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Abstract

In this article, it is proved that feedback controllers can be designed to stabilize nonlinear neutral stochastic systems 
with Markovian switching (NSDDEwMS in short) only by using discrete observed state sequences. Due to the su-
perlinear coefficients, the neutral term and the discrete observation data, many routine methods and techniques for the 
study of stochastic systems are not applicable. A new Lyapunov functional is constructed by using multiple M-
matrices to prove that a given unstable NSDDEwMS can be stabilized if the control function can be designed to meet 
a couple of easy-to-be-verified rules. Finally, an example is given to illustrate the feasibility of the theoretical results.
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1. Introduction

By considering the influence of stochastic factors and sudden change of systems parameters and structure, 
stochas-tic differential equations with Markovian switching (SDEwMS in short) as special hybrid systems have been 
widely developed in the past decades [1, 2]. As fundamental properties, the stability and stabilization play an 
irreplaceable role in the theory and applications of SDEwMS. For the unstable stochastic systems, the regular 
stabilization methods are based on the continuous-time observational data to design the feedback controller 
(continuous controller in short)[3, 4, 5]. However, due to consideration of the cost and practical operation, in 2013, 
Mao [6] designed a controller depending only on discrete state observations (discrete controller in short) to stabilize 
SDEwMS. The main method in [6] is to compare the discrete controller with the continuous one, and obtain 
exponential stability of the controlled system in the mean square sense by using the properties of Markov skeleton 
process. Base on Mao’s work, under the weaker constraints on the coefficients of the system, You et al. [7] did not 
only establish the stabilization criteria in various senses, but also proposed a better state observation time interval by 
the method of Lyapunov functionals. Considering both the feedback control of discrete observations and the periodic 
intermittent control, Wu et al. [8] studied the synchronization of stochastic oscillators with time-varying coupling 
structure and Liu and Wu [9] gave a controller to stabilize the unstable system of ordinary differential equation. It is 
noted that the above criteria only work for the systems whose coefficients are linear or subject to the linear growth 
condition.

However, in the real world, many practical systems are not linear, such as finance model of constant elasticity of 
variance (CEV), the predator-prey model in ecology and so on [10, 11]. Therefore, the study of the stability and 
stabilization for the above highly nonlinear systems has attracted extensive attention. In 2013, Hu et al. [12, 13] used 
different methods to study the asymptotic behavior of highly nonlinear SDEwMS with delay. Fei et al. [14] further 
discussed the influence of different structures on the robust stability and boundedness of SDEwMS with delay and
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superlinear coefficients. Recently, based only on discrete-time state observations, the Lyapunov functional method
can be used to design the controller to stabilize the unstable highly nonlinear SDEwMS [15, 16]. Meanwhile, event-
triggered stabilization and sliding-mode control of stochastic systems have also received further attention [17, 18, 19].
In particular, Zong et al. [20] explored the problem of delay tolerance for SDEs with global and nonglobal Lipschitz
coefficients in general sense, and gave an upper bound of delay, in which the delay caused by discrete state observation
is analyzed as a special case.

On the other hand, motivated by the dynamics of oscillators as well as the viscous aftereffect problems, neutral
systems have attracted widespread and constant attention, and appeared frequently in population ecology, automatic
control, chemical reactors, distributed networks and so on [21, 22, 23, 24]. Considering the influence of random
factors, by the LaSalle theorem of stochastic version, Mao et al. [25] further investigated the almost sure stability
of linear and nonlinear hybrid stochastic neutral systems, and obtained the rate of convergence. The properties of
highly nonlinear NSDDEwMS are analyzed from different perspectives such as numerical method, decay rate in
general sense and delay dependent stability [26, 27, 28]. Although continuous controllers are designed in [29, 30] to
stabilize unstable neutral systems, there is little known on how to stabilize highly nonlinear NSDDEwMS by a discrete
feedback control. Comparing with the existing results, we highlight the main features of this article as follows.

• We give a set of rules so that the feedback control based on the discrete state observations can be designed more
easily by following the rules step by step.

• Several new mathematical techniques have been developed to cope with the difficulties due to the neutral ter-
m, super-linear coefficients, discrete-time state observations. For example, in the proof of Theorem 3.2, the
conventional stopping technique can not deal with the existence of solutions of neutral systems in this paper.
Therefore, we use the piecewise technique to prove the existence of the solution, and then construct the integral
Lyapunov functional to obtain the asymptotic boundedness of the solution.

• Using multiple M-Matrices, we overcome the difficulties caused by superlinear coefficients in neutral systems
and realize the exponential stabilization of controlled systems.

The rest of this paper is organized as follows. In Section 2, necessary notations, basic assumptions and a lemma
are given. In Section 3, the existence, uniqueness and moment boundedness of the global solution of the controlled
NSDDEwMS are addressed, and the corresponding conditions are designed for the controller to obtain the stability of
the controlled NSDDEwMS. A numerical example is provided in Section 4, and the conclusion is drawn in Section 5.

2. Standing hypotheses

Notation: Let R+ = [0,∞). If D is a vector or matrix, its transpose is denoted by DT . For y ∈ Rd, |y| is the
Euclidean norm. If D ∈ Rd×m , |D| =

√
trace(DT D) and ‖D‖2 =

√
σmax(DT D) denote its Frobenius norm and spectral

norm, respectively. By D < 0 and D ≤ 0, we denote D is negative definite and non-positive real-valued square matrix.
For the positive number h, Ch,d = C([−h, 0]; Rd) means all continuous functions φ from [−h, 0]→ Rd and the norm is
‖φ‖ = sup−h≤θ≤0 |φ(θ)|. Let B(t) be an m-dimensional Brownian motion and (Ω,G,P) be a complete probability space.
{Gt}t≥0 is a natural filtration satisfying the usual conditions. Let q(t), t ≥ 0, be a right-continuous Markov chain taking
values in a finite state space Θ = {1, 2, ...,M} on the probability space with generator Q = (q jk)M×M given by

P{q(t + ∆) = k|q(t) = j} =

1 + q j j∆ + o(∆) if j = k,
q jk∆ + o(∆) if j , k,

where ∆ ↓ 0. Here q jk ≥ 0 is the transition rate from j to k if j , k while q j j = −
∑

j,k q jk. We always assume that the
Brownian motion B(·) and the Markov chain q(·) are independent of each other.

Let

f : Rd × Rd × Θ × R+ → Rd, g : Rd × Rd × Θ × R+ → Rd×m and G : Rd → Rd
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are Borel measurable functions. Consider a nonlinear NSDDEwMS

d(y(t) −G(y(t − h))) = f (y(t), y(t − h), q(t), t)dt + g(y(t), y(t − h), q(t), t)dB(t) (2.1)

on t ≥ 0 with the initial data

φ0 = {y(θ) : −h ≤ θ ≤ 0} ∈ Ch,d, q(0) = j0 ∈ Θ, (2.2)

where h > 0 is the system delay and y(t) ∈ Rd is the state vector (to make our mathematical analysis clear and concise,
we only deal with the system, which the neutral term is independent of time and switching). Next, we give some
fundamental assumptions, which are some restrictions on the coefficients and neutral term of equation (2.1).

Assumption 2.1. Assume that for any b > 0, there exists a Lb > 0 such that

| f (y1, z1, j, t) − f (y2, z2, j, t)|2 ∨ |g(y1, z1, j, t) − g(y2, z2, j, t)|2 ≤ Lb(|y1 − y2|
2 + |z1 − z2|

2) (2.3)

for all y1, y2, z1, z2 ∈ Rd with |y1| ∨ |y2| ∨ |z1| ∨ |z2| ≤ b and all ( j, t) ∈ Θ × R+. In addition, for all (y, z, j, t) ∈
Rd × Rd × Θ × R+, there exist some positive numbers L > 0, l1 ≥ 1 and l2 ≥ 1 such that

| f (y, z, j, t)| ≤ L(|y|l1 + |z|l1 + |y| + |z|) and |g(y, z, j, t)| ≤ L(|y|l2 + |z|l2 + |y| + |z|). (2.4)

Assume moreover that there is a constant % ∈ (0, 1) such that for all y, z ∈ Rd

|G(y) −G(z)| ≤ %|y − z| (2.5)

while G(0) = 0.

It is obvious that the condition (2.4) may be specialised as the linear growth condition by letting l1 = l2 = 1. This
shows that the results of this paper are more general than the previous ones [31, 32]. In order to avoid the solution of
the equation exploding in finite time, we also need to give a class of Khasminskii-type conditions to make the neutral
system (2.1) has a global continuous solution.

Assumption 2.2. For l1, l2 and % in Assumption 2.1, there exist some positive numbers ζ1, ζ2, ζ3, ζ4, p, l such that

p ≥ (2l1) ∨ (l1 + 2l2 − 1), l ≥ (l1 + 1) ∨ (2l2 − l1 + 1), ζ1 >ζ2

(1 + %

1 − %

)p−2
(2.6)

while

(y −G(z))T f (y, z, j, t) +
p − 1

2
|g(y, z, j, t)|2 ≤ − ζ1|y|l + ζ2|z|l + ζ3|y|2 + ζ4|z|2 (2.7)

for all (y, z, j, t) ∈ Rd × Rd × Θ × R+.

The following lemma is commonly used in dealing with neutral systems.

Lemma 2.3. [33] For vectors y, z ∈ Rd and b ≥ 1, under codition (2.5), we have

|y −G(z)|b ≤ (1 + %)b−1|y|b + %(1 + %)b−1|z|b,

|y −G(z)|b ≥ (1 − %)b−1|y|b − %(1 − %)b−1|z|b.

Theorem 2.4. For any given initial data (2.2), under Assumptions 2.1 and 2.2, the NSDDEwMS (2.1) has a unique
global continuous solution such that sup−h≤t<∞ E|y(t)|p < ∞ .
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Proof. Let U(y) = |y|p. By the Itô formula,

dU(y(t) −G(y(t − h))) = L1U(y(t), y(t − h), q(t), t)dt

+ p|y(t) −G(y(t − h))|p−2(y(t) −G(y(t − h)))T g(y(t), y(t − h), q(t), t)dB(t),

where the functional L1U is defined by

L1U(y, z, j, t) = p|y −G(z)|p−2(y −G(z))T f (y, z, j, t) +
p
2
|y −G(z)|p−2|g(y, z, j, t)|2

+
p(p − 2)

2
|y −G(z)|p−4|(y −G(z))T g(y, z, j, t)|2

≤ p|y −G(z)|p−2
[
(y −G(z))T f (y, z, j, t) +

p − 1
2
|g(y, z, j, t)|2

]
.

Using Lemma 2.3 and Assumption 2.2, we get

L1U(y, z, j, t) ≤p|y −G(z)|p−2
[
− ζ1|y|l + ζ2|y|l + ζ3|z|2 + ζ4|z|2

]
≤ − pζ1(1 − %)p−3(|y|p+l−2 − %|y|l|z|p−2) + pζ2(1 + %)p−3(|y|p−2|z|l + %|z|p−2+l)

+ p(1 + %)p−3(|y|p−2 + %|z|p−2)(ζ3|y|2 + ζ4|z|2).

Using the Young inequality,

|y|l|z|p−2 ≤
l

p + l − 2
|y|p+l−2 +

p − 2
p + l − 2

|z|p+l−2, |y|p−2|z|2 ≤
p − 2

p
|y|p +

2
p
|z|p,

|y|p−2|z|l ≤
p − 2

p + l − 2
|y|p+l−2 +

l
p + l − 2

|z|p+l−2, |y|2|z|p−2 ≤
2
p
|y|p +

p − 2
p
|z|p.

Hence

L1U(y, z, j, t) ≤ −β1|y|p+l−2 + β2|z|p+l−2 + β3|y|p + β4|z|p, (2.8)

where

β1 =pζ1(1 − %)p−3 − pζ1%(1 − %)p−3 l
p + l − 2

− pζ2(1 + %)p−3 p − 2
p + l − 2

,

β2 =pζ1%(1 − %)p−3 p − 2
p + l − 2

+ pζ2(1 + %)p−3 l
p + l − 2

+ pζ2%(1 + %)p−3,

β3 =ζ3(p + 2%)(1 + %)p−3 + ζ4(p − 2)(1 + %)p−3,

β4 =ζ3%(p − 2)(1 + %)p−3 + ζ4(p% + 2)(1 + %)p−3.

Recalling (2.6), it is easy to show that β1 > β2 > 0 and β4 > 0, we can then rewrite (2.8) as

L1U(y, z, j, t) ≤C1 − β2|y|p+l−2 + β2|z|p+l−2 − β4|y|p + β4|z|p

≤C1 − β4

(
|y|p +

β2

β4
|y|p+l−2

)
+ β4

(
|z|p +

β2

β4
|z|p+l−2

)
,

where C1 = maxs≥0

(
− (β1 − β2)sp+l−2 + (β3 + β4)sp

)
. Let U(y) = |y|p and U2(y) = |y|p +

β2
β4
|y|p+l−2, we easy verify

Assumption 3 in [34]. Thus, we can get our result by using Theorem 1 and Corollary 1 in [34]. 2

3. Boundedness and stabilization

Obviously, the system satisfying Assumptions 2.1 and 2.2 is not necessarily stable. As mentioned earlier, we will
design a discrete controller u(y([t/τ]τ), q(t), t) in the drift term to stabilize the unstable NSDDEwMS (2.1), where τ is
the gap between two discrete observations. That is, we will discuss the asymptotic behavior of the new NSDDEwMS

d(y(t) −G(y(t − h))) =[ f (y(t), y(t − h), q(t), t) + u(y([t/τ]τ), q(t), t)]dt

+ g(y(t), y(t − h), q(t), t)dB(t), t ≥ 0, (3.1)

4
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where u : Rd × Θ × R+ → Rd is a Borel measurable function. In this article, we will make the following rule about
the controller u.

Assumption 3.1. For each j ∈ Θ and y, z ∈ Rd, there exists a constant ϑ > 0 satisfies

|u(y, j, t) − u(z, j, t)| ≤ ϑ|y − z|, ∀t ≥ 0. (3.2)

In addition, for each j ∈ Θ, assume that u(0, j, t) ≡ 0,∀t ≥ 0.

For each (y, j) ∈ Rd × Θ, Assumption 3.1 implies

|u(y, j, t)| ≤ ϑ|y|, ∀t ≥ 0. (3.3)

3.1. Boundedness
In the following part, we will show that the new NSDDEwMS (3.1) can inherit the properties of the original

system (2.1), such as the existence and asymptotic boundedness of continuous solution y(t) on [−h,∞).

Theorem 3.2. For any given initial data (2.2), under Assumptions 2.1, 2.2 and 3.1, the NSDDEwMS (3.1) has a
unique solution y(t) on [−h,∞) a.s. Moreover, the solution y(t) satisfies that

sup
−h≤t<∞

E|y(t)|p < ∞. (3.4)

Proof. Set ȳ(t) = y(t) −G(y(t − h)). The controlled NSDDEwMS (3.1) may be rewritten as

dȳ(t) =
(
f (y(t), y(t − h), q(t), t) + u(y(t − ϕ(t)), q(t), t)

)
dt + g(y(t), y(t − h), q(t), t)dB(t),

where ϕ(t) = t − iτ for iτ ≤ t < (i + 1)τ, i = 0, 1, 2, ...
Step 1. Let U(y) = |y|p again. By the Itô formula,

dU(ȳ(t)) = L2U(y(t), y(t − h), y(t − ϕ(t)), q(t), t)dt + p|ȳ(t)|p−2ȳ(t)T g(y(t), y(t − h), q(t), t)dB(t),

where L2U is defined by

L2U(y, z, ẑ, j, t) = L1U(y, z, j, t) + p|y −G(z)|p−2(y −G(z))T u(ẑ, j, t),

in which ẑ refers to the state y(t − ϕ(t)) of the control function u. Recalling (2.8), then using Assumption 3.1 and
Lemma 2.3, we give

L2U(y, z, ẑ, j, t) ≤ − β1|y|p+l−2 + β2|z|p+l−2 + β3|y|p + β4|z|p + pϑ|y −G(z)|p−1|ẑ|

≤ − β1|y|p+l−2 + β2|z|p+l−2 + β3|y|p + β4|z|p + pϑ(1 + %)p−2(|y|p−1 + %|z|p−1)|ẑ|.

By the Young inequality,

pϑ(1 + %)p−2|y|p−1|ẑ| =
(
p
ε2

2
|ẑ|p

)1/p( p21/(p−1)ϑp/(p−1)(1 + %)(p−2)p/(p−1)|y|p

ε2/(p−1)

)(p−1)/p

≤
ε2

2
|ẑ|p +

(p − 1)21/(p−1)ϑp/(p−1)(1 + %)(p−2)p/(p−1)

ε2/(p−1) |y|p,

pϑ%(1 + %)p−2|z|p−1|ẑ| =
(
p
ε2

2
|ẑ|p

)1/p( p21/(p−1)(ϑ%)p/(p−1)(1 + %)(p−2)p/(p−1)|z|p

ε2/(p−1)

)(p−1)/p

≤
ε2

2
|ẑ|p +

(p − 1)21/(p−1)(ϑ%)p/(p−1)(1 + %)(p−2)p/(p−1)

ε2/(p−1) |z|p.

Hence

L2U(y, z, ẑ, j, t) ≤ −β1|y|p+l−2 + β2|z|p+l−2 + β̂3|y|p + β̂4|z|p + ε2|ẑ|p, (3.5)
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where β̂3 =
(p−1)21/(p−1)ϑp/(p−1)(1+%)(p−2)p/(p−1)

ε2/(p−1) + β3, β̂4 =
(p−1)21/(p−1)(ϑ%)p/(p−1)(1+%)(p−2)p/(p−1)

ε2/(p−1) + β4.
For t ∈ [0, τ], y(t − ϕ(t)) = y(0), thus we have

L2U(y(t), y(t − h), y(0), q(t), t)

≤ − β1|y(t)|p+l−2 + β2|y(t − h)|p+l−2 + β̂3|y(t)|p + β̂4|y(t − h)|p + ε2|y(0)|p

≤C2 − β̂4

(
|y(t)|p +

β2

β̂4
|y(t)|p+l−2

)
+ β̂4

(
|y(t − h)|p +

β2

β̂4
|y(t − h)|p+l−2

)
,

where C2 := maxs≥0

(
− (β1 − β2)sp+l−2 + (β̂3 + β̂4)sp

)
+ ε2|y(0)|p. From Theorem 1 in [34], NSDDEwMS (3.1) has a

unique continuous solution y(t) on [0, τ]. Next, for t ∈ [τ, 2τ], y(t − ϕ(t)) = y(τ), thus we obtain

L2U(y(t), y(t − h), y(τ), q(t), t)

≤ − β1|y(t)|p+l−2 + β2|y(t − h)|p+l−2 + β̂3|y(t)|p + β̂4|y(t − h)|p + ε2|y(τ)|p

≤C3 − β̂4

(
|y(t)|p +

β2

β̂4
|y(t)|p+l−2

)
+ β̂4

(
|y(t − h)|p +

β2

β̂4
|y(t − h)|p+l−2

)
,

where C3 := maxs≥0

(
− (β1 − β2)sp+l−2 + (β̂3 + β̂4)sp

)
+ ε2|y(τ)|p. Similarly, NSDDEwMS (3.1) still has a unique

continuous solution y(t) on [τ, 2τ]. Continuing this procedure inductively, we can see that NSDDEwMS (3.1) has the
unique globe solution.

Step 2. Applying the Itô formula, together with (3.5), yields

d(eεtU(ȳ(t))) =eεt
(
εU(ȳ(t)) + L2U(y(t), y(t − h), y(t − ϕ(t)), q(t), t)

)
dt

+ peεt |ȳ(t)|p−2ȳT (t)g(y(t), y(t − h), q(t), t)dB(t)

≤eεt
(
ε|ȳ(t)|p − β1|y(t)|p+l−2 + β2|y(t − h)|p+l−2 + β̂3|y(t)|p + β̂4|y(t − h)|p

+ ε2|y(t − ϕ(t))|p
)
dt + peεt |ȳ(t)|p−2ȳT (t)g(y(t), y(t − h), q(t), t)dB(t)

≤eεt
(
− β1|y(t)|p+l−2 + β2|y(t − h)|p+l−2 + β̄3|y(t)|p + β̄4|y(t − h)|p

+ ε2|y(t − ϕ(t))|p
)
dt + peεt |ȳ(t)|p−2ȳT (t)g(y(t), y(t − h), q(t), t)dB(t), (3.6)

where β̄3 = ε(1 + %)p−1 + β̂3, β̄4 = ε%(1 + %)p−1 + β̂4. We now define

U1(t) = β2

∫ t

t−h
eε(w+h)|y(w)|p+l−2dw + β̄4

∫ t

t−h
eε(w+h)|y(w)|pdw.

By the simple calculation,

dU1(t) =(β2eε(t+h)|y(t)|p+l−2 − β2eεt |y(t − h)|p+l−2 + β̄4eε(t+h)|y(t)|p − β̄4eεt |y(t − h)|p)dt.

This, together with (3.6), gives

d(eεtU(ȳ(t)) + U1(t)) ≤eεt
[
Ĥ(y(t)) + ε2|y(t − ϕ(t))|p

]
dt + peεt |ȳ(t)|p−2ȳT (t)g(y(t), y(t − h), q(t), t)dB(t),

where Ĥ(s) = −(β1 − β2eεh)|s|p+l−2 + (β̄3 + β̄4eεh)|s|p. Recalling (2.6), we may choose ε > 0 sufficiently small for
β1 − β2eεh > 0, which implies

C4 = sup
s≥0

Ĥ(s) < ∞.

Hence, we have

eεtEU(ȳ(t)) ≤ E(eεtU(ȳ(t)) + U1(t)) ≤U(ȳ(0)) + U1(0) + E
∫ t

0
eεw

[
C4 + ε2|y(w − ϕ(w))|p

]
dw

≤U(ȳ(0)) + U1(0) +
C4eεt

ε
+ εeεt sup

−h≤w≤t
E|y(w)|p.
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We therefore get

E|y(t) −G(y(t − h))|p ≤U(ȳ(0)) + U1(0) +
C4

ε
+ ε sup

−h≤w≤t
E|y(w)|p

:=C5 + ε sup
−h≤w≤t

E|y(w)|p.

Again, using Lemma 2.3, we obtain

(1 − %)p−1E|y(t)|p − %(1 − %)p−1E|y(t − h)|p ≤ E|y(t) −G(y(t − h))|p ≤C5 + ε sup
−h≤w≤t

E|y(w)|p,

which implies

(1 − %)p−1E|y(t)|p ≤C5 +
(
%(1 − %)p−1 + ε

)
sup
−h≤w≤t

E|y(w)|p.

Thus, we get

(1 − %)p−1 sup
−h≤w≤t

E|y(w)|p ≤(1 − %)p−1(‖φ0‖
p + sup

0≤w≤t
E|y(w)|p)

≤(1 − %)p−1‖φ0‖
p + C5 + (%(1 − %)p−1 + ε) sup

−h≤w≤t
E|y(w)|p.

Choosing ε > 0 sufficiently small such that ε < ln β1−ln β2
h ∧ (1 − %)p, we have

sup
−h≤w≤t

E|y(w)|p ≤
(1 − %)p−1‖φ0‖

p + C5

(1 − %)p − ε
:= C6,

Letting t → ∞, we there therefore obtain the desired result (3.4). 2

Remark 3.3. (i) For t = iτ, i = 1, 2, ..., the bounded time-varying delay ϕ(t) caused by discrete observations is not
differentiable, so we can not directly use the relevant results in [34] to explain the the existence, uniqueness and
boundedness of the solution of NSDDEwMS (3.1).

(ii) Combining this theorem with condition (2.6), we can get

sup
0≤t<∞

E| f (y(t), y(t − h), q(t), t)|2 < ∞ and sup
0≤t<∞

E|g(y(t), y(t − h), q(t), t)|2 < ∞.

3.2. Exponential stabilization
In this section, we will show that under certain conditions, the feedback controller which depends on discrete-time

state observations can achieve exponential stabilization under the premise of ensuring the asymptotic boundedness
of the solution of the controlled NSDDEwMS (3.1). Our main methods are multiple M-matrices and Lyapunov
functional. Regarding the definition and fundamental properties on M-matrix, see [1, section 2.6]. Now we state the
first condition in term of the M-matrix.

Assumption 3.4. For any j ∈ Θ, there are positive constants ζ ji, ζ̂ ji(i = 1, 2, 4) and real constants ζ j3, ζ̂ j3 such that

(y −G(z))T [ f (y, z, j, t) + u(y, j, t)] +
1
2
|g(y, z, j, t)|2 ≤ −ζ j1|y|l + ζ j2|z|l + ζ j3|y|2 + ζ j4|z|2 (3.7)

and

(y −G(z))T [ f (y, z, j, t) + u(y, j, t)] +
l1
2
|g(y, z, j, t)|2 ≤ −ζ̂ j1|y|l + ζ̂ j2|z|l + ζ̂ j3|y|2 + ζ̂ j4|z|2 (3.8)

for all (y, z, t) ∈ Rd × Rd × R+. Moreover, both

M1 := −2diag(ζ13, ..., ζM3) − Q and M2 := −(l1 + 1)diag(ζ̂13, ..., ζ̂M3) − Q (3.9)

are nonsingular M-matrices.
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Remark 3.5. From the assumptions in Section 2, we can see that the above rules are easy to realize in practice. For
example, let’s take u(y, j, t) = Dy, where D < 0 is a symmetric matrix such that 2σmax(D) − %σmin(D) ≤ −4ζ3 (where
σmax(D) and σmin(D) are the largest and smallest eigenvalues of matrix D and ‖D‖2 =

√
σmax(DT D) = −σmin(D)).

Then, for all (y, z, j, t) ∈ Rd × Rd × Θ × R+

(y −G(z))T u(y, j, t) ≤σmax(D)|y|2 + |G(z)|‖D‖2|y|

≤σmax(D)|y|2 − %σmin(D)|z||y|

≤(σmax(D) −
%σmin(D)

2
)|y|2 −

%σmin(D)
2

|z|2

≤ − 2ζ3|y|2 −
%σmin(D)

2
|z|2.

By (2.7), we have

(y −G(z))T [ f (y, z, j, t) + u(y, j, t)] +
1
2
|g(y, z, j, t)|2 ≤ −ζ1|y|l + ζ2|z|l − ζ3|y|2 + (ζ4 −

%σmin(D)
2

)|z|2

as well as

(y −G(z))T [ f (y, z, j, t) + u(y, j, t)] +
l1
2
|g(y, z, j, t)|2 ≤ −ζ1|y|l + ζ2|z|l − ζ3|y|2 + (ζ4 −

%σmin(D)
2

)|z|2

while

M1 = 2diag(ζ3, ..., ζ3) − Q and M2 = (l1 + 1)diag(ζ3, ..., ζ3) − Q

which are nonsingular M-matrices.

Set

(π1, ..., πM)T :=M−1
1 (1, ..., 1)T and (π̂1, ..., π̂M)T :=M−1

2 (1, ..., 1)T . (3.10)

Obviously, from the properties of nonsingular M-matrices, for all j ∈ Θ, we have π j > 0 and π̂ j > 0. Then define a
function V : Rd × Θ→ R+ by

V(y, j) = π j|y|2 + π̂ j|y|l1+1, (3.11)

while define a functional LV : Rd × Rd × Θ × R+ → R by

LV(y, z, j, t) =2π j

[
(y −G(z))T [ f (y, z, j, t) + u(y, j, t)] +

1
2
|g(y, z, j, t)|2

]
+ (l1 + 1)π̂ j|y −G(z)|l1−1

[
(y −G(z))T [ f (y, z, j, t) + u(y, j, t)]

+
l1
2
|g(y, z, j, t)|2

]
+

M∑
k=1

q jk(πk |y −G(z)|2 + π̂k |y −G(z)|l1+1).

Assumption 3.6. For each (y, z, j, t) ∈ Rd × Rd × Θ × R+, there exist positive numbers δi (i = 1, ..., 9) and a function
Φ(y) ∈ C(Rd;R+), such that

δ5 < δ4, δ6 < 1, δ7|y|l1+l−1 ≤ Φ(y) ≤ δ8 + δ9|y|l1+l−1, (3.12)

as well as

LV(y, z, j, t) + δ1
(
2π j|y −G(z)|+(l1 + 1)π̂ j|y −G(z)|l1

)2
+ δ2| f (y, z, j, t)|2 + δ3|g(y, z, j, t)|2

≤ − δ4|y|2 + δ5|z|2 − Φ(y) + δ6Φ(z). (3.13)
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In order to obtain our main results, we give the form of Lyapunov functional with multiple M-matrices as follows

V̂(ŷt, q̂t, t) =V(y(t), q(t)) +
ϑ2

δ1(1 − %)2

∫ 0

−τ

∫ t

t+s

[
|g(y(w), y(w − h), q(w),w)|2

+ τ| f (y(w), y(w − h), q(w),w) + u(y(w − ϕ(w)), q(w),w)|2
]
dwds, (3.14)

for t ≥ 0, where ŷt := {y(t + θ) : −2h ≤ θ ≤ 0} and q̂t := {q(t + θ) : −2h ≤ θ ≤ 0} and V has been defined
by (3.11). Define y(θ) = y(−h) for θ ∈ [−2h,−h) and q(θ) = j0 for θ ∈ [−2h, 0), so that ŷt and q̂t have a clear
definition on 0 ≤ t < 2h. Similarly, we set f (y, z, j,w) = f (y, z, j, 0), g(y, z, j,w) = g(y, z, j, 0), u(ẑ, j,w) = u(ẑ, j, 0) for
(y, z, ẑ, j,w) ∈ R3d × Θ × [−2h, 0].

Next, we give a lemma which can be proved from the generalized Itô formula in [1].

Lemma 3.7. For t ≥ 0, V̂(ŷt, q̂t, t) is an Itô stochastic process and its Itô differential is

dV̂(ŷt, q̂t, t) =[LV(y(t), y(t − h), y(t − ϕ(t)), q(t), t)

+
ϑ2τ

δ1(1 − %)2 J(t) −
ϑ2

δ1(1 − %)2

∫ t

t−τ
J(w)dw]dt + dM(t), (3.15)

where LV and J are defined as

LV(y(t), y(t − h), y(t − ϕ(t)), q(t), t)

=2πq(t)

[
ȳ(t)T [ f (y(t), y(t − h), q(t), t) + u(y(t − ϕ(t)), q(t), t)] +

1
2
|g(y(t), y(t − h), q(t), t)|2

]
+ (l1 + 1)π̂q(t)|ȳ(t)|l1−1

[
ȳ(t)T [ f (y(t), y(t − h), q(t), t) + u(y(t − ϕ(t)), q(t), t)]

+
1
2
|g(y(t), y(t − h), q(t), t)|2

]
+

(l21 − 1)
2

π̂q(t)|ȳ(t)|l1−3|ȳ(t)T g(y(t), y(t − h), q(t), t)|2

+

M∑
k=1

qq(t)k(πk |ȳ(t)|2 + π̂k |ȳ(t)|l1+1)

and

J(t) = τ| f (y(t), y(t − h), q(t), t) + u(y(t − ϕ(t)), q(t), t)|2 + |g(y(t), y(t − h), q(t), t)|2 (3.16)

respectively. In addition, M(t) is a local continuous martingale with M(0) = 0.

We may give first result of stabilization.

Theorem 3.8. Under Assumptions 2.1, 2.2, 3.1, 3.4 and 3.6, further assume τ is sufficiently small such that

τ <
(1 − %)

√
δ1(δ4 − δ5)

2ϑ2 and τ ≤

√
δ1δ2(1 − %)
√

2ϑ
∧
δ1δ3(1 − %)2

ϑ2 ∧
(1 − %)

4
√

2ϑ
. (3.17)

Then the solution y(t) of the controlled system (3.1) obeys

lim sup
t→∞

1
t

log(E|y(t)|q) < 0 (3.18)

for any q ∈ [2, p) and given initial data (2.2).

Proof. We divide the proof into three steps.
Step 1. By condition (3.17), we get

2ϑ2τ2

δ1(1 − %)2 ≤ δ2 and
ϑ2τ

δ1(1 − %)2 ≤ δ3.
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This, together with (3.16), yields

ϑ2τ

δ1(1 − %)2 J(t) ≤δ2| f (y(t), y(t − h), q(t), t)|2 + δ3|g(y(t), y(t − h), q(t), t)|2 +
2τ2ϑ2

δ1(1 − %)2 |u(y(t − ϕ(t)), q(t), t)|2

≤δ2| f (y(t), y(t − h), q(t), t)|2 + δ3|g(y(t), y(t − h), q(t), t)|2 +
2τ2ϑ4

δ1(1 − %)2 |y(t − ϕ(t))|2.

On the other hand, recalling the definitions LV and LV , and combining (3.3), we get

LV(y(t), y(t − h), y(t − ϕ(t)), q(t), t)

≤LV(y(t), y(t − h), q(t), t) + [2πq(t) − (l1 + 1)π̂q(t)|ȳ(t)|l1−1]ȳ(t)T [u(y(t), q(t), t) − u(y(t − ϕ(t)), q(t), t)]

≤LV(y(t), y(t − h), q(t), t) + δ1
[
2πq(t)|ȳ(t)| + (l1 + 1)π̂q(t)|ȳ(t)|l1

]2
+
ϑ2

4δ1
|y(t) − y(t − ϕ(t))|2.

Thus

dV̂(ŷt, q̂t, t) ≤ LV̂(ŷt, q̂t, t)dt + dM(t), (3.19)

where

LV̂(ŷt, q̂t, t) =LV(y(t), y(t − h), q(t), t) + δ1
[
2πq(t)|ȳ(t)| + (l1 + 1)π̂q(t)|ȳ(t)|l1

]2

+ δ2| f (y(t), y(t − h), q(t), t)|2 + δ3|g(y(t), y(t − h), q(t), t)|2

+
ϑ2

4δ1
|y(t) − y(t − ϕ(t))|2 +

2τ2ϑ4

δ1(1 − %)2 |y(t − ϕ(t))|2 −
ϑ2

δ1(1 − %)2

∫ t

t−τ
J(s)ds. (3.20)

Substituting (3.13) into (3.20), we have

LV̂(ŷt, q̂t, t) ≤ −δ4|y(t)|2 + δ5|y(t − h)|2 − Φ(y(t)) + δ6Φ(y(t − h))

+
ϑ2

4δ1
|y(t) − y(t − ϕ(t))|2 +

2τ2ϑ4

δ1(1 − %)2 |y(t − ϕ(t))|2 −
ϑ2

δ1(1 − %)2

∫ t

t−τ
J(s)ds.

It follows from (3.17) immediately that ϑτ ≤ (1 − %)/4
√

2, which implies

2τ2ϑ4

δ1(1 − %)2 |y(t − ϕ(t))|2 ≤
4τ2ϑ4

δ1(1 − %)2 |y(t)|2 +
ϑ2

8δ1
|y(t) − y(t − ϕ(t))|2.

Then,

LV̂(ŷt, q̂t, t) ≤ −
(
δ4 −

4τ2ϑ4

δ1(1 − %)2

)
|y(t)|2 + δ5|y(t − h)|2 − Φ(y(t)) + δ6Φ(y(t − h))

+
3ϑ2

8δ1
|y(t) − y(t − ϕ(t))|2 −

ϑ2

δ1(1 − %)2

∫ t

t−τ
J(s)ds. (3.21)

Moreover, under Assumptions 2.1, 3.1 and Theorem 3.2, especially Remark 3.3, we get

sup
0≤t<∞

E|LV̂(ŷt, q̂t, t)| < ∞.

Step 2. Integrating (3.19) from 0 to t, and taking expectation, we have

eεtEV̂(ŷt, q̂t, t) ≤ V̂(ŷ0, q̂0, 0) + E
∫ t

0
eεs(εV̂(ŷs, q̂s, s) + LV̂(ŷs, q̂s, s))ds, (3.22)
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for any t ≥ 0. Substituting (3.21) into (3.22) yields

eεtEV̂(ŷt, q̂t, t) ≤ V̂(ŷ0, q̂0, 0) + E
∫ t

0
εeεsV̂(ŷs, q̂s, s)ds + Ξ1 + Ξ2 + Ξ3 − Ξ4, (3.23)

where

Ξ1 =E
∫ t

0
eεs

[
−

(
δ4 −

4τ2ϑ4

δ1(1 − %)2

)
|y(s)|2 + δ5|y(s − h)|2

]
ds,

Ξ2 =E
∫ t

0
eεs

[
− Φ(y(s)) + δ6Φ(y(s − h))

]
ds,

Ξ3 =
3ϑ2

8δ1
E

∫ t

0
eεs|y(s) − y(s − ϕ(s))|2ds,

Ξ4 =
ϑ2

δ1(1 − %)2 E
∫ t

0
eεs

( ∫ s

s−τ
J(w)dw

)
ds.

By the substitution technique, we may compute that

Ξ1 ≤δ5eεh
∫ 0

−h
|φ0(s)|2ds −

(
δ4 − δ5eεh −

4τ2ϑ4

δ1(1 − %)2

)
E

∫ t

0
eεs|y(s)|2ds (3.24)

and

Ξ2 ≤δ6eεh
∫ 0

−h
Φ(φ0(s))ds −

(
1 − δ6eεh

)
E

∫ t

0
eεsΦ(y(s))ds. (3.25)

From the Fubini theorem,

Ξ3 =
3ϑ2

8δ1

∫ t

0
eεsE|y(s) − y(s − ϕ(s))|2ds.

For t ∈ [−h, h], we get ∫ t

0
eεsE|y(s) − y(s − ϕ(s))|2ds ≤2

∫ h

0
eεs(E|y(s)|2 + E|y(s − ϕ(s))|2)ds

≤4heεh sup
−h≤w≤h

E|y(w)|2 := C7.

For t ≥ h,

E|y(s) − y(s − ϕ(s))| ≤E|ȳ(s) − ȳ(s − ϕ(s))| + %E|y(s − h) − y(s − ϕ(s) − h)|

≤E
∣∣∣∣ ∫ s

s−ϕ(s)
( f (y(w), y(w − h), q(w),w) + u(y(w − ϕ(w)), q(w),w))dw

+

∫ s

s−ϕ(s)
g(y(w), y(w − h), q(w),w)dB(w)

∣∣∣∣ + %E|y(s − h)) − y(s − ϕ(s) − h)|,

which implies

E|y(s) − y(s − ϕ(s))|2

≤(1 + 1/ς)E
∣∣∣∣ ∫ s

s−ϕ(s)
( f (y(w), y(w − h), q(w),w) + u(y(w − ϕ(w)), q(w),w)dw

+

∫ s

s−ϕ(s)
g(y(w), y(w − h), q(w),w)dB(w)

∣∣∣∣2 + (1 + ς)%2E|y(s − h) − y(s − ϕ(s) − h)|2

≤2(1 + 1/ς)E
∫ s

s−ϕ(s)

(
τ| f (y(w), y(w − h), q(w),w) + u(y(w − ϕ(w)), q(w),w)|2

+ |g(y(w), y(w − h), q(w),w)|2
)
dw + (1 + ς)%2E|y(s − h) − y(s − ϕ(s) − h)|2.
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Setting ς = 1/% − 1 gives∫ t

h
eεsE|y(s) − y(s − ϕ(s))|2ds

≤
2

1 − %
E

∫ t

h
eεs

∫ s

s−ϕ(s)
J(w)dwds + %

∫ t

h
eεsE|y(s − h) − y(s − ϕ(s) − h)|2ds

≤
2

1 − %
E

∫ t

h
eεs

∫ s

s−τ
J(w)dwds + %eεh

∫ t

0
eεsE|y(s) − y(s − ϕ(s))|2ds.

Choosing ε > 0 such that 1 − %eεh > 15(1 − %)/16, we therefore have∫ t

h
eεsE|y(s) − y(s − ϕ(s))|2ds

≤
2

(1 − %)(1 − %eεh)
E

∫ t

h
eεs

∫ s

s−τ
J(w)dwds +

%

1 − %eεh

∫ h

0
eεsE|y(s) − y(s − ϕ(s))|2ds

≤
32

15(1 − %)2 E
∫ t

h
eεs

∫ s

s−τ
J(w)dwds +

16%
15(1 − %)

C7.

This implies

Ξ3 ≤
3ϑ2

8δ1
C7 +

3ϑ2

8δ1

( 32
15(1 − %)2 E

∫ t

h
eεs

∫ s

s−τ
J(w)dwds +

16%
15(1 − %)

C7

)
≤

4
5

Ξ4 +
(15 + %)ϑ2

40δ1(1 − %)
C7. (3.26)

Substituting (3.24), (3.25) and (3.26) into (3.23) gives

eεtEV̂(ŷt, q̂t, t) ≤C8 + V̂(ŷ0, q̂0, 0) −
(
δ4 − δ5eεh −

4τ2ϑ4

δ1(1 − %)2

)
E

∫ t

0
eεs|y(s)|2ds

− δ7

(
1 − δ6eεh

)
E

∫ t

0
eεs|y(s)|l1+l−2ds −

1
5

Ξ4,

where C8 = V̂(ŷ0, q̂0, 0) + δ5eεh
∫ 0
−h |φ0(s)|2ds + δ6eεh

∫ 0
−h Φ(φ0(s))ds +

(15+%)ϑ2

40δ1(1−%)C7.

Step 3. Recalling the structure of V̂ and condition (2.6), by the inequality |y|l1 ≤ |y|2 + |y|l1+l−2, we obtain

κ1eεtE|y(t)|2 ≤C8 + Ξ5 −
1
5

Ξ4 −
(
δ4 − δ5eεh −

4τ2ϑ4

δ1(1 − %)2 − εκ2 − εκ3

)
E

∫ t

0
eεs|y(s)|2ds

−
(
δ7 − δ6δ7eεh − εκ3

)
E

∫ t

0
eεs|y(s)|l1+l−2ds, (3.27)

where κ1 = min j∈Θ π j, κ2 = max j∈Θ π j, κ3 = max j∈Θ π̂ j, and

Ξ5 =
εϑ2

δ1(1 − %)2 E
∫ t

0
eεs

( ∫ 0

−τ

∫ s

s+v
J(w)dwdv

)
ds.

On the other hand, it is obvious that

Ξ5 ≤
εϑ2

δ1(1 − %)2 E
∫ t

0
eεs

(
τ

∫ s

s−τ

[
τ| f (y(w), y(w − h), q(w),w) + u(y(w − ϕ(w)), q(w),w)|2

+ |g(y(w), y(w − h), q(w),w)|2
]
dw

)
ds = ετΞ4.
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We may choose 0 < ε < ln(1+
1−%
16 )

h such that

δ5eεh + εκ2 + εκ3 ≤δ4 −
4τ2ϑ4

δ1(1 − %)2 , δ6eεh +
εκ3

δ7
≤ 1, ετ ≤

1
5
.

Plugging these into (3.27) gives

E|y(t)|2 ≤
C8

κ1
e−εt, ∀t ≥ 0. (3.28)

Applying the Hölder inequality, combining (3.4) and (3.28), for any q ∈ [2, p), we have

E|y(t)|q ≤ C(q−2)/(p−2)
6

(
C8/κ1

)(p−q)/(p−2)e−εt(p−q)/(p−2).

Thus, the assertion (3.18) follows immediately. 2
Finally, we can use the similar methods in [4, Theorem 4.5] and [15, Theorem 5.4] to show that under the same

conditions, the control function u can also make the neutral system achieve exponential stabilization with probability
1.

Theorem 3.9. For any given initial data (2.2), under the same conditions as Theorem 3.8, we can obtain that the
solution of equation (3.1) obeys

lim sup
t→∞

1
t

log(|y(t)|) < 0 a.s. (3.29)

4. Example

To explain the effectiveness of our given theory clearly, let’s consider the following two-dimensional NSDDEwM-
S:

d(y(t) −G(y(t − h))) = f (y(t), y(t − h), q(t), t)dt + g(y(t), y(t − h), q(t), t)dB(t) (4.1)

in which the coefficients are defined by

f (y, z, 1, t) =

(
y1 0
0 y2

) (
1 + z2

2 − 6y2
1

1 + z2
1 − 6y2

2

)
, g(y, z, 1, t) =

(
y1z2 0

0 y2z1

)
,

f (y, z, 2, t) =

(
y1 0
0 y2

) (
1 + 0.5z2

2 − 4y2
1

1 + 0.5z2
1 − 4y2

2

)
, g(y, z, 2, t) =

(
0.5z2

2 0
0 0.5z2

1

)
.

the neural term G(z) = (0.1z1, 0.1z2)T , and q(t) ∈ Θ = {1, 2} is a Markov chain with its generator

Q =

(
−1 1
2 −2

)
.

Through simple calculation, it can be deduced that equation (4.1) satisfies both Assumptions 2.1 and 2.2. Thus, it
can be seen that equation (4.1) has a unique global solution by using Theorem 2.4. Moreover, we take h = 1, φ0 =

(1 + cos(t), 1 + sin(t))T on t ∈ [−1, 0] and q(0) = 2, from the numerical simulation, we can see that NSDDEwMS (4.1)
is unstable. We illustrate this conclusion by simulation shown in Fig. 4.1. Next, we will design a discrete controller
to stabilize NSDDEwMS (4.1). Let’s give the control functions

u(y, 1, t) = −3y, u(y, 2, t) = −2y,

which implies Assumption 3.1 holds with ϑ = 3. In summary, all conditions of Theorem 3.2 can be satisfied, so that
the controlled NSDDEwMS

d(y(t) −G(y(t − h))) =( f (y(t), y(t − h), q(t), t) + u(y(t − ϕ(t)), q(t), t))dt + g(y(t), y(t − h), q(t), t)dB(t) (4.2)
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Fig. 4.1: Numerical simulation of the trajectories of the Markov chain and the solution y(t) of the NSDDEwMS (4.1) using the
tamed EM method [35] with step size 10−4.

has a unique global continuous solution almost surely and the solution obeys that

sup
0≤t<∞

E|y(t)|p < C4, ∀p ≥ 6.

Let’s verify the conditions in Assumption 3.4. For (y, z, j, t) ∈ R × R × Θ × R+, we have

(y − 0.1z)[ f (y, z, j, t) + u(y, j, t)] +
1
2
|g(y, z, j, t)|2

≤

{
−2.59625|y|4 + |z|4 − 1.9|y|2 + 0.1|z|2, if j = 1,

−1.71285|y|4 + 0.7625|z|4 − 0.95|y|2 + 0.05|z|2, if j = 2,

and

(y − 0.1z)[ f (y, z, j, t) + u(y, j, t)] +
3
2
|g(y, z, j, t)|2

≤

{
−2.34525|y|4 + 1.5|z|4 − 1.9|y|2 + 0.1|z|2, if j = 1,

−1.71825|y|4 + 0.7625|z|4 − 0.95|y|2 + 0.05|z|2, if j = 2,

which implies δ13 = δ̂13 = −1.9, δ23 = δ̂23 = −0.95. Hence, both

M1 =

(
4.8 −1
−2 3.9

)
and M2 =

(
8.6 −1
−2 5.8

)
are nonsingular M-matrices. That is, Assumption 3.4 holds. Finally, let’s test Assumption 3.6. Recalling (3.10) and
(3.11), we have

π1 = 0.293062, π2 = 0.406699, π̂1 = 0.142022, π̂2 = 0.221387,

and

V(y, j) =

{
0.293062|y|2 + 0.142022|y|4, if j = 1,
0.406699|y|2 + 0.221387|y|4, if j = 2.

Choosing δ1 = 0.6, δ2 = 0.01 and δ3 = 1.5, we get

LU(y, z, j, t) + δ1
(
2π j|y| + (l1 + 1)π̂ j|y|l1

)2
+ δ2| f (y, z, j, t)|2 + δ3|g(y, z, j, t)|2

≤ − 0.361137|y|2 + 0.040629|z|2 − Φ(y) + 0.984233Φ(z),
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where Φ(y) = 2.414428y4
1 + 2.423191y4

2 + 0.744218y6
1 + 0.9582075y6

2, which means Assumption 3.6 is also met.
By Theorems 3.8 and 3.9, when τ < 0.016431, the controlled NSDDEwMS (4.2) is exponentially stable in Lq

(p > q ≥ 2) and almost surely as well. For numerical simulation, we take the same initial data as before and let
h = 1, τ = 0.016. The trajectories of the solution of equation (4.2) and the Markov chain are shown in Fig. 4.2.
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Fig. 4.2: Numerical simulation of the trajectories of the Markov chain and the solution y(t) of the NSDDEwMS (4.2) with
τ = 0.016 using the tamed EM method [35] with step size 10−4.

5. Conclusion

In this paper, it is shown that the feedback controller bases on the discrete observation state sequence can be
used to stabilize highly nonlinear neutral stochastic systems, which is different from the traditional methods in the
existing papers. Since the controlled NSDDEwMS (3.1) has the characteristics of superlinear coefficients and non
differentiable variable delay, many existing stabilization techniques are not applicable here. We use a new method to
obtain the moment boundedness of the controlled system. Under this premise, we use multiple M-matrices to describe
a set of rules to ensure that the system (2.1) can be exponentially stabilized in the moment and almost surely sense as
long as these rules are followed step by step.

The results of this paper can be applied to stochastic systems with G-Brownian motion, and hence the work of
Yin et al [36] can be generalized. In addition, based on the results of our paper, we can also consider combining other
control methods to obtain a better time interval for discrete-time state observations and further reduce the control
costs.
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