometry containing a semi-

elliptical surface crack was modelled in the ABAQUS finite element software package [28]. 
Similar to the previous work conducted by N&R [21], the crack front was taken to meet the 
free surfaces at 90° angle and the same coordinate system was used in the numerical analyses. 
In order to develop a general solution for shape function and stress intensity factors for 

realistic dimensions in monopiles, the outer radius 𝑅𝑜𝑢𝑡, crack depth 𝑎, monopile thickness 𝑡 
and half circumferential semi-elliptical crack length 𝑐 parameters were varied by considering 

a wide range of values for the following normalised parameters 𝑅𝑜𝑢𝑡/𝑡, 𝑎/𝑡 and 𝑎/𝑐. Since 
the examined dimensional parameters were normalised in the FE analysis, it was chosen to 

fix 𝑅𝑜𝑢𝑡 at 5m in all simulations and vary the 𝑅𝑜𝑢𝑡/𝑡, 𝑎/𝑡 and 𝑎/𝑐 ratios to determine other 
parameters accordingly using the equations below: 

𝑡 = 𝑅𝑜𝑢𝑡 ×
1

(𝑅𝑜𝑢𝑡
𝑡⁄ )

 
(13) 

𝑎 = 𝑡 × (𝑎
𝑡⁄ ) (14) 

𝑐 = 𝑎 ×
1

(𝑎
𝑐⁄ )

 (15) 

Moreover, the total length of the monopile 2ℎ was fixed at 40m. This is a realistic size for a 

typical offshore wind monopile structure, which is the foundation type suitable for water 
depth of up to 40m [6], and is large enough to have negligible effects on the stress intensity 
factor solutions. It is worth noting that only the part of the monopile which is located above 
the seabed (i.e. excluding the embedded part) was considered for the fracture mechanics 

analysis in the present study. To cover a wide range of monopile dimensions and crack sizes, 
the following range of normalised dimensions were examined in simulations; for 5 ≤ Rout ⁄t ≤ 
40 (with increments of 5), 0.4 ≤ a/c ≤ 1.0 (with increments of 0.2), 0.2 ≤ a/t ≤ 0.8 (with 
increments of 0.3). 96 cracked geometries were created and simulated in this study. It must be 

noted that the half circumferential semi-elliptical crack length 𝑐 implemented in FE models 
was calculated as the arc length at the outer surface of the monopile using c = Rout × α where 
α is the central angle in radians. 

3.1 Material properties 

Linear elastic material properties of Young’s modulus E = 200 GPa and v = 0.3 , which are 
typical elastic properties for steel material [29] that monopiles are often made of , were 
assigned to the monopile geometry. Note that the LEFM stress intensity factor solutions are 
independent of the elastic properties, though the elastic properties have to be assigned to the 

model in order to run the FE simulations. 

3.2 Partitioning and meshing strategy 

To accurately determine stress intensity factors from FE simulations , the following 
partitioning strategy was developed and followed: 
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 Step 1: Two datum planes were created on the monopile geometry; the first one at the 
mid-length of the monopile, where the crack was located, and the second one 

perpendicular to it along the length of the monopile. To make the mesh generation 
easier and more structured, two additional datum planes were also created by 
offsetting the mid-length plane towards top and bottom (see Figure 7(a)).  

 Step 2: The crack front was created using a semi-elliptical partition at one side of the 

monopile geometry. To make the meshing easier and more structured, two additional 
semi-elliptical partitions were created deeper in the through thickness direction (i.e. 
crack propagation direction). These semi-elliptical partitions were extruded along the 
entire length of the monopile (Figure 7(b)). 

 Step 3: At one end of the monopile geometry, the circumferential extremity was 
partitioned and these partitions were extruded along the entire length of the monopile 
(see Figure 7(c)).  

After partitioning the geometry, the monopile was meshed using structured hexagonal 

elements with reduced integration points (C3D8R) for the region in the neighbourhood of the 
crack front (between the semi-elliptical partitions) and sweep hexagonal elements for the rest 
of the geometry. To minimise the number of elements and therefore the computational time 
needed for each simulation, fine elements of around 0.2mm were assigned to the region close 

to the crack tip and the element size was coarsened away from this region. The variation of 
the element size post-meshing can be observed in Figure 8 (top view) and Figure 9 (side 
view).  

3.3 Crack definition 

The crack was modelled in ABAQUS using the crack tool in the intersection module. The q-

vector method was chosen to define the crack propagation direction. Knowing that the q-
vector direction changes along the semi-elliptical crack front, a Python code was developed 
to define appropriate q-vectors normal to the crack plane at different points along the crack 
line.  An example of the q-vector distribution at the crack front is shown in Figure 10. Also, 

the crack location was chosen to be at the mid-length of the monopile similar to the previous 
study conducted by N&R [21] (see Figure 11). 

3.4 Loading and boundary conditions 

To obtain a pure bending loading condition in the monopile geometry, the bottom end of the 
monopile was fixed using the “PINNED” boundary condition (i.e. restricting displacement in 
all directions: U1=U2=U3=0) and a moment load was applied to the opposite end (i.e. top 

end) of the monopile, at the same side as the circumferential semi-elliptical crack was created, 
as seen in Figure 11. To apply the moment, a reference point was created on the cylinder axis 
and a coupling interaction was set between this point and the extremity surface of the 
cylinder as shown in Figure 12. For a hollow cylinder under a bending load, the maximum 

bending stress 𝜎𝑏 at the outer surface can be calculated using [30]:  

𝜎𝑋𝑋𝑚𝑎𝑥 =
𝑀𝑧𝑦

𝐼𝑧
 (16) 

where 𝜎𝑋𝑋𝑚𝑎𝑥 is the maximum bending stress along the crack driving force direction (x-axis 
in Figure 11), 𝑀𝑍 is the bending moment along the 𝑧 axis, y is the distance from the neutral 

axis, and 𝐼𝑧 is the second moment of area along the 𝑧 axis. For a hollow cylinder, the second 

moment of area is given by the following formula: 

𝐼𝑧 =
𝜋

4
(𝑅𝑜𝑢𝑡

4 − 𝑅𝑖𝑛
4) (17) 
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where 𝑅𝑜𝑢𝑡 is the outer radius and 𝑅𝑖𝑛 is the inner radius. By combining Equations (16) and 

(17), the bending moment for a given maximum bending stress can be calculated as: 

𝑀𝑧 =
𝜎𝑋𝑋𝑚𝑎𝑥𝜋(𝑅𝑜𝑢𝑡

4 − 𝑅𝑖𝑛
4)

4𝑦
 (18) 

In this study, the maximum bending stress in all simulations was fixed at 200MPa and the 
corresponding bending moment was calculated using Equation (18).  

3.5 Stress intensity factor and shape function calculation 

The stress intensity factors (with maximum tangential stress as crack initiation criterion) were 

calculated by assigning 12 contours ahead of the crack front in FE simulations.  It is known 
that fluctuating values are obtained from the first few contours [31], however a clear 
convergence in stress intensity factor solutions was observed by increasing the number of 
contours to 12. By re-arranging the general K definition in Equation (1), the shape function Y 

can be calculated from the stress intensity factor solution obtained from ABAQUS using: 

𝑌 = 𝐾/(𝜎𝑏 √𝜋𝑎) (19) 

where 𝜎𝑏 is the global bending stress and a is the crack depth.  

Compared to N&R definition of K in Equation (12), the  𝑄 term is not presented in the general 
definition of K described in Equation (19). It must be noted that the 𝑄 term originally comes 

from the theory of the stress intensity factor of “embedded elliptical” crack in an “infinite 
solid” under tension. In the case of a semi-elliptical surface crack in a finite plate (see [22]), 
the semi-major axis is equal to the half crack length 𝑐 and the semi-minor axis is equal to the 

crack depth 𝑎. Nevertheless, in the case of a circumferential semi-elliptical surface crack in a 

hollow cylinder, the crack length is not equal to the semi-major axis of the ellipse. Therefore, 
using the Q term definition in Equation (19) would result in some errors in the calculation of 
the complete elliptic integral of the second kind. Therefore, Equation (19) which doesn’t 
include the Q term has been used in this study to calculate and describe the shape function 

solutions. 

4 Numerical Shape Function and Stress Intensity Factor 

Solutions for the Monopile Geometry 

Finite element simulations were performed under σb = 200MPa on 96 cases of cracked 
monopiles to evaluate the stress intensity factor solutions for each case. The obtained K 
solutions from FE simulations were then employed in Equation (19) to calculate the 
corresponding shape function solutions at the deepest point (denoted point A) and the free 

surface (denoted point B) and the results are summarised in Table 2 for 5 ≤ Rout ⁄t ≤ 40, 0.4 ≤ 
a/c ≤ 1.0 and 0.2 ≤ a/t ≤ 0.8.  

4.1 Comparison of the new shape function solutions with Newman & Raju 
values for hollow cylinder under bending load 

In order to verify the new solutions obtained from FE simulations on monopile  geometry, the 
new results for relatively small Rout ⁄t values have been compared to those of presented by 

N&R for hollow cylinder under bending load in [21]. It must be noted that N&R provided 

their solutions in the form of normalised stress intensity factor values, 𝐾/(𝜎𝑏√𝜋𝑎/𝑄), at the 

deepest point (point A) and the free surface point (point B) for 1 ≤ Rin ⁄t ≤ 10. Therefore, in 
order to directly compare the shape function solutions from this study (see Equation (19)) 

with those of available from N&R, the values presented in [21] were multiplied by 1/√𝑄 
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knowing that 𝑌 = 𝐹/√𝑄. Also, knowing that the results from N&R study were based on the 

inner radius Rin whereas the current study is based on the outer radius Rout , the shape function 
solutions at the deepest point for 𝑅𝑜𝑢𝑡/𝑡 = 5 from the present study have been compared 

with the existing solutions for 𝑅𝑖𝑛/𝑡 = 4 from N&R and the results are shown in Figure 13 
and Figure 14 for 0.6 ≤ a/c ≤ 1.0 and 0.2 ≤ a/t ≤ 0.8 solutions at the deepest point and free 
surface point, respectively. It can be seen in these figures that for the given 𝑅𝑜𝑢𝑡/𝑡, the N&R 

and new shape function solutions fall very close to each other and both solutions are strongly 
dependent on the 𝑎/𝑐 and 𝑎/𝑡 ratio. In general, the new solutions have been found in very 

good agreement with N&R values at 𝑅𝑜𝑢𝑡/𝑡 =5 with the mean difference of 1.6% and 
maximum difference of 3.3% between the old and new solutions.  

In order to examine the variation of the shape function solutions along the crack front, 3 
additional simulations were performed on a monopile geometry with 𝑅𝑜𝑢𝑡/𝑡 =3 (i.e. 𝑅𝑖𝑛/
𝑡 = 2) and 𝑎/𝑐 = 1.0 . Three simulations were performed with 𝑎/𝑡 = 0.2 , 𝑎/𝑡 = 0.5  and 
𝑎/𝑡 = 0.8 and the results are compared with the N&R solutions in Figure 15. The shape 

function values obtained from these simulations have been presented against the angle 
between the point at the crack front and the horizontal axis in the schematic geometry shown 
in Figure 15. As seen in this figure, the shape function values vary along the crack front and 
the new solutions follow the same trend as those presented by N&R in [21]. Moreover, it can 

be seen in this figure that for the examined monopile geometry, lower Y solutions have been 
found at the deepest point, compared with the free surface point, which is consistent with the 
trends shown by N&R.  
Although not shown here for brevity, comparison of the results obtained from the present 

study with those presented in [32] for 𝑅𝑖𝑛/𝑡 =20 and 40 has shown very good agreement 
between shape function solutions from these two independent studies. It is worth noting that 

the results presented in [32] cover a wide range of 𝑅𝑖𝑛/𝑡 with discrete values of 1, 2, 5 ,10 , 
20, 40 and 80, however the current study’s focus is on offshore wind turbine monopile 
dimensions typically ranging between Rout ⁄t of 5 and 40.  

4.2 Influence of bending stress on the shape function solutions 

The key characteristic of the shape function is its independency from the stress level. To 
examine the stress independency for the new shape function solutions, 12 additional 
simulations were performed for 𝑅𝑜𝑢𝑡/𝑡 = 40, 0.4 ≤ a/c ≤ 1.0 (with increments of 0.2), 0.2 ≤ 

a/t ≤ 0.8 (with increments of 0.3). For these simulations, the bending moment was set to have 
a global bending stress of σb = 400MPa. The comparison of the shape function values 
between the two stress levels at the deepest point and the free surface point are presented in 
Table 3 and Table 4, respectively. As seen in these tables, the shape function has been found 

independent of the stress level for the range of cracked geometries examined. This confirms 
the stress independency of the new shape function solutions.  

4.3 Influence of pile rotation on the shape function solutions 

The pile-soil interaction has not been considered in simulations performed in the present 
study and the fracture mechanics analyses are focussed on the monopile section located 
above the seabed. However, previous pile-soil interaction studies conducted by other 

researchers have shown that as the pile diameter D and embedded pile length below the 
seabed L increase, the deformation at the mudline decreases. Moreover, the safe limit for the 
tilt angle due to the pile-soil interaction is specified as 0.5° for the design of offshore wind 
monopiles [8]. This implies that the large diameter monopiles subjected to lateral loads 

exhibit an almost rigid behaviour. Although not shown here for brevity, extra simulations 
were performed as a part of this study to investigate the effect of maximum allowable pile tilt 
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angle on Y solutions and the results confirmed that the shape function solutions for 0.5° tilted 
monopile are on average around 1% smaller than those of obtained for vertical pile position.  
Therefore, the proposed stress independent shape function solutions presented in the current 

study can be considered valid for large dimeter monopiles subjected to operational lateral 
loading conditions and the corresponding stress intensity factor ahead of the crack tip can be 
calculated by measuring the maximum bending stress acting normal to the crack plane at the 
outer surface of the monopile. 

4.4 Determination of an empirical equation for the shape function 
solutions at the deepest crack point in monopiles 

In order to formulate the shape function solutions obtained from FE simulations at the 
deepest crack point, the influence of  𝑅𝑜𝑢𝑡/𝑡 ratio on the shape function values at the deepest 

point was firstly studied and the results are presented in Figure 16, Figure 17 and Figure 18 
for 𝑎/𝑡 = 0.2, 𝑎/𝑡 = 0.5 and 𝑎/𝑡 = 0.8 , respectively. These figures highlight the fact that 
for a given 𝑎/𝑡 and 𝑎/𝑐, the shape function solutions at the deepest crack point (point A) 

converge towards a constant value as the 𝑅𝑜𝑢𝑡/𝑡 ratio increases. The results in these figures 

imply that for the monopile geometry, the shape function can be assumed to be independent 
of the 𝑅𝑜𝑢𝑡/𝑡 ratio when 𝑅𝑜𝑢𝑡/𝑡 ≥ 20. Therefore, the shape function solutions at the largest 
𝑅𝑜𝑢𝑡/𝑡 ratio examined in this study (𝑅𝑜𝑢𝑡/𝑡 = 40) have been taken as the converged solution 

and these values have been summarised in Table 5 for  0.4 ≤ a/c ≤ 1.0 and 0.2 ≤ a/t ≤ 0.8.  
In order to examine the influence of 𝑎/𝑐 and 𝑎/𝑡 ratios on the shape function solution, the 

converged Y values at 𝑅𝑜𝑢𝑡/𝑡 = 40 (see Table 5) were plotted against these ratios in Figure 

19. To formulate these solutions and present the results in the form of a simple equation, the 

observed curves in Figure 19 were interpolated using a second order polynomial fit which has 

been described in the general form in Equation (20), and values of A, B and C coefficients for 

a/t = 0.2, 0.5 and 0.8 are summarised in Table 6. Note that the polynomial interpolation 

between the known data points was customised in order to always have the interpolated 

values slightly greater, hence more conservative, than the computed value obtained from FE 

simulations. Also included in Table 6 are the R
2
 (i.e. coefficient of determination) values are 

very close to 1.0 which confirm the accuracy of the second order polynomial fit made to the 

numerical data points. 

𝑌 = 𝐴(𝑎
𝑐⁄ )2 + 𝐵(𝑎

𝑐⁄ ) + 𝐶 (20) 

Finally, the influence of the 𝑎/𝑡 ratio on the coefficients 𝐴 , 𝐵 and 𝐶  was studied. For the 

coefficients 𝐴, 𝐵 and 𝐶, a second order polynomial fit was made to describe the dependency 
of the shape function solution on the 𝑎/𝑡 ratio and the equations are described in Equations 

(21)−(23). The equation of the second order polynomial fit can also be used to interpolate the 
results for 0.2 ≤ a/t ≤ 0.8 and it ensures that the interpolated values will be slightly higher, 
and therefore more conservative, than the computed shape function values (i.e. linear 
interpolation may result in lower values, therefore second order polynomial fit is more 

suitable).  

𝐴 = −0.17622(𝑎
𝑡⁄ )

2
+ 1.32106 (𝑎

𝑡⁄ ) − 0.02133 (21) 

𝐵 = 0.54961 (𝑎
𝑡⁄ )

2
− 2.76876(𝑎

𝑡⁄ ) − 0.28716  (22) 

𝐶 = −0.38333(𝑎
𝑡⁄ )

2
+ 1.50500 (𝑎

𝑡⁄ ) + 0.96933 (23) 
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By using the proposed equations given above to calculate the shape function and 
subsequently stress intensity factor for monopiles with 𝑅𝑜𝑢𝑡/𝑡 ≥ 20, the mean error between 

the calculated values given by the empirical equation and the computed values obtained from 
FE simulations is only 2.0% which is negligible. Though, when the above empirical 
equations are used to calculate the shape function at lower values of 𝑅𝑜𝑢𝑡/𝑡 the percentage 

error increases and reaches 12.3% for 𝑅𝑜𝑢𝑡/𝑡 = 5. A comparison between the computed Y 

values obtained for 𝑅𝑜𝑢𝑡/𝑡 = 40 and the calculated trend using Equation (20) is shown in 
Figure 19 for example. As seen in this figure the calculated solutions are in excellent 
agreement with the computed values. Note that considering the range of 𝑅𝑜𝑢𝑡/𝑡 in monopiles 

which is between 24 and 53 (see Figure 1), the proposed solution in Equations (20)−(23) 
which has been derived based on 𝑅𝑜𝑢𝑡/𝑡 ≥ 20 is valid for all monopiles.  

4.5 Difference between empirical shape function equation for monopile 
and Newman & Raju solutions for a finite plate and hollow cylinder 

As mentioned earlier, for the large diameter offshore wind turbine monopile structures a 
simplistic assumption is to take the circumferential semi-elliptical surface crack as a semi-
elliptical surface crack in a finite plate under tension. Therefore, the empirical solutions of the 
shape function at the deepest crack point calculated using Equations (20)−(23) for the 

monopile geometry (MP) are compared with the N&R solutions for a finite plate (FP) under 
tension provided in [22] considering Φ = 90° (i.e. deepest crack point) and the results are 

shown and compared in Figure 20. Also included in this figure are the shape function 
solutions provided by N&R for a hollow cylinder (HC) with 𝑅𝑖𝑛/𝑡 = 10 (i.e. 𝑅𝑜𝑢𝑡/𝑡 = 11) 
which is the largest 𝑅𝑖𝑛/𝑡 ratio considered in [21]. It can be seen in this figure that the shape 

function values given by N&R solutions for finite plate and N&R solutions for hollow 
cylinder are always above and below the values obtained from the proposed new empir ical 
equation for monopiles (Equations (20)−(23)), respectively. The mean difference between the 

FP and MP shape function solutions is 2.9% with the maximum difference of 8.2%. Similarly, 
the mean difference between the HC and MP shape function solutions is 4.3% with the 
maximum difference of 7.3%. Note that in order to directly compare the shape function 
solutions from this study with those of available from N&R, the values presented in [22] were 

multiplied by 1/√𝑄 . It must also be noted that the 𝑐/𝑏 from ref [22] cannot be directly 

transposed to the monopile geometry as there is no flat “width” in monopile (see Figure 3). 
This ratio is only used for the width correction factor in Equation (11) and as shown in Figure 
21 the width correction factor in N&R solution 𝑓𝑤 tends to 1 when 𝑐/𝑏 ratio tends to 0 (i.e. 

when b tends to infinity). Therefore, 𝑓𝑤 has been taken as 1 to compare N&R shape function 
solutions with those obtained from the empirical solution for the monopile geometry.  

5 Case study: Fracture Mechanics Based Fatigue Crack Growth 

Inspection in a Monopile 

In order to investigate the influence of the new shape function and stress intensity factor 
solutions on the structural integrity assessment of offshore wind turbine monopiles a case 

study has been presented in this paper. It is considered that a monopile made of S355 
structural steel with an outer diameter of 5m, thickness of 90 mm, and a circumferential semi-
elliptical crack at the outer surface with a fixed aspect ratio of 𝑎/𝑐 = 0.6 is subjected to a 

cyclic nominal stress range of Δσ = 100 MPa. In order to build a fracture mechanics based 
inspection plan (see e.g. [33]) for this monopile, the integrated form of Paris law [23] is often 
employed to estimate the crack extension against number of cycles:  
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𝑁𝑖+1 − 𝑁𝑖 =
1

𝐶∆𝜎𝑚𝜋𝑚/2
∫ 𝑎−𝑚/2𝑌−𝑚𝑑𝑎

𝑎𝑖+1

𝑎𝑖

 (24) 

where Y is the shape function, 𝐶 and 𝑚  are the Paris law constants which depend on the 

material, environment and stress ratio, 𝑁𝑖 is the number of loading cycles to reach a crack 
size of 𝑎𝑖 and 𝑁𝑖+1 is the number of loading cycles to reach a crack size of 𝑎𝑖+1. In order to 

estimate the crack growth behaviour in a monopile, Equation (24) has been used to calculate 
the number of cycles corresponding to an increment of crack growth using the C and m 
values for S355 base metal (BM) and heat affected zone (HAZ) given for monopiles in free-

corrosion environment reported in [34]. To investigate the change in inspection plan due to 
the shape function solution, the following four assumptions were employed in fatigue crack 
growth calculations using Equation (24): 

i.  Y = 1 (a very simple assumption used by some researchers e.g. [35, 36]) 

ii.  Y is obtained from N&R solution for hollow cylinder (HC), with Rout/t = 11 (Rin/t = 
10), under bending load [21] 

iii.  Y is obtained from N&R solution for finite plate (FP) in tension (Equation (3)) [22] 
iv. Y  calculated using the new empirical equation for monopiles (MP) developed in the 

present study (Equation (20)) 
 

The estimated crack propagation against number of cycles calculated using different shape 
function solutions are presented in Figure 22 and Figure 23 for the BM and HAZ, 

respectively. Note that since Equation (20) is valid for 0.2 ≤ 𝑎/𝑡 ≤ 0.8, the initial and final 
crack size were taken as 18 mm and 72 mm, respectively, to consider the valid range in the 
analysis. Also to employ the empirical Y solution for monopile, Equation (20) was employed 

in the analysis and the integral was calculated using Matlab. It can be observed in Figure 22 
that to get to a crack depth of 72 mm from an initial crack size of 18 mm in the BM, when 
Y = 1 and N&R solution for FP are employed in calculations the number of cycles is 
underestimated by around 37% and 6%, respectively, compared to the new Y solutions for 

monopiles, whereas the N&R solution for HC overestimates the number of cycles by 10%. 
Similarly, it can be seen in Figure 23 that for the same crack size in the HAZ material, the 
number of cycles calculated based on Y = 1 and N&R solution for FP is underestimated by 
around 33% and 7%, respectively, whereas the N&R Y solution for HC overestimates the 

number of cycles by 6%. The results in Figure 22 and Figure 23 show that the shape function 
solution used in fracture mechanics based inspection of monopiles plays a significant role in 
life assessment of these structures and the values employed in the analysis can considerably 
underestimate or overestimate the number of cycles required to reach to a certain crack depth.  

It is also evident that Y = 1 and N&R FP assumptions always underestimate the number of 
cycles corresponding to a given crack length, whereas N&R HC assumption overestimates 
the number of cycles required to obtain a certain crack depth in monopile. The results from 
this case study suggest that the N&R FP assumption might be acceptable but slightly 

underestimates the number of loading cycles compared to the values given when using the 
new empirical shape function equation for monopile. 

6 Conclusions 

Finite element simulations were performed to evaluate the shape function and stress intensity 
factor solutions for circumferential semi-elliptical surface cracks in offshore wind turbine 
monopile (i.e. large diameter hollow cylinder) geometry. A wide range of geometries and 

dimensions were considered in the analysis to cover the wide range of existing monopiles 
operating in offshore wind farms around the world. An empirical shape function equation for 
the deepest point was developed for monopiles based on the finite element results. This 
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equation is valid for monopiles with 𝑅𝑜𝑢𝑡/𝑡 ≥ 20, 0.2 ≤ a/t ≤ 0.8 and 0.4 ≤ a/c ≤ 1.0. The 

developed equation was verified through comparison with Newman & Raju solutions 
available for hollow cylinders under bending with small Rout/t ratio. Finally, a case study was 
considered to determine the significance of shape function solutions employed in estimating 
fatigue crack growth behaviour in offshore wind turbine monopiles. It appears from the case 

study that the assumption to use shape function values given by Newman & Raju for finite 
plate under tension might be acceptable but slightly underestimates the number of loading 
cycles compared to the values given when using the new empirical shape function equation 
for monopile. Moreover, the case study results show that using Newman & Raju shape 

function values for small diameter hollow cylinders (i.e. Rout/t = 11) under bending the 
number of loading cycles are overestimated by up to 10% and for Y = 1 the number of 
estimated cycles is out by up to 37%, therefore these shape function solutions are 
unacceptable. 
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Tables 

Table 1: A summary of N&R normalised stress intensity factor, F, values for a 
circumferential semi-elliptical surface crack under bending load [21] 

  𝒂/𝒕 = 𝟎. 𝟐 𝒂/𝒕 = 𝟎. 𝟓 𝒂/𝒕 = 𝟎. 𝟖 
𝑹𝒊𝒏/𝒕 𝑹𝒐𝒖𝒕/𝒕 Point A Point B Point A Point B Point A Point B 

 𝒂/𝒄 = 𝟏. 𝟎 
1 2 0.943 1.136 0.856 1.162 0.777 1.233 

2 3 0.966 1.137 0.919 1.188 0.870 1.287 

4 5 0.981 1.133 0.971 1.204 0.950 1.327 

10 11 0.995 1.131 1.012 1.212 1.019 1.348 

 𝒂/𝒄 = 𝟎. 𝟖 
1 2 0.989 1.037 0.931 1.079 0.885 1.162 

2 3 1.007 1.037 0.984 1.107 0.966 1.224 

4 5 1.021 1.033 1.028 1.126 1.033 1.276 

10 11 1.032 1.032 1.064 1.136 1.088 1.303 

 𝒂/𝒄 = 𝟎. 𝟔 
1 2 1.042 0.919 1.034 0.980 1.094 1.078 

2 3 1.056 0.919 1.069 1.015 1.118 1.152 

4 5 1.065 0.916 1.102 1.039 1.155 1.220 

10 11 1.071 0.913 1.130 1.051 1.188 1.257 

 

 

Table 2: Shape function, Y, solutions at the deepest point (A) and free surface (B) for the 
monopile geometry  

 
𝒂/𝒄 = 𝟎. 𝟒 

 𝒂/𝒕 = 𝟎. 𝟐 𝒂/𝒕 = 𝟎. 𝟓 𝒂/𝒕 = 𝟎. 𝟖 
𝑹𝒐𝒖𝒕/𝒕 Point A Point B Point A Point B Point A Point B 

5 0.940 0.654 1.042 0.719 1.154 0.803 
10 0.954 0.665 1.078 0.787 1.187 0.979 

15 0.961 0.677 1.094 0.807 1.202 1.031 
20 0.961 0.680 1.098 0.816 1.204 1.053 

25 0.963 0.685 1.104 0.831 1.208 1.083 
30 0.958 0.688 1.099 0.821 1.207 1.068 
35 0.967 0.709 1.102 0.832 1.207 1.090 

40 0.963 0.696 1.106 0.844 1.210 1.105 

 
𝒂/𝒄 = 𝟎. 𝟔 

 𝒂/𝒕 = 𝟎. 𝟐 𝒂/𝒕 = 𝟎. 𝟓 𝒂/𝒕 = 𝟎. 𝟖 
𝑹𝒐𝒖𝒕/𝒕 Point A Point B Point A Point B Point A Point B 

5 0.823 0.724 0.863 0.814 0.901 0.961 

10 0.836 0.731 0.890 0.834 0.930 1.021 
15 0.842 0.736 0.903 0.844 0.943 1.032 
20 0.841 0.742 0.906 0.848 0.948 1.042 

25 0.845 0.742 0.911 0.852 0.951 1.048 
30 0.839 0.721 0.906 0.847 0.949 1.048 

35 0.846 0.745 0.910 0.850 0.952 1.055 
40 0.844 0.731 0.912 0.869 0.954 1.050 
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 𝒂/𝒄 = 𝟎. 𝟖 

 
𝒂/𝒕 = 𝟎. 𝟐 𝒂/𝒕 = 𝟎. 𝟓 𝒂/𝒕 = 𝟎. 𝟖 

𝑹𝒐𝒖𝒕/𝒕 Point A Point B Point A Point B Point A Point B 

5 0.724 0.739 0.733 0.810 0.737 0.928 
10 0.736 0.741 0.759 0.817 0.770 0.959 
15 0.743 0.746 0.770 0.825 0.785 0.967 

20 0.741 0.745 0.772 0.825 0.789 0.969 
25 0.748 0.726 0.778 0.829 0.794 0.972 

30 0.742 0.722 0.776 0.825 0.793 0.970 
35 0.747 0.785 0.780 0.826 0.795 0.975 

40 0.751 0.692 0.780 0.841 0.797 0.973 

 
𝒂/𝒄 = 𝟏. 𝟎 

 𝒂/𝒕 = 𝟎. 𝟐 𝒂/𝒕 = 𝟎. 𝟓 𝒂/𝒕 = 𝟎. 𝟖 
𝑹𝒐𝒖𝒕/𝒕 Point A Point B Point A Point B Point A Point B 

5 0.642 0.730 0.636 0.784 0.624 0.873 
10 0.655 0.733 0.661 0.791 0.660 0.894 

15 0.659 0.702 0.672 0.797 0.674 0.899 
20 0.662 0.725 0.674 0.792 0.679 0.896 

25 0.667 0.685 0.681 0.799 0.685 0.898 
30 0.662 0.705 0.679 0.795 0.685 0.900 
35 0.663 0.710 0.683 0.795 0.687 0.904 

40 0.669 0.690 0.682 0.810 0.689 0.905 

 
 

Table 3: Stress intensity factor and shape function values at the deepest point (point A) for 
two stress levels for 𝑅𝑜𝑢𝑡/𝑡 = 40 

Geometry 200 MPa 400 MPa 

a/c a/t K (MPa.√𝒎) Y K (MPa.√𝒎) Y 

0.4 0.2 54.046 0.963 108.092 0.963 
0.4 0.5 97.864 1.106 195.694 1.106 

0.4 0.8 135.286 1.210 270.572 1.210 
0.6 0.2 47.414 0.844 94.829 0.844 
0.6 0.5 80.874 0.912 161.729 0.912 

0.6 0.8 106.901 0.954 213.802 0.954 
0.8 0.2 42.186 0.751 84.371 0.751 

0.8 0.5 69.169 0.780 138.311 0.780 
0.8 0.8 89.359 0.797 178.717 0.797 
1.0 0.2 37.468 0.669 74.936 0.669 

1.0 0.5 60.453 0.682 120.934 0.682 
1.0 0.8 77.222 0.689 154.443 0.689 

 

Table 4: Stress intensity factor and shape function values at the free surface point (point B) 

for two stress levels for 𝑅𝑜𝑢𝑡/𝑡 = 40 

Geometry 200 MPa 400 MPa 

a/c a/t K (MPa.√𝒎) Y K (MPa.√𝒎) Y 

0.4 0.2 35.508 0.696 71.016 0.696 
0.4 0.5 74.107 0.844 148.213 0.844 
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0.4 0.8 123.747 1.105 247.493 1.105 
0.6 0.2 37.621 0.731 75.242 0.731 
0.6 0.5 76.398 0.869 152.795 0.869 

0.6 0.8 117.975 1.050 235.949 1.050 
0.8 0.2 39.412 0.692 78.823 0.692 

0.8 0.5 73.869 0.841 147.740 0.841 
0.8 0.8 109.201 0.973 218.407 0.973 
1.0 0.2 39.326 0.690 78.653 0.690 

1.0 0.5 69.806 0.810 139.613 0.810 
1.0 0.8 101.528 0.905 203.051 0.905 

 

Table 5: The converged solutions of the shape function at the deepest crack point (point A) 
for sufficiently large Rout /t ratios of equal to and greater than 20 

𝒂/𝒄 𝒂/𝒕 Y 

0.4 0.2 0.963 

0.6 0.2 0.844 

0.8 0.2 0.751 

1.0 0.2 0.669 

0.4 0.5 1.106 

0.6 0.5 0.912 

0.8 0.5 0.780 

1.0 0.5 0.682 

0.4 0.8 1.210 

0.6 0.8 0.954 

0.8 0.8 0.797 

1.0 0.8 0.689 

 

Table 6: Shape function solution second order polynomial fit coefficient values for various 

𝑎/𝑡 ratios 

𝒂/𝒕 A B C R2 

0.2 0.236 -0.819 1.255 0.999 

0.5 0.595 -1.534 1.626 0.999 
0.8 0.923 -2.150 1.928 0.997 
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Figures 

 

Figure 1: The thickness and diameter variation in some of the existing offshore wind turbine 
monopiles 

 

 

Figure 2: Crack configuration for Irwin’s stress intensity factor equation for an elliptical 
crack in an infinite body [9] 
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Figure 3: Geometry of the semi-elliptical surface crack in a finite plate under tension in N&R 
stress intensity factor solutions [22] 

 

 

Figure 4: Pipe geometry considered for circumferential semi-elliptical surface crack stress 
intensity factor solutions proposed by N&R [21] 
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Figure 5: Geometry and loading conditions in N&R stress intensity factor solutions for 
circumferential semi-elliptical surface cracks [21] 

 
 

 

 

Figure 6: Coordinate system used by N&R for circumferential semi-elliptical surface crack 
stress intensity factor solutions [21] 

 
 
 

 
 

 
 

 

(a) (b) (c) 

Figure 7: Partitioning strategy for finite element simulations on monopile geometry 
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Figure 8: Mesh structure for finite element analysis (top view) 

 

 
 

 

Figure 9: Mesh structure for finite element analysis (side view) 

 
 

 
 
 

 
Figure 10: q-vector distribution at the crack front 
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Figure 11: Boundary conditions applied on the monopile geometry 

 
 
 
 

 

 

Figure 12: Coupling interaction used to apply the bending moment at one end of the 
monopile 
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Figure 13: Comparison of N&R [21] and new shape function values for 𝑅𝑜𝑢𝑡/𝑡 = 5 at the 
deepest point 

 

 

Figure 14: Comparison of N&R [21] and new shape function values for 𝑅𝑜𝑢𝑡/𝑡 = 5 at the 
free surface point 
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Figure 15: Variation of shape function solution along the crack front for 𝑅𝑜𝑢𝑡/𝑡 = 3,  
𝑎/𝑐 = 1.0 

 

 

 

Figure 16: Shape function variation against 𝑅𝑜𝑢𝑡/𝑡 ratio for different 𝑎/𝑐 value and fixed 𝑎/𝑡 
of 0.2 
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Figure 17: Shape function variation against 𝑅𝑜𝑢𝑡/𝑡 ratio for different 𝑎/𝑐 values and fixed 
𝑎/𝑡 of 0.5 

 

Figure 18: Shape function variation against 𝑅𝑜𝑢𝑡/𝑡 ratio for different 𝑎/𝑐 values and fixed 

𝑎/𝑡 of 0.8 
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Figure 19: Dependency of new shape function solutions on 𝑎/𝑐 and 𝑎/𝑡 ratios (computed FE 
values are for Rout /t = 40 and the calculated trends are obtained from Equation (20) which is 

valid for Rout /t ≥ 20) 

 
 

 

Figure 20: Comparison of the shape function values obtained from N&R solutions for the 
finite plate (FP), N&R solution for hollow cylinder (HC) with Rout/t = 11 and the developed 

empirical equation (Equation (20)) for monopile (MP)  
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Figure 21: Variation of the width correction factor fw in N&R [22] solution against 𝑐/𝑏 ratio 

 
 
 

 
 
 

 

Figure 22: Crack growth estimation for base metal in seawater using different shape function 
solutions  
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Figure 23: Crack growth estimation for the HAZ material in seawater using different shape 
function definitions  
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