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This paper presents a novel approach to the robust solution of optimal impulsive control

problems under aleatory and epistemic uncertainty. The novel approach uses belief Markov

decision processes to reformulate the control problem in terms of uncertainty distributions,

called beliefs, rather than the realisations of the system states. This formulation leads to

the definition of a Belief Optimal Control problem where the cost function and constraints

are functions of the uncertainty distributions. The control formulation encompasses orbit

determination arcs as well. The belief optimisation is solved with a shooting-like transcription

and a nonlinear programming solver to optimise the resulting discretised problem. Both

aleatory and epistemic uncertainties are propagatedwith a non-intrusive polynomial expansion

to capture the nonlinearities of the dynamics. Finally, this new approach is applied to the robust

optimisation of a flyby trajectory of the Europa Clipper mission in a scenario characterised by

knowledge, execution and observation uncertainty.

I. Introduction and Motivation

Space trajectories are typically optimised to meet the science and flight system constraints in a nominal scenario.

However, in real-life applications, perfect compliance to the reference trajectory is impossible to achieve as

uncertainty always affects the system; uncertainty can be due to imperfect state knowledge, imperfectly known dynamical

parameters, missed thrust events and execution errors.5

In the design phase, the robustness and reliability of the reference trajectory are usually evaluated a posteriori

through a navigation analysis and the nominal design adjusted through several iterations. The robustness and reliability

evaluation is carried out by assessing the mission outcome when the trajectory is affected by different uncertainty
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realisations. In order to improve robustness, common practice is to either add a posteriori empirical margins [1, 2], and

enforced coasting arcs for trajectory correction manoeuvres, reduce the thrust level or increasing the flyby altitudes.10

Hence, the optimisation of the nominal trajectory is generally decoupled from the quantification of the uncertainty in its

realisation. The iteration and handover between trajectory design and navigation analysis are generally time-consuming

and may lead to sub-optimal trajectories with over-conservative margins.

Recent developments in components and launchers are now enabling deep-space microsat and nanosat missions.

Such spacecraft have limited orbit control capabilities (e.g., limited ∆V and thrust levels), large uncertainties in the15

state knowledge (limited ground station access) and in the execution (low Technology Readiness Level components),

and limited room for margins and system redundancy (limited size and cost) [3, 4]. For these reasons, microsats are

more prone to early failure [5]. Therefore, for these missions, there is a compelling reason to design for robustness

and reliability from the start. Furthermore, one can argue that, while trajectory optimisation under uncertainty is an

enabling methodology for small spacecraft, it presents advantages also for larger scale traditional missions. In fact,20

integrating uncertainty from the start of the design process leads to optimal trajectories that achieve a better compromise

between performance and robustness than deterministic ones with added empirical margins. It also reduces the number

of iterations between trajectory design and navigation analysis with a corresponding saving in cost, time and complexity.

In the past few decades, a number of authors have addressed the problem of introducing either aleatory or epistemic

uncertainty, or both, in the design of space trajectories.25

One alternative is to formulate trajectory design under aleatory uncertainty as a stochastic optimal control problem.

Such formulation was then tackled with model predictive control [6] and stochastic closed-loop control [7] to account

for correction terms in the control profile. Stochastic differential dynamic programming was applied to trajectory

optimisation with an expected value formulation for Gaussian-modelled uncertainties [8]. Tube stochastic optimal

control generalised this approach to tackle nonlinear constrained problems under uncertainty by approximating generic30

stochastic processes as Gaussian and employing chance-constraints on the open and closed-loop control [9]. Covariance

control [10, 11] was specialised and applied for spacecraft guidance [12] and control design [13] around asteroids.

Risk-aware trajectory optimisation was proposed by using chance-constrained stochastic optimal control under Gaussian

uncertainties with a convex optimisation approach for impulsive controls [14] or with primer vector theory for continuous

thrust [15].35

Other works focused on the impact of specific uncertainty sources on the trajectory of a spacecraft. The case of a

temporary engine failure was investigated by stochastic programming [16, 17]. A method based on Taylor polynomials

algebra was developed to deal with uncertain boundary conditions around a reference trajectory and produce a robust

guidance law [18]. The use of expected thrust fraction was investigated to design continuous thrust trajectories which

are resilient to missed thrust events [19, 20]. Also, the use of machine learning techniques is being studied for spacecraft40

guidance and control [21] under uncertainty, e.g. using neural networks [22, 23] or reinforcement learning [24, 25].
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Approaches based on evidence theory to model epistemic uncertainty were developed for the robust optimisation

of transfers under system and dynamical uncertainties [26–28]. A generalisation to multi-objective problems and

uncertainty modelled with p-boxes was developed to compute families of control laws and tested on a rendezvous

scenario [29].45

However, these methods do not include a rigorous navigation analysis in the optimisation loop to quantify flight

dynamics and science requirements. In particular, the Orbit Determination (OD) process with measurements simulations

and uncertainty update is not included in previous works. In addition, some of the previous approaches deal with

uncertainties of a single nature while employing a tailored formulation to address a specific application.

In this context, this paper presents a novel development in optimal control under observation and model uncertainty50

for the robust design of space trajectories. The paper introduces an optimal control formulation that allows the integrated

treatment of a mix of aleatory (irreducible probabilistic variability) and epistemic (lack of knowledge) uncertainty.

The idea is to insert both types of uncertainty, generally affecting manoeuvre execution and navigation analysis, in the

formulation of optimal control problems via a Belief Markov Decision Process (BMDP) model [30]. The result is a

belief formulation of optimal control problems, or Belief Optimal Control (BOC). In BOC, the goal is to control the55

time evolution of the belief state induced by partially or non observable uncertain variables rather than controlling the

realisations of a stochastic variable (or process) with known distribution. In practical terms, this means controlling a

distribution function, or a family of distributions, induced by the uncertain variables, over a set of partially observable

states coming from an inference process. The solution of the BOC is an open-loop control profile which is the most

robust and reliable against the effects of uncertainty.60

This work builds on and extends previous research on optimal control under epistemic uncertainty [31, 32]. In [32]

the authors introduced a new multiple shooting transcription approach for trajectory optimisation under uncertainty. The

new transcription approach was capable of handling a wide range of uncertainty models (parametric, non-parametric,

imprecise set of distributions, etc.), while keeping the familiar notation of deterministic optimal control problems. This

paper extends the multiple shooting transcription method to incorporate a navigation analysis in the robust trajectory65

optimisation problem under aleatory and epistemic uncertainty. This approach enables the direct coupling of trajectory

optimisation and navigation analysis by incorporating the quantification of navigation uncertainty within the optimisation

cycle. To this end, this paper also introduces an efficient Uncertainty Quantification (UQ) approach for nonlinear

Navigation Analysis (NA), based on non-intrusive polynomial representations, which generalises existing linear NA

methods [33–35]. The trajectory is segmented into arcs and on each arc a set of states, coming from uncertainty in70

observation realisations and manoeuvre execution errors, are propagated with a non-intrusive polynomial expansion.

When observations are available, state and associated uncertainty predictions are updated with Bayes inference. Thus,

the full distribution over all possible states is retained during the dynamical propagation and the computation of the

objective and constraints, in contrast to most methods in literature which rely on expected value and covariance only.
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We will test the BOC method on the robust optimisation of a leg of the Europa Clipper flyby tour [36], a scenario75

where proper uncertainty treatment is crucial to ensure appropriate close-approach conditions and low probability of

impact. BOC is employed to optimise the total ∆V while satisfying a set of constraints on the expected value of the

terminal states. The uncertainty considered in this paper stems from knowledge error in the initial spacecraft state,

from execution errors introduced by the thrust pointing and magnitude inaccuracies when operating the engine, and by

measurement and sensor noise.80

The remainder of the paper is structured as follows. Section II introduces the Belief Optimal Control formulation

and is followed by Section III where a transcription method is developed to convert the BOC into a Nonlinear

Programming (NLP) problem. Specifically, this section addresses how to incorporate measurements in the trajectory

design process, presents the polynomial NA, and discusses practical strategies to propagate and quantify uncertainty in

different cases. In Section IV, the BOC is applied to the robust optimisation of one leg of the Europa Clipper flyby tour.85

The outcome is a trajectory that is simultaneously statistically optimal and reliable. Finally, Section V concludes the

paper with some final remarks and a discussion on potential future applications.

II. Belief Optimal Control Formulation

A generic deterministic Optimal Control Problem (dOCP) with impulsive controls can be formulated as

min
u

J = Φ(tF ,x f ) +

∫ tF

t0

L(t,x,u) dt (1a)

s.t. Ûx = f (t,x,d,u) (1b)

g(t,x,d,u) ∈ G (1c)

ψ(t0,x0, tF ,x f ) ∈ Ψ , (1d)

where t is the independent variable, x ∈ Rnx is the state vector, d ∈ Rnd are static model parameters, g ∈ Rng are path

constraints, and ψ ∈ Rnx is a set of boundary conditions. Controls u(t) are in the form:90

u(t) =
∑
i

uiδ(t − ti) (2)

with δ the Dirac delta function and ui ∈ R
nu .

When boundary conditions and system parameters are affected by uncertainty, problem (1) needs to be recast in

a form that allows one to derive a control law that is optimal with respect to a metric that accounts for the effect of

uncertainty. In the remainder of this section, we propose a belief formulation of optimal control problems that allows

one to directly work with the probability distributions of the uncertain quantities and to incorporate system-level and95
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navigation uncertainties in the derivation of optimal control laws.

A. Preliminary Definitions

In this section, we define a number of elements that are required to introduce the belief formulation of optimal

control problems.

• Uncertainty model. In this paper, we employ a mixed aleatory and epistemic uncertainty model where a generic100

uncertain variable Z : ΩZ → Rnz , with samples space ΩZ, has an associated probability density function (pdf)

p(z;λ) parameterised with the epistemic parameter λ ∈ Ωλ . Thus, this model assumes that the aleatory uncertainty,

characterised by the pdf p, is imprecise due to epistemic uncertainty affecting the parameters λ. The epistemic set

of parametric distributions is defined as

Pz,λ =
{
p(z;λ) | λ ∈ Ωλ

}
, (3)

where Ωλ is the epistemic parameter domain. When information is sufficient to identify a single distribution,105

uncertainty is purely aleatory and Ωλ is a singleton. For ease of notation, in the following, we will use uppercase

special characters Zλ = p(z;λ) to indicate the pdf of a random variable Z. The explicit dependence on the

epistemic parameter λ will be dropped when not essential.

We will consider such uncertainty model in the initial conditions and static system and model parameters. They

are assumed to be random variables X0 : ΩX0 → Rnx and D : ΩD → Rnd , with sample spaces respectively ΩX0

and ΩD and pdfs p(x0;λx0 ) and p(d;λd). We will write:

X0 ∼ p(x0;λx0 ) ∈ Px0;λx0
(4)

D ∼ p(d;λd) ∈ Pd;λd
. (5)

to indicate that the uncertain variables X0 and D are described by a mixed aleatory and epistemic model

parametrised in λx0 and λd respectively. In the remainder of the paper we will present the methodology starting110

from the treatment of epistemic uncertainty, under the assumption of a known family of distributions, and then

derive the solution for aleatory uncertainty as a special case for λ precisely known.

• Probability metric. Given a quantity of interest f ∈ F and the set Pz,λ in Eq. (3) we define a functional

Fλ : Pz,λ ×F → R (6)

from the function and probability sets to the real line. A common integral form of such functional is the expectation
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of a function f with respect to the distribution p(z;λ)115

Eλ

[
f
]
=

∫
Ωz

f (z) p(z;λ) dz . (7)

The inferior and superior values of Fλ over the set Pz,λ are named lower bound F and upper bound F respectively.

For the epistemic specification as in Eq. (3) the lower and upper bounds are defined as

F = inf
λ∈Ωλ

Fλ
(
z;λ

)
(8a)

F = sup
λ∈Ωλ

Fλ
(
z;λ

)
. (8b)

For the special case of aleatory uncertainty, we have F = F because Ωλ is a singleton. Consider, for example, the

probability P that the quantity of interest φ is below a given threshold φ∗, then we can write:

Fλ = P(φ(z) < φ∗) =

∫
Ωz

1(φ(z)<φ∗)(z) p(z;λ) dz (9)

where 1 is the indicator function.

• Execution errors. The general form of the executed control Ue(u,X) : Rnu × Rnx → Rnu considered in this paper

is a random variable defined as120

Ue(u,X) =
∑
i

[ui + δui(X) +Θi(ui + δui)]δ(t − ti) , (10)

where ui and δui are the commanded open- and closed-loop control terms respectively, and Θi models the control

errors. When present, the execution errors are included in the uncertain model parameters D. The sum of the

commanded components is denoted as ui = ui + δui . In this form, we assume that the control uncertainty is

affecting only the components of the manoeuvre and not the time of the execution, and is a function of the

commanded control. The meaning and form of the feedback component and errors will be better defined in the125

remainder of the paper.

• Observation uncertainty. Observations are employed to reduce the knowledge uncertainty associated to the system

state. The observation model is a nonlinear function of the state and environment noise realisations εk :

yk = h(xk,εk) . (11)

Hence, a generic observation yk ∈ Rny is a realisation of the random variable Yk : ΩEk → Rny induced by the
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sensor noise Ek . The random variable observation is described by the conditional likelihood130

Yk ∼ p(yk | xk ;λy) ∈ Py;λy . (12)

This relation expresses that, given the state, the observation likelihood Yk = p(yk | xk ;λy) is completely determined

by the sensor noise Ek [37]. At each observation k, the state distribution is updated given the last received

observation according to an inference rule TI which returns the posterior distribution, conditional on all the

observations received until time tk , as

Xk = TI
(
X−k ,Yk

)
= p(xk |y1:k) , (13)

given the predicted state uncertainty X−
k
= p(xk |y1:k−1) and the last observation yk . The superscript (·)− indicates135

the predicted distribution right before the new observation yk is received.

• Dynamical evolution. X0 and D, together with the dynamical equation (1b), induce the state at a later time to

be a random variable X through the push-forward measure resulting from the pointwise dynamical flow. The

distribution of the random variable X evolves according to a Partial Differential Equation (PDE), written in the

general notation140

∂tX − Fx(t,X ,D,Ue) = 0 , (14)

where the term Fx includes the partial derivatives with respect to the state variables, and it depends on the

pointwise dynamics (1b). Eq.(14) is the Fokker-Planck (or Forward Kolmogorov) equation [38]. Epistemic

uncertainty on either of the sources of uncertainty induces, through the dynamical evolution, the state distribution

at a later time to be set-valued itself as

X ∼ X = p(x;λ) ∈ PX;λ , (15)

where λ = [λx0,λd,λy] is the collection of all the epistemic parameters.145

B. Belief Formulation

Given the elements defined in the previous section, the optimal control problem under uncertainty is well described

as a Partially Observable Markov Decision Process [39], i.e. the state is observed only through indirect measurements.

This model can be re-framed as a BMDP [30], which employs an advantageous belief state representation. That is, the

state of the model is not a specific realisation x, but rather the state is the density function X . The probability distribution

of the dynamical system state is henceforth called belief state. An advantage of such formulation is that the belief state
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can be computed at any time even if the specific state realisation is not observable. We write the BOC as

min
u

sup
λ

{
CF

(
tF ,X f

)
+

∫ tF

t0

C
(
t,X ,Ue

)
dt

}
(16a)

s.t.


∂tX − Fx(t,X ,D,Ue) = 0 between observation times

Xk = TI
(

X−
k
,Yk

)
at each observation k

(16b)

G
(
t,X ,D,Ue

)
∈ ΦG , G

(
t,X ,D,Ue

)
∈ ΦG (16c)

Ψ
(
t0,X0, tF ,X f

)
∈ ΦΨ , Ψ

(
t0,X0, tF ,X f

)
∈ ΦΨ (16d)

X0 ∈ PX0;λx0
, D ∈ PD;λd

, Yk ∈ PYk ;λy (16e)

where, CF and C are the functionals (7) associated respectively to Φ and L, G, G, Ψ, Ψ, are the lower and upper limits

defined in (8a) and (8b) on the functionals (7) associated to the path and boundary constraints g and ψ. The target sets

ΦG, ΦG, ΦΨ and ΦΨ for the expectations on g and ψ are predefined quantities. The objective in (16a) is the upper

bound of the objective function realisations under uncertainty. Eqs. (16b) describe how the belief state evolves in time150

according to a PDE and is updated with an inference rule each time an observation of the state is acquired. They are the

dual of the equations of motion (1b) in the dOCP. Finally, Eq.(16e) describes the uncertainty structure of the problem,

namely expressing the initial condition for the belief state, the uncertain parameter distribution and the observation

likelihood. As previously stated, the execution errors are included in the uncertain model parameters D.

The BOC aims at optimising the open-loop component to find the nominal trajectory which minimises the objective155

function and satisfies the constraints under uncertainty. In general, the BOC problem (16) has no closed-form solution,

just like the deterministic dOCP (1). Thus, in the following section, we propose a direct transcription method that allows

incorporating navigation analysis in the optimisation of the control law under the type of epistemic and observation

uncertainty defined in this section.

III. Transcription Method160

Solving problem (16) requires the propagation of the belief state from the initial conditions through the dynamics,

and to update it with observations. This section presents an efficient multiple shooting-like direct transcription method

for the solution of problem (16), which employs a direct propagation of the belief state. This work generalises the direct

transcription method developed in [32] to the case in which orbit determination arcs intermingle control arcs and a fully

intrusive uncertainty propagation is not possible.165
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A. Sequential Belief Transcription

Following the same idea of general multiple shooting schemes, we start by partitioning the independent variable

domain into segments. In this case, we partition the time domain into the following time segments:

[tk, tk+1] for k = 0,1, . . . ,F − 1 . (17)

On each segment we define a vector of commanded control parameters uk in the following form:

uk(tk,Xk) = uk(tk) + δuk

(
Xk

)
(18)

where the first term is an unknown parameter to be optimised, whereas the second one is a correction to uk(tk) coming170

from a pre-defined function of the state at time tk . Operationally speaking, the term uk(tk) has to be understood as an

open-loop control while δuk

(
Xk

)
as a feedback control policy. From (10) the executed controls Uek at time tk is:

Uek = uk(tk,Xk) +Θk(uk(tk,Xk),λk) , (19)

which combines the commanded controls with execution errors.

In addition, on each segment we define a vector of uncertain parameters Dk such that:

D =
[
D0, . . . , Dk, . . . , DF−1

]
. (20)

This decoupling holds under the condition that Dk affects the dynamics only over the time interval t ∈ [tk, tk+1]. For175

instance, the errors due to manoeuvres executed in a given temporal interval influence the belief state until the end time

of that interval. Observation errors are another example of uncertainty sources that affect the belief state update at a

given time only. The effect of these errors, beyond the end of the interval where they manifest, is carried by the belief

state at the start of the next interval. Uncertainties that affect the dynamics over multiple time segments are replicated

across all the segments they affect, e.g. dynamical model parameters. This decoupling enables one to favourably exploit180

the Markov property of the system that stems from the BMDP formulation.

For each time segment, the belief state Xk is first propagated from tk to tk+1 under the effect of the dynamics (1b)

and the possible control actions uk , if they are present on that segment. We indicate this propagation with the symbol

TP that represents the mapping of the probability distribution p(xk | y1:k) from tk to tk+1:

X−k+1 = TP
(

Xk,Dk,Uek

)
= p(xk+1 | y1:k) . (21)
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We now consider the case of observation instances at the end of some sub-intervals [tk, tk+1]. Thus, suppose now185

that a new measurement yk+1 is available. By using Bayes’ inference rule one can calculate the posterior distribution:

Xk+1 = TI
(

X−k+1,Yk+1
)
= p(xk+1 | y1:k+1) =

p(yk+1 |xk+1) p(xk+1 | y1:k)∫
p(yk+1 |xk+1) p(xk+1 | y1:k) dxk+1

. (22)

Again, the dependencies on the deterministic parameters have not been written explicitly. We assume that the

measurement yk+1 is conditionally independent of the observation and control history, given the state at time tk+1, thus

those terms disappear from the observation likelihood p(yk+1 |xk+1).

Hence, the calculation of the belief state at time tk+1 can be written, in compact form, as the composition of the state190

propagation map TP and the Bayes inference map TI :

Xk+1 = T
(

Xk,Dk,Uek ,Yk+1
)
= TI ◦ TP . (23)

Eq. (23) models the most general case of a segment where both control actions at tk and measurements at tk+1 are

present. In the following, arcs can have both control and observations, only control actions, only observations or neither

of the two (pure propagation). Depending on the specific case, we will apply either the propagation map alone, the

inference map or the composition of the two.195

One interesting feature of the belief formulation is that, while the system pointwise state would dynamically evolve

through a one-to-many relationship in a standard Markov Decision Process, the belief state of the Belief Markov

Decision Process evolves through the prediction and update steps according to a one-to-one relationship.

Being the uncertain parameters partitioned as D =
[
D0, . . . , Dk, . . . , DF−1

]
, the main advantage of the shooting

scheme is that it decouples the uncertainty in the different time segments [tk, tk+1]. When the belief is propagated from200

tk to tk+1, the stochastic dimensionality is nξk = nx + ndk
, where nx and ndk

are respectively the state and uncertain

parameters Dk dimensionality, instead of being the total nξ = nx + nd as it would be with a vanilla Monte Carlo

approach. This efficient decoupling avoids the accumulation of uncertainty and the growth of the belief stochastic

dimension in time, thus helping to contain the curse of dimensionality, typical of uncertainty quantification problems.

This feature is computationally crucial for an uncertainty quantification method which is called within an optimisation205

loop numerous times.

B. The Propagation Map TP

Propagating the belief state in time is the most computationally intensive step of the transcription method as it

would require solving a PDE which has no closed-form solution in the general nonlinear case. For this reason, some

approximations are typically introduced to speed up the uncertainty propagation. Among them, the most widely used are210
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linearised dynamics around the reference trajectory, linearised observation model and Gaussian-assumed uncertainty

distributions [34, 35, 40].

When these approximations are enforced, the mean and covariance of each belief component are propagated in time

with inexpensive matrix multiplications. Furthermore, as the observation model is linearised, the uncertainty update at

observation times in Eq. (22) reduces to the simple analytical linear Kalman Filter update. The main limitation comes215

from the need to linearise the dynamics. A further limitation is the number of statistical moments that are propagated

since the general approach is to retain only mean and covariance.

The BOC formulation, however, permits the propagation of the exact dynamics and, in the general case, of a family

of probability distributions. Thus we propose to split the mapping TP in two steps: first we create a polynomial

representation of all possible states at time tk+1 given the states at time tk , the uncertain parameters and the control220

variables; then we sample the distribution at time tk to represent the distribution at time tk+1. This second step requires

only multiple evaluations of the polynomial at time tk+1. This technique was introduced in [41] using an intrusive

polynomial algebra [42]. Here we propose a non-intrusive approach more tailored for black-box dynamical models

instead.

Consider the set Ωξk
of all possible uncertainty realisations ξk = [xk,dk,uek ]

T at time tk , recalling that the executed225

control realisation uek is derived from the definition of the executed control in Equation (19). In the epistemic setting,

the samples ξk are drawn from a family of distributions dependent on the epistemic parameters λ. Thus, the sampling

set Ωξk
needs to be chosen large enough to allow drawing a sufficient number of samples to build a good approximation

of TP , for all values of the epistemic parameters. The set F k+1
k

of compatible states at time tk+1 can be defined as

F k+1
k = {xk+1(ξk) | ξk ∈ Ωξk

} , (24)

where xk+1(ξk) is defined as230

xk+1(ξk) = xk +
∫ tk+1

tk

f (t,x,dk,uek ) dt . (25)

The goal is now to construct a polynomial function that maps the set Ωξk
to the set F k+1

k
in the form:

xk+1 = Fk+1
k (ξk) =

∞∑
i=0

αk ,i Ψi(ξk) ∀ξk ∈ Ωξk
, (26)

where Ψi is the i-th multivariate polynomial basis and αk ,i its coefficient. For practical applications, this expansion is

truncated to a finite order q and only the first Nq terms are retained:

Fk+1
k (ξk) ≈ F̃k+1

k (ξk) =

Nq∑
i=0

αk ,i Ψi(ξk) . (27)
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In this paper the coefficients αk ,i are computed using stochastic collocation [43]: a number of samples xk+1 is first

evaluated over a structured grid of collocation points ξ (j)
k
; then a polynomial approximation F̃k+1

k
is built to fit the set235

of xk+1 vectors. Because the stochastic and control dimensions can be rather large, the Smolyak polynomial space

variant [44] is used to limit the growth of collocation points with increasing stochastic dimensions. The third-party

open-source library Sparse Grids Matlab Kit is employed to construct the polynomial representation [45]. Figure 1

shows an example of a grid coming from a full tensor product (a) and a sparse Smolyak grid (b) both constructed with a

level two grid, that is 17 nodes per dimension.

Full Tensor Product Sparse Smolyak Grid

(a)

Full Tensor Product Sparse Smolyak Grid

(b)

Fig. 1 Comparison of two-dimensional grids constructed by (a) full tensor product and (b) sparse Smolyak
rule of one-dimensional grids.

240

The grid level is a tunable parameter that determines the number of collocation points in each dimension. Samples

are unique across different grid levels. Therefore, one can sequentially increment the grid level while reusing previously

computed samples until reaching the requested accuracy. To assess the surrogate accuracy, one option is to construct a

polynomial representation by using a collocation grid of level l. Then, the accuracy can be quantified as the root mean

square error of the polynomial mapping versus the numerical one on a subset of samples of grid level l + 1. If such error245

is below a user-set threshold, the polynomial representation is accepted, otherwise, the polynomial is re-constructed

with a collocation grid of level l + 1 and the process iterated until the requested accuracy is met.

There are several advantages of this sparse polynomial mapping by stochastic collocation over other methods for

uncertainty propagation in trajectory optimisation applications:

• being a non-intrusive method, the dynamical model is called as a black-box function, thus pre-existing libraries250

can be easily interfaced with such transcription without alteration;

• the accuracy of the approximation in Equation (27) can be made as good as desired by increasing the degree q of

the polynomial space; the growth of the number of collocation points with the degree q is limited by the sparse

Smolyak variant;

• Chebyshev polynomials are employed for their global convergence properties over a compact set [42] and previous255

applications in a number of aerospace cases [32, 46, 47].
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Once the polynomial F̃k+1
k

is available, the propagation map TP can be approximated as

TP ≈ p
(
F̃k+1
k (ξk) | y1:k

)
. (28)

C. Navigation Analysis and the Inference Map TI

The inference map TI comes from the simulation of the expected observations along the trajectory considering

observation errors. Furthermore, for a given observation at time tk the measurement yk is conditional to the actual state260

xk of the spacecraft which is uncertain. Thus one needs to simulate a set of possible measurements over the space of

possible predicted states [48, 49].

Considering M measurement realisations y(j)
k
, with j = 1, . . . ,M, each with an associated probability density, an

inference step is required for each of them. This results in a set of possible posterior beliefs

X (j)
k
= p (xk | y(j)1:k) , (29)

each resulting from a different observation realisation. Each of these posterior beliefs is then propagated to tk+1. Such265

scenario is depicted in Figure 2, where multiple belief states are generated as a consequence of the inference with

multiple sample measurements. Specifically, Figure 2(a) depicts the uncertainty propagation in time without any

observation. The belief state at time tk and the the propagated one at time tk+1 are represented with dark and light

blue ellipses, respectively. Figure 2(b) indicates the generation of multiple observation samples by Monte Carlo at

tk , represented in yellow. Figure 2(c) shows the multiple uncertainty updates of the belief given the Monte Carlo270

observation samples as green ellipses. Figure 2(d) depicts the updated belief components propagation after the new

observations have been processed. Hence, we first apply the inference map (22) M times, one for each y(j)
k

at time tk ,

Xk Xk+1

(a)

Xk Xk+1

(b)

Xk Xk+1

(c)

Xk Xk+1

(d)

Fig. 2 Different steps of Monte Carlo measurement simulation on the uncertainty propagation process: (a)
propagation without observations; (b) observations simulation; (c) beliefs update; (d) updated beliefs propaga-
tion.

then we use map (28) to propagate each posterior to obtain M distributions at time tk+1.

If this process was iterated for each time segment, one would have an exponential growth of the number of expected

trajectories and associated control laws. Indeed, if we were to simulate M new observations for each belief component275

at time tk+1, we would end up with M2 belief components, which would grow to M3 at tk+2, and so on. On the contrary,
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we build the following convex combination once the M distributions at time tk+1 are available:

X−k+1 =

M∑
j=1

b(j) X−
( j)

k+1

M∑
j=1

b(j) = 1 ,

(30)

where b(j) is the belief degree, a weight quantifying the relative degree of likeliness of each X (j)
k+1. The value of each b(j)

depends on the credibility of each measurement y(j)
k
. Then, we use this belief state as prior at time tk+1 to be updated

with the M simulated likelihoods. With this approach, the number of belief components is kept constant to M regardless280

of the number of shooting segments.

The convex combination in Eq. (30) can be derived from the concept of Jeffrey conditionalisation [50]. This

conditionalisation rule describes how the probability of the occurrence of an event A depends on the realisation of

events B(j) with confidence belief degrees b(j):

Pr
(
A | B(1) ≡ b(1), . . . ,B(M) ≡ b(M)

)
=

M∑
j=1

b(j) Pr
(
A | B(j)

)
, (31)

when the condition events form a partition. This conditionalisation generalises the traditional conditional probability285

measure, which is now a special case when event B(j) has been observed with certainty, i.e. when its belief degree is

b(j) = 1, and therefore the belief degree of its conjugate is zero. Given this probability measure, we can interpret the

belief in Eq. (30) as an overall inference step by Jeffrey conditionalisation over sampled observations y(j)
k

with belief

degrees b(j):

Xk = p
(
xk | y(1)k ≡ b(1), . . . ,y(M)

k
≡ b(M)

)
=

M∑
j=1

b(j) p
(
xk |y(j)k

)
(32)

The problem is that, in general, the sampled observations do not form a partition of the observation space which is290

indeed continuous. However, we can approximate any continuous distribution as a probability mass function by using

samples drawn from the original one and the Dirac delta function as [51]

p(ξ) ≈
M∑
j=1

b(j)δ
(
ξ − ξ (j)

)
. (33)

If such approximation is introduced for the observation likelihood, then the Jeffrey conditionalisation provides a key

formal interpretation of the employed inference step with different sampled measurements for the navigation analysis

approach considered.295
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D. Solution of the Transcribed Problem

Once the belief state is propagated at each stage k with the approximated propagation map TP and the inference map

TI is applied when observations are available, Problem (16) is transcribed into the following NLP problem:

min
u

sup
λ

{
CF

(
tF ,X f

)
+

∑
k

∑
s

wsC
(
ts,Xk,Uek

) }
s.t.


X−
k+1 = TP

(
Xk, Dk, Uek

)
between observation times

Xk = TI
(

X−
k
,Yk

)
at observation instances

Gk

(
tk,Xk,Dk,Uek

)
∈ ΦGk

, Gk

(
tk,Xk,Dk,Uek

)
∈ ΦGk

Ψ
(
t0,X0, tF ,X f

)
∈ ΦΨ , Ψ

(
t0,X0, tF ,X f

)
∈ ΦΨ

X0 ∈ PX0, D ∈ PD, Yk ∈ PYk ;λy

(34)

where ws are quadrature weights used to discretise the objective integral in time. The outer optimisation is carried out

on the transcribed open-loop control components to find the most robust and reliable nominal trajectory. The quantities300

CF ,C, Gk , Ψ are integrals over the space of the uncertain parameters as in Eq. (7). In the general case, these integrals

need to be computed numerically, either by sampling or with a numerical quadrature formula, as

E[φ(Z);λ] =
∫

φ(z) p(z;λ) dz ≈
∑
k

wi(λ) φ(zi) , (35)

where φ can be Φ, L, g or ψ.

For given control vector and epistemic parameter to evaluate, the transcription complexity depends primarily on

the number of aleatory variables and observation arcs. The number of grid samples to construct the expansion by305

sparse collocation scales polynomially with the number of aleatory dimensions, whereas the complexity of evaluating

the surrogate for samples’ propagation is secondary. Updating the belief state requires only simple evaluations of

the likelihood function and low-dimensional matrix operations, as discussed in the next sections. Hence, the main

computational and accuracy advantages of the transcription come from the shooting discretisation. This transcription

enables an efficient decoupling of the uncertainties and, therefore, lower aleatory dimensions in each segment. Thus,310

adding new control or observation instances does not yield an exponential increase in computational complexity.

The two-level NLP problem is solved by nested local optimisations. Under epistemic uncertainty, for each integral

(35) we need to solve an optimisation problem over the space of the parameters λ. To alleviate the computational burden

of these optimisations, the polynomial mapping in (27) is constructed only once per iteration of the minimisation over

the space of the controls, and the optimisations over λ are performed exploiting the inexpensive surrogate model. This is315

made possible by the fact that the mapping (27) covers the entire space of uncertainties by construction. This approach
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causes the input set Ωξk
to be larger than in the purely aleatory case. Nonetheless, the collocation grid level can be

tuned to ensure the required surrogate accuracy under epistemic uncertainty as well. Thus, propagation of uncertainty in

the epistemic setting may imply a higher computational cost due to additional grid levels, whereas the representation

accuracy is preserved.320

The local optimisations rely on finite differences to compute the first- and second-order derivative information.

When sampling is employed to compute Equation (35), the sampling grid is kept constant within one major NLP

iteration to avoid introducing noise in the computation of the objective’s gradient and constraints’ Jacobian.

In the following, we will present two approaches to the computation of the integrals in the two cases in which the

distribution functions p(z;λ) are explicitly available or not. In the former case we limit our attention to the treatment of325

Gaussian distributions p(z;λ) = N(z;λ).

1. The Gaussian Case

In the Gaussian case the distribution of the uncertain parameters and initial conditions are Gaussians, and so are the

distributions of the measurements:

X0 = N
(
x0; µX0, ΣX0

)
(36a)

D = N
(
d ; µD, ΣD

)
(36b)

Yk = N
(
yk |xk ; µYk , ΣYk

)
, (36c)

where µ(·) indicates the mean and Σ(·) the covariance of the normal distributions. The posterior distribution (23) at each

stage k is generally not Gaussian. However, under certain conditions one can approximate the actual posterior with

only the first two statistical moments [52] as it is commonly done in Kalman-type of sequential filters. Thus we can330

approximate the prior at stage k with:

X−k =
M∑
j=1

b(j)N
(
xk ; µ(j)X−

k
,Σ
(j)
X−
k

)
(37)

with each mean and covariance given by

µ(j)X−
k
=

N∑
i=1

w(j ,i) F̃ k
k−1(ξ

(j ,i)
k−1 )

Σ
(j)
X−
k
=

N∑
i=1

w(j ,i)
(
F̃ k
k−1(ξ

(j ,i)
k−1 ) − µ

(j)
X−
k

) (
F̃ k
k−1(ξ

(j ,i)
k−1 ) − µ

(j)
X−
k

)T
,

(38)
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where ξ (j ,i)
k
= [x(j ,i)

k
,d(j ,i)

k
,u(j ,i)ek ]

T are the roots of the multivariate Hermite polynomial and w(j ,i) the corresponding

quadrature weights for the j-th belief component. The M observations y(j)
k

are sampled from the prior (37). The

posterior335

Xk =

M∑
j=1

b(j)N
(
xk ; µ(j)Xk

, Σ
(j)
Xk

)
(39)

is computed by updating the mean and the covariance matrix according to the observations received:

µ(j)Xk
= µ(j)X−

k
+Kk(y(j)k − µYk )

Σ
(j)
Xk
= Σ

(j)
X−
k
−KkSkKT

k .
(40)

where the observation mean µYk and Kalman gain Kk as

µYk =
M∑
j=1

b(j)
N∑
i=1

w(j ,i) h
(
x(j ,i)
k

,ε(j ,i)
k

)
SYk =

M∑
j=1

b(j)
N∑
i=1

w(j ,i)
(
h
(
x(j ,i)
k

,ε(j ,i)
k

)
− µYk

) (
h
(
x(j ,i)
k

,ε(j ,i)
k

)
− µYk

)T
CXYk

=

M∑
j=1

b(j)
N∑
i=1

w(j ,i)
(
x(j ,i)
k
− µ−Xk

) (
h
(
x(j ,i)
k

,ε(j ,i)
k

)
− µYk

)T
Kk = CXYk

S−1
Yk

,

(41)

with ε(j ,i)
k

are realisations of the sensor noise, SYk is the observation covariance, whereas CXYk
is the cross covariance

between state and observation. From the posterior, one can then compute the expectation of any function φ as

E
[
φ
(
Xk

)
| y1:k

]
≈

M∑
j=1

b(j)
N∑
i=1

w(j ,i)φ
(
x(j ,i)
k

)
. (42)

For ease of notation, the dependency on the control and parameter uncertainty has not been reported but the same form340

applies when φ depends on them by taking samples from their distributions as well.

The advantage of this approach over similar sample-based ones, e.g. Unscented Transform [53], is that the estimation

fidelity can be made as accurate as desired simply using more quadrature points, that is a higher-order Hermite

polynomial. A high accuracy computation of the integrals in Eq. (38) is made possible by the polynomial mapping

F̃ k
k−1, which can be employed to propagate a great number of samples inexpensively.345

The multivariate Gauss-Hermite grid is usually constructed by Cartesian products of univariate ones. In order to

alleviate the curse of dimensionality encountered in high-dimensional problems, like the ones tackled in navigation

analysis, a sparseGauss-Hermite version is employed to contain the number of samples for high stochastic dimensions [43].
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2. General Distribution

When the posterior distribution at stage k cannot be easily expressed with an explicit function of the state variables,350

the prediction and update steps of the belief transition function, in Eq. (23), can be computed with the particle filter [51],

a sequential Monte Carlo method that approximates the posterior density function as a discrete one by using samples

x(i)
k
, drawn from a proposal importance distribution π (xk | xk−1,y1:k) , as

X−k =
M∑
j=1

b(j)
N∑
i=1

w
(i, j)
k

δ
(
xk − x(i, j)

k

)
, (43)

where δ(·) is the Dirac function, w(i, j)
k

and x(i, j)
k

are the i-th weight and sample to approximate the j-th belief component.

In particle filters the propagation step is performed by drawing samples from a proposal distribution π as355

x(i, j)
k
∼ π (xk | x(i, j)k−1 ,y

(j)
1:k) , (44)

which represent the prior discrete approximation. The proposal is chosen such that its support is larger than the posterior

one. To construct the posterior approximation, the inference step is then carried out by updating the weights of the

predicted samples as

w
(i, j)
k
= w

(i, j)
k−1

p( y(j)
k
| x(i, j)

k
) p(x(i, j)

k
| x(i, j)

k−1 )

π (x(i, j)
k
| x(i, j)

k−1 ,y
(j)
1:k)

, (45)

to account for the received observation y(j)
k

and the known dynamical evolution. The distribution p(xk | xk−1) is the

state transition density describing the probabilistic evolution of the system due to uncertainty in Dk−1. Once again, the360

conditional dependencies on the deterministic parameters have not been written down explicitly for ease of notation.

Nonetheless, the proposal, transition and likelihood distributions could depend on them. The main motive behind the

particle filter approach is that drawing samples directly from the posterior distribution is an unattainable task, whereas

evaluating their density value is relatively easy thanks to Eq. (22). From the posterior in the form of Equation (43) one

can then compute the expectation as365

E
[
φ
(
Xk

)
| y1:k

]
≈

M∑
j=1

b(j)
N∑
i=1

w
(i, j)
k

φ
(
x(i, j)
k

)
, (46)

which is exactly the same as Eq. (42) but with weights and samples computed differently.

The accuracy of the discrete approximation and the particle filter performance greatly depend on the number of

particles used, which is further critical for high-dimensional nonlinear problems like navigation analysis for space

trajectory. Therefore, the polynomial mapping F̃ k
k−1 constructed in the previous section results crucial in this scheme

as it allows one to employ a larger number of samples, which can be propagated through an inexpensive polynomial370
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evaluation.

This particle filter-based approach to the practical computation of the shooting transcription should be employed in

the most general case of non-Gaussian uncertainty, nonlinear dynamical system and observation model. This concludes

the transcription method for the BOC as formulated in Eq. (16).

IV. Test Case: Europa Clipper Robust Optimisation375

In this section, we apply BOC to the optimisation of one leg of the Europa Clipper tour [54]. The original tour

comes from a deterministic design, however, from a navigation analysis, the leg of interest, labelled E17-E18, yields a

dangerously high probability of impact with Europa at flyby E18. Such deterministic trajectory is used as initial guess

for the robust optimisation. Therefore, the goal of this test case is to re-optimise the E17-E18 open-loop trajectory

with BOC so that the flight dynamics requirements are satisfied and the remainder of the tour remains feasible. The380

problem is to minimise the sum of deterministic and statistical manoeuvres while respecting the constraints on the

desired B-plane flyby parameter b, the hyperbolic Time of Closest Approach (TCA) [55], the expected value of the

final position, and a constraint on the collision probability with Europa. We will study both the case of purely aleatory

uncertainty and the case of mixed aleatory and epistemic uncertainty.

The scenario addressed is this section is depicted in Figs. 3. Each subplot in Figs. 3 represents a phase of the

E17
ΔvCU−E17Europa

Clipper
E17
E18

Jupiter

Observations
Δv Open-loop Control
δΔv Controller

Controller Target

(a)

E17

E18ΔvCU−E17

ΔvTRG−E18
δΔvTRG−E18

(b)

E17

E18ΔvCU−E17

δΔvAPR−E18

ΔvTRG−E18
δΔvTRG−E18

(c)

E17

E18ΔvCU−E17

δΔvAPR−E18

ΔvTRG−E18
δΔvTRG−E18

(d)

E17

E18

ΔvCU−E18
δΔvCU−E18 ΔvCU−E17

δΔvAPR−E18

ΔvTRG−E18
δΔvTRG−E18

(e)

E17

E18

ΔvCU−E18
δΔvCU−E18 ΔvCU−E17

δΔvAPR−E18

ΔvTRG−E18
δΔvTRG−E18

(f)

Fig. 3 Schematic representation of navigation analysis setup for part of Europa Clipper leg belief optimisation
test case.

385

analysed trajectory, specifically:
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(a) The E17−CU-E17 phase (Fig. 3(a)) starts from the initial belief X0, and goes till the first control point, 3 days

after E17, denoted as Clean-Up (CU).

(b) The CU-E17 − T RG-E18 phase (Fig. 3(b)) starts from the CU, where the belief state is given by the ensemble∑
j bjpj , executes the open-loop manoeuvre ∆vCU-E17 and propagates till the next control point near the390

trajectory apocenter, approximately 6 days later, denoted as Targeting (TRG).

(c) The T RG-E18 − APR-E18 phase (Fig. 3(c)) starts from TRG with the belief state given by the ensemble∑
j bjpj , performs manoeuvre ∆vTRG-E18 + δ∆vTRG-E18 and propagates till the pre-flyby control point, 3 days

before flyby, denoted as Approach (APR).

(d) The APR-E18 − E18 phase (Fig. 3(d)) starts from APR with the belief state given by the ensemble
∑

j bjpj ,395

performs the feedback manoeuvre δ∆vAPR-E18 and extends till flyby E18.

(e) The E18 − CU-E18 phase (Fig. 3(e)) starts from E18 with the belief state given by the ensemble
∑

j bjpj ,

extends till the successive clean-up point CU-E18, 3 days after the flyby.

(f) The CU-E18 − TF phase (Fig. 3(f)) starts from TF with the belief state given by the ensemble
∑

j bjpj ,

performs manoeuvre ∆vAPR-E18 + δ∆vCU-E18 and extends till the leg final time, 7 days after the flyby.400

During each phase, OD campaigns are carried out, represented in yellow, with an 8 hours ON 8 hours OFF schedule

(dashed line) to improve the knowledge of the trajectory. The 8 hours ON 8 hours OFF is the access schedule of the

Deep Space Network (DSN) for Europa Clipper, with range and range-rate measurements generally employed, whereas

Delta-DOR is used only when specifically needed. Therefore, this latter measurement type will not be included in the

observation model. The OD stops at a cut-off time before the subsequent manoeuvre, here set to one day, to model405

the time needed by the operators to compute the updated trajectory. The aforementioned polynomial NA approach is

employed to simulate observation samples and update the belief state.

The Probability of Impact (PoI) with Europa is computed by propagating the belief state after the targeting manoeuvre

∆vTRG-E18 + δ∆vTRG-E18 to the nominal flyby time without applying the successive approach manoeuvre δ∆vAPR-E18

or performing additional OD. This mapped uncertainty projected onto the B-plane is computed by applying map TP only.410

A constraint on the PoI is then enforced to ensure environmental protection to Europa even in the event of spacecraft

loss after the main manoeuvre.

The whole trajectory lasts for 21 days, from E17 to the second apocenter passage. The trajectory in Fig. 3 is

defined in an inertial reference frame, mean equinox and ecliptic of J2000 (ECLIPJ2000) [56], centered in Jupiter. This

frame has the x̂ axis pointing to the mean vernal equinox at January 1, 2000, the ẑ axis normal to the ecliptic plane,415

and ŷ completing the right-handed frame. The spacecraft motion x(t) is governed by a high-fidelity full-ephemeris

dynamics, taking into account the gravitational field of Jupiter (central and J2 effects), of its moons Europa (central

and J2), Io, Ganymede and Callisto, and of the Sun. The dynamics is integrated with the propagation module of the

trajectory optimisation tool jTOP [3]. This black-box module has been used to propagate collocation points to train the
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non-intrusive surrogate model described in Section III.B. The outer and inner optimisation loops are solved with two420

nested instances of the local solver MATLAB fmincon.

In this section, we will talk about delivered and mapped uncertainty. By delivered uncertainty, we intend the output

of pure dynamical propagation of the belief state in time without further OD. By mapped uncertainty, we intend the

output of a generic transformation of the belief state, e.g. conversion to B-plane parameters.

A. Problem Definition425

For this application, the interest is in finding the optimal open-loop control ∆v which yields the most robust and

reliable trajectory under uncertainty in navigation analysis and manoeuvre execution errors. Hence, the executed control

Ue acting on the belief components is written as

∆Ve(tk,Xk) = ∆v(tk) + δ∆v(X(j)
k
) +Θ

(
∆v(tk) + δ∆v(X(j)

k
),λk

)
, (47)

where the open-loop nominal impulse u = ∆v(tk) is to be optimised and the disturbance Θ depends nonlinearly on the

commanded control ∆v = ∆v(tk) + δ∆v(X(j)
k
). The definition of Θ follows the Gates’ model [57, 58] (see Figure 4). In430

this model the disturbance is defined in terms of modulus and angular variations on the commanded ∆v. In a frame

centred in the spacecraft with the z-axis aligned with ∆v, the y-axis perpendicular to both the ∆v and the ecliptic normal,

and the x-axis completing the right-handed frame, the execution error components are taken from zero-mean normal

distributions

Θx ∼ N(0, σ2
p f + σ

2
pp∆v)

Θy ∼ N(0, σ2
p f + σ

2
pp∆v)

Θz ∼ N(0, σ2
mf + σ

2
mp∆v) ,

(48)

where ∆v is the magnitude of ∆v, σmf and σmp are respectively the standard deviations of the fixed and proportional435

magnitude component, while σp f and σpp concern the pointing components. In this model, the pointing error is

decomposed into two components in the plane normal to the commanded ∆v, which is equivalent to decomposing it in

terms of magnitude and angular components for suitable distributions [58].

These three components are then rotated into the inertial reference frame in which ∆v is defined to yield the vector

Θ. The components of the parameters vector λk = [σmf , σmp, σp f , σpp]
T have crisp values for the pure aleatory case,440

as defined in Table 1, whereas they are interval-valued for the epistemic case, as in Table 2. Errors in the execution time

of the manoeuvres are not explicitly accounted for in this model.

The closed-loop control component δ∆v(X(j)
k
) is an analytical linear function from time tk to a generic target state at

time t}, which therefore needs not to coincide with the end of that segment tk+1. Let x = [r,v] be the decomposition of
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Fig. 4 Execution error by Gates’ model.

the spacecraft inertial state in position and velocity. The linear guidance law to target the position r} is computed as445

follows. First, the dynamics is linearised around the nominal trajectory in [tk, t}], that is the one computed using only

the optimisable open-loop control ∆v, to obtain a linear mapping


δr}

δv}

 = Φ
}
k


δrk

δvk + δ∆vk

 =

Φ}

k 1,1 Φ}
k 1,2

Φ}
k 2,1 Φ}

k 2,2




δrk

δvk + δ∆vk

 , (49)

where the Cartesian state deviation δxk has been decomposed in position δrk and velocity δvk deviations, and Φ}k has

been accordingly partitioned in 3 × 3 blocks. The linear guidance is obtained by imposing

δr} = 0

which leads to

δ∆vk = −Φ}k
−1
1,2

[
Φ}

k 1,1 Φ}
k 1,2

] 
δrk

δvk

 . (50)

This guidance law is employed for the controller δ∆vCU-E18 to target the final nominal position.

The targeting and approach manoeuvres, respectively δ∆vTRG-E18 and δ∆vAPR-E18, target the B-plane parameters450

instead [55]. Let B} = [b}, TCA}] be the B-plane parameters targeted, with b-vector expressed in two components

(bt = b · t̂ and br = b · r̂) and TCA being the hyperbolic time of closest approach, B the corresponding coordinate

transformation from the inertial state B = B(x), and JB its Jacobian (see Appendix A). Using the linearisation as above,
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the deviations in B-plane parameters from the nominal ones are written as

δB} = JB Φ}k


δrk

δvk + δ∆vk

 =
[
∂B/∂r} ∂B/∂v}

] 
Φ}

k 1,1 Φ}
k 1,2

Φ}
k 2,1 Φ}

k 2,2




δrk

δvk + δ∆vk

 . (51)

By imposing

δB} = 0

and by matrix manipulation, the B-plane targeting is obtained as a linear guidance law as455

δ∆vk = −
(
∂B
∂r}
Φ
}
k 1,2 +

∂B
∂v}
Φ
}
k 2,2

)−1
JB Φ}k


δrk

δvk

 . (52)

This guidance law is employed for the controllers δ∆vTRG-E18 and δ∆vAPR-E18 to target the nominal B-plane parameters.

Hence, the belief component-dependent controller δ∆v(X(j)
k
) employed in this test case is computed according to either

Eq. (50) or (52) depending on the targeted parameters. The quantities δrk and δvk are the deviations of the belief

component expected value E
[
X(j)
k

]
with respect to the nominal trajectory at time tk .

As for the orbit determination campaigns, the measured quantity is the range and range-rate of the spacecraft with460

respect to Earth (see Sections 3.2.1-3.2.2 in [40]). The likelihood function is modelled as Gaussian, and the associated

covariance characterising the observation accuracy is assumed diagonal (see Table 1).

Once the execution and navigation errors are defined we can explicitly write the BOC formulation as follows:

min
∆vi

∆v99 (53a)

s.t. Xk = T
(

Xk−1, Dk−1, ∆Vek−1, Ek
)

(53b)

P
(
‖∆Vetot ‖ < ∆v99

)
= .99 (53c)

PoI < ε (53d)

E
[
BE18

]
, E

[
BE18

]
∈ ΦBE18 (53e)

E
[
RF

]
, E

[
RF

]
∈ ΦRF (53f)

X0 ∈ Px0 , θ ∈ PΘ , Yk = NYk |Xk

(
µyk ,Σyk

)
, (53g)

where k denotes the time discretisation with multiple arcs which can contain both control and observations, only control,

only observations or neither of the two according to the phases described in Figs. 3. The objective to be minimised is

the threshold value ∆v99 on the quantile of the magnitude of the total ‖∆Vetot ‖. Eq. (53c) expresses the quantile with a
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constraint on the lower probability P that the total cost is below the threshold ∆v99 (see (9) for the expression of P).

The total magnitude ‖∆Vetot ‖ including execution errors is defined as:

‖∆Vetot ‖ =
∑
i

‖∆Vei (tk,Xk)‖ + ‖∆VF ‖

which is a random variable encompassing all manoeuvres (indexed by i ∈ {CU-E17,T RG-E18, APR-E18,CU-E18})

plus the final velocity mismatch magnitude ‖∆VF ‖ = ‖VF − vF ‖ between the final state velocity and the original final

velocity. Numerically, this constraint is computed with Equation (42) using φ = 1‖∆vetot ‖<∆v99 by taking samples from465

the executed control distribution ∆Ve and the final velocity mismatch ∆VF . In particular for the latter, samples x(i)F are

first generated from the final belief state XF , then the velocity vector of each sample v(i)F is subtracted by the target final

velocity vF , and finally the norm of this difference is used as a sample of the velocity mismatch magnitude. Constraint

(53f) imposing the expected value of the final position vector, together with the mismatch ‖∆VF ‖ in the objective

function, ensures that the expectation of the E17 − E18 trajectory connects with the remainder of the original tour.470

Eq. (53b) is the belief transition function from segment k to segment k + 1. The transition function incorporates the

effect of observations and manoeuvres, when present within a segment.

Eq. (53d) is the upper bound on the probability of impact PoI after targeting and it is written as the upper bound

on the probability of the minimum distance from Europa, at flyby E18, to be smaller or equal to the radius of Europa

written as475

PoI =
∫

1φ(xE18)≤REUR
(xE18) p(xE18;λ) dxE18 , (54)

where rE18 = φ(xE18) is the function mapping the Cartesian state at E18 to the pericenter distance of the hyperbolic

trajectory with respect to Europa. This probability is constrained to be less than ε = 0.1%. Numerically, this constraint

is computed using eq. (42) with φ = 1rE18≤REUR .

Eq. (53e) imposes the expected values of the B-plane flyby conditions to be within a target setΦBE18 . In the first

test case with purely aleatory uncertainty, the set is a singleton composed of the target B-parameterΦBE18 = {B̂}. In the480

second case with epistemic uncertainty, the target set is defined as an hyperbox around the target value B̂ = [b̂t, b̂r ,�TCA]
as

ΦBE18 = [b̂t − δbt, b̂t + δbt ] × [b̂r − δbr , b̂r + δbr ] × [�TCA − δ TCA,�TCA + δ TCA] (55)

where the tolerances are set to δbt = 0.5 [km], δbr = 0.5 [km] and δ TCA = 0.05 [s].

Similarly, Eq. (53f) requires the lower and upper expectations of the final position to be within the set ΦRF . In

the aleatory case, the set is composed of a single element ΦRF = {r̂F }. In the epistemic case, the set is defined as a485
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hyper-box around the precise target position as

ΦRF = [r̂Fx − δrFx , r̂Fx + δrFx ] × [r̂Fy − δrFy , r̂Fy + δrFy ] × [r̂Fz − δrFz , r̂Fz + δrFz ] (56)

for the x−, y− and z−components of the position vector and where each tolerance is δrF(·) = 10 km because variations

in the next apocenter position are less critical and can be compensated with successive manoeuvres. In the epistemic

case, these constraints imply that the open-loop optimum under uncertainty needs to satisfy, in expectation, the flyby

and terminal conditions within a set for all distributions in the imprecise set Pλ.490

Finally, Eqs.(53g) define the initial belief condition, the uncertain parameters distribution and the observation

likelihood.

For comparison, the dOCP for the first guess generation optimises only the nominal ∆v while respecting the reference

initial conditions, flyby B-plane parameters B̂, and final boundary conditions r̂F . No observations are employed in the

deterministic first guess generation.495

In the pure aleatory case, the epistemic sets are composed of a single distribution each, that is Px0 =
{
N

(
µx0,Σx0

)}
and PΘ = {p(θ;λΘ)} is described by a single Gates’ model distribution as described above. The parameters for these

uncertainty models are reported in Table 1. These values come from previous navigation analysis studies for Europa

Clipper [49, 59]. The table reports respectively the square root of the diagonal values (standard deviations) for the

initial dispersion covariance Σx0 , with typical values reconstructed from OD campaigns post-flyby, the Gates’ model500

parameters λΘ for the execution errors, and the standard deviation values for the accuracy of each observation type Σyk .

The initial mean µx0 is the spacecraft initial state coming from the deterministic tour design used as initial guess.

In the epistemic scenario, we consider the following uncertainty components. The initial dispersion considered

in the aleatory scenario is the reconstructed uncertainty from simulated OD arcs post-flyby. Therefore, the values

in Table 1 are estimated during the navigation analysis in the mission design phase, whereas the actual dispersion to505

consider during operations may vary from these values. This further uncertainty is modelled as epistemic, and the

imprecise initial set is parameterised as

Px0 = { p(x0) : p(x0) = N
(
x0; µx0,

∼

Σx0

)
,

∼

Σx0 = blkdiag( λx0−1 Σx0 (1:3,1:3), λx0−2 Σx0 (4:6,4:6)),

λx0−1 ∈ [0.5,2.0], λx0−2 ∈ [0.5,2.0] } ,

(57)

where Σx0 (1:3,1:3) and Σx0 (4:6,4:6) indicate respectively the position block and the velocity block, the operator blkdiag

indicates a block-diagonal matrix, λx0−1 and λx0−2 are two multipliers scaling the precise covariance matrix Σx0 defined

from the standard deviations in Table 1. Being the multipliers defined within [0.5,2.0], they encompass distributions510
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with covariance from half up to double the magnitude of the pure aleatory one. That is, the epistemic multipliers can

give more or less confidence to the initial state knowledge. For the execution errors, the epistemic set PΘ =
{
p(θ;

∼

λΘ)
}

is constructed by allowing interval-valued parameters
∼

λΘ in the Gates’ model. Indeed, these parameters are estimated

by testing the engine in nonoperational conditions and then updated multiple times during the spacecraft operational

life with possible substantial changes, as it happened, for example, during the Cassini mission [60]. Specifically, the515

intervals for the model parameters considered in the epistemic analysis are reported in Table 2, which include the precise

values employed in the pure aleatory scenario. For missions like Europa Clipper, the observations from Earth are

generally performed from the DSN. In such advanced facilities, the instruments and operating conditions are well known

and precisely controlled. Therefore, the likelihood distribution describing the observation noise is well characterised.

Hence, the zero-mean observation errors are assumed to remain purely aleatory also in the case of epistemic uncertainty520

on initial conditions and manoeuvre execution. Nonetheless, the overall OD remains an epistemic process because the

priors, resulting from the initial conditions and execution errors, are epistemic.

Other model uncertainty sources are not included in this preliminary test case, e.g. celestial bodies’ ephemerides

uncertainty, although they may be relevant for a complete navigation analysis.

Table 1 Parameters of aleatory uncertainty models considered in Europa’s moon flyby belief optimisation.

Uncertainty Component Value

Initial Dispersion 1σ Position (RTN) [3.7, 5.3, 9.3] [m]
1σ Velocity (RTN) [2.3, 3.4, 5.9] [mm/s]

Execution Error Fixed Pointing σp f 3.33 [mm/s]
Proportional Pointing σpp 6.67 [mrad]
Fixed Magnitude σmf 4.67 [mm/s]

Proportional Magnitude σmp 0.33% [-]

Observation Accuracy 1σ Range 3.0 [m]
1σ Range-rate 0.1 [mm/s]

Table 2 Interval-valued epistemic parameters for initial covariance multipliers and Gates’ parameters in
Europa’s moon flyby belief optimisation.

Uncertainty Component Value

Initial Dispersion Position multiplier λx0−1 [0.5,2.0] [-]
Velocity multiplier λx0−2 [0.5,2.0] [-]

Execution Error Fixed Pointing ∼σp f [1.67, 4.00] [mm/s]
Proportional Pointing ∼σpp [3.33, 8.00] [mrad]
Fixed Magnitude ∼σmf [2.33, 6.60] [mm/s]

Proportional Magnitude ∼σmp [0.17, 0.40]% [-]
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B. Results525

This section presents the results of the belief optimisation, first under aleatory uncertainty only, then under the

complete mixed aleatory and epistemic uncertainty model. The simulations were performed in Matlab R2020b on

macOS Big Sur 3.5GHz Dual-Core i7.

1. Aleatory uncertainty530

First, we analyse the case of purely aleatory uncertainty. We start from the deterministic optimal initial guess

reported in Table 3, which was computed by optimising the nominal trajectory with the open-loop control only. This

solution meets the flyby and final position constraints but violates the required probability of impact with the moon

when a navigation analysis is performed. In fact, the probability of impact is PoI = 0.75% ≮ 0.1%. A visualization

Table 3 Free variables, open-loop magnitude ∆v, total ∆v99, their ratio and PoI for first guess under aleatoric
uncertainty.

Solution Aleatory First Guess

∆vCU-E17 [m/s] [+0.00,+0.00,+0.00]
∆vTRG-E18 [m/s] [−1.30,+2.86,+3.23]
∆vCU-E18 [m/s] [+0.00,+0.00,+0.00]

∆v [m/s] 4.51

∆v99 [m/s] 8.05

∆v99/∆v [-] 1.79

PoI [-] 0.75%

of the probability of impact for this solution is displayed in Fig. 5, where the state uncertainty at different times535

along the trajectory is propagated onto the B-plane of the Europa flyby E18, without applying successive manoeuvres

or performing any new orbit determination campaign. Different samples drawn from the belief state distribution

have different velocity vectors resulting in different incoming asymptotes which, in turn, result in different B-plane

orientations. In this paper, the mapping of the uncertainty onto the B-plane coordinates is realised by letting the B-plane

frame vary for each sample as suggested in [61] for collision scenarios. Hence, Fig. 5 employs a single plane for540

representing all the B-parameters resulting from different state realisations, although their corresponding B-planes are

different. Thus, the confidence ellipses are reconstructed from the mapped b−vector samples, each of which has a

different reference frame.

Fig. 5(a) shows the ellipses that would result on the B-plane if the spacecraft was not controlled or observed anymore

after the E17 clean-up. Fig. 5(b) shows the ellipse of uncertainty on the B-plane propagated from the TRG (see Fig.545

3(b)). The figure shows that without corrections coming from a navigation analysis the uncertainty on this deterministic
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(a) CU-E17 post-flyby manoeuvre
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(b) TRG-E18 apocenter manoeuvre
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(c) APR-E18 approach manoeuvre
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(d) E18 closest approach

Fig. 5 Confidence ellipses in B-vector components mapped from different instances of the first guess trajectory
without successive manoeuvres and observations under aleatory uncertainty.

trajectory has an intersection with the surface of the moon (represented by the thick black line at h = 0 km), which

corresponds to an undesirably high PoI. Fig. 5(c) displays the B-plane uncertainty propagated without new OD after the

APR (see also Fig. 6(c)), which is notably smaller than the post-targeting one because of the new OD arcs and the

controller δ∆vAPR-E18. Fig. 5(d) finally shows the uncertainty on the B-plane as reconstructed using the OD arcs after550

the APR. The estimated overall ∆v99 is approximately 79% larger than the open-loop one (see Table 3), a cost increase

in line with previous navigation analysis for the Europa Clipper trajectory [48].

We now apply BOC, starting from the deterministic solution, to find a trajectory that minimises the ∆v99 while

respecting the PoI constraint, and satisfying the constraints on the flyby conditions and terminal position. The resulting

solution fulfils the constraint on the probability of impact. A summary of its characteristics is reported in Table 4. The555

average wall time for computing this BOC trajectory is slightly above 3 minutes.

Looking at the open-loop ∆v allocation, one can infer that the feasibility on the PoI constraint was realised by trading

off part of the targeting manoeuvre with the clean-up ones. The execution errors coming from an increased ∆vCU-E17
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Table 4 Free variables, open-loop magnitude ∆v, total ∆v99, their ratio and PoI for robust solution under
aleatoric uncertainty.

Solution Aleatory Robust

∆vCU-E17 [m/s] [+0.12,+0.18,+0.09]
∆vTRG-E18 [m/s] [−2.09,+2.01,+1.99]
∆vCU-E18 [m/s] [−1.21,+0.56,−1.79]

∆v [m/s] 5.98

∆v99 [m/s] 9.91

∆v99/∆v [-] 1.66

PoI [-] 0.09%

can be adjusted by the controller at the apocenter, while the smaller ∆vTRG-E18 and associated execution errors result in

a smaller uncertainty at the flyby B-plane (see Fig. 6(b)). After the flyby, a ∆vCU-E18 manoeuvre is needed to meet the560

target conditions at the final time.

Overall the optimal trajectory has a higher open-loop magnitude ∆v than the first guess, but the feasibility is

restored. We observe that the percentage increase of the ∆v99, with respect to the open-loop ∆v, is now lower, i.e. 66%,

indicating that the BOC trajectory can compensate for the possible uncertainty realisations more efficiently. Fig. 6

shows the B-plane uncertainties of the robust trajectory. Fig. 6(b), representing the uncertainty mapped after TRG,565

shows that the 3-σ ellipse does not cross the surface of Europa anymore. By comparing it with the corresponding plot

in Figure 5(b), the robust B-plane ellipse has a smaller semi-major axis, which mainly contributes to the PoI, whereas it

has a larger semi-minor axis, which has a limited contribution to the PoI constraint. The robust ellipse is also rotated

counterclockwise, which leads to an even lower impact probability.

To quickly verify that the increase in total ∆v99 between the robust solution and the first guess is due to the initial570

infeasibility, the BOC problem has been solved after removing the PoI constraint. Table 5 shows the unconstrained

optimal solution, which displays a lower overall ∆v99 compared to that of the deterministic solution, although the

open-loop magnitude ∆v is slightly higher. This result further confirms that the robust optimum differs from the

deterministic one and that the statistical performance is indeed improved.

Fig. 7 provides an insightful visualisation of how the manoeuvres and observation arcs affect the flyby uncertainties.575

In particular, the figure shows, on the y-axis, the Semi-MAjor Axis (SMAA) and Semi-MInor Axis (SMIA) of the

B-plane 1-σ confidence ellipse, and of the uncertainty on the hyperbolic TCA for different times along the trajectory

(x-axis), if no other action is taken after that time. The observation instances are represented with vertical dashed black

lines, while manoeuvres are indicated by black solid lines. The value of the mapped uncertainty is around 10 km and

500 m in SMAA and SMIA, and 10 seconds in TCA, as resulting purely from the initial dispersion as in Table 1. The580
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(a) CU-E17 post-flyby manoeuvre
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(b) TRG-E18 apocenter manoeuvre
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Fig. 6 Confidence ellipses in B-vector components mapped from different instances of the robust trajectory
without successive manoeuvres and observations under aleatory uncertainty.

Table 5 Free variables, open-loopmagnitude∆v, total∆v99, their ratio and PoI for verification solutionwithout
imposing the PoI constraint.

Solution Aleatory Robust w/o PoI

∆vCU-E17 [m/s] [+0.00,−0.01,−0.01]
∆vTRG-E18 [m/s] [−1.28,+2.89,+3.25]
∆vCU-E18 [m/s] [−0.04,−0.02,+0.03]

∆v [m/s] 4.60

∆v99 [m/s] 8.02

∆v99/∆v [-] 1.74

PoI [-] 0.76%

mapped uncertainty exhibits then a jump at E17, the time of the clean-up manoeuvre, because of the executions errors.

Successively, the orbit determination arcs reduce the B-plane ellipsoid by more than one order of magnitude in SMAA
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Fig. 7 Uncertainty mapped from different times during the robust trajectory to the reference flyby time and
transformed in B-plane coordinates.

and TCA, whereas the reduction in SMIA is more contained. The main targeting manoeuvre ∆vTRG-E18 and its high

execution errors cause a major spike in the delivered uncertainty. The values of SMAA and SMIA at this event are

critical for the robust optimisation process, as this B-plane mapped uncertainty is the one employed for the probability585

of impact computation. Successive OD arcs help to reduce significantly the SMAA and TCA mapped dispersion until

another, more contained, jump at the approach manoeuvre before E18. Finally, the measurements arcs before E18

reduce the mapped uncertainty even further, to have an expected 1-σ uncertainty at flyby of a few hundred meters in

SMAA and SMIA, and a few tenths of a second for the TCA.

590

2. Mixed aleatory and epistemic uncertainty

Starting from the same deterministic solution we now introduce epistemic uncertainties in the distributions and solve

the full problem (53). In this case, for the deterministic solution reported in Table 6 we have PoI = 2.29% ≮ 0.1%,

which violates the impact constraint even more severely than in the aleatory case. The total ∆Vtot that provides the

required percentile ∆v99 is significantly higher than the one in the purely aleatory case, mainly due to the larger595

execution errors.

The corresponding B-plane uncertainty ellipses mapped and delivered from the manoeuvre instances along the

trajectory are visualised in Fig. 8. For each subfigure, multiple 3-σ ellipsoids are represented by taking samples of the

epistemic parameters within their intervals (see Table 2) and running a navigation analysis for each epistemic value. By
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Table 6 Free variables, open-loop magnitude ∆v, total ∆v99, their ratio and upper PoI for first guess under
epistemic uncertainty.

Solution Epistemic First Guess

∆vCU-E17 [m/s] [+0.00,+0.00,+0.00]
∆vTRG-E18 [m/s] [−1.30,+2.86,+3.23]
∆vCU-E18 [m/s] [+0.00,+0.00,+0.00]

∆v [m/s] 4.51

∆v99 [m/s] 8.65

∆v99/∆v [-] 1.92

PoI [-] 2.29%

comparing Fig 5 with Fig. 8, one can see that in every subplot the ellipses change in size and, at times, rotate due to the600

epistemic uncertainty. For the chance constraint on the PoI after targeting, the inner optimisation routine looks for the

epistemic sample which yields the ellipse with the largest intersection with the equivalent Europa surface in Fig. 8(b).

The main features of the BOC solution to problem (53) are reported in Table 7. Again, the values of the expected

value constraints are not reported as they are met up to the required threshold, that is the new trajectory respects the

required flyby conditions and final position in expected value. The average wall time for computing the BOC solution605

increases to 11 minutes under epistemic uncertainty.

Table 7 Free variables, open-loop magnitude ∆v, total ∆v99, their ratio and upper PoI for robust solution
under epistemic uncertainty.

Solution Epistemic Robust

∆vCU-E17 [m/s] [−0.35,+1.12,+0.16]
∆vTRG-E18 [m/s] [−1.73,+1.57,+1.30]
∆vCU-E18 [m/s] [+1.43,−2.13,−3.24]

∆v [m/s] 7.99

∆v99 [m/s] 14.76

∆v99/∆v [-] 1.84

PoI [-] 0.04%

The PoI constraint is satisfied by trading part of the targeting manoeuvre with the E17 and E18 clean-up manoeuvres.

The latter is now the largest manoeuvre employed to steer the spacecraft back to the desired final conditions. The value

of ∆v99 is significantly higher than in the aleatory case in Table 4 due to:

• the more severe uncertainty coming from the unknown probability distribution;610

• the larger execution errors causing bigger deviations and, therefore, higher statistical manoeuvres.
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(a) CU-E17 post-flyby manoeuvre (b) TRG-E18 apocenter manoeuvre

(c) APR-E18 approach manoeuvre (d) E18 closest approach

Fig. 8 Confidence ellipses in B-vector components mapped from different instances of the first guess trajectory
without successive manoeuvres and observations under epistemic uncertainty.

A visualisation of the 3-σ uncertainty ellipses on the B-plane for the robust solution can be found in Fig. 9, where

again each ellipsoid results from a different value of the epistemic parameters. By comparing this plot with Fig. 8, Fig.

9(a) displays an evident change in the B-plane parameters after E17-CU, as the larger clean-up manoeuvre steers the

delivered uncertainty closer to the target flyby conditions. Fig. 9(b), representing the mapped uncertainty after targeting,615

shows that there is no intersection between the largest 3-σ ellipse and the equivalent surface of Europa, confirming that

the PoI constraint is met also in the epistemic case. Similarly to the precise case, the ellipses have smaller semi-major

axes, larger semi-minor axes and are rotated counterclockwise to reduce the PoI while keeping the mean on the desired

flyby conditions. Figure 9(c) reveals an increase in the delivered uncertainty after approach due to the larger statistical

manoeuvres. Finally, Fig. 9(d) shows how the range and range-rate observations reduce the reconstructed uncertainty at620

flyby, mainly in the b · t̂ component.
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(a) CU-E17 post-flyby manoeuvre (b) TRG-E18 apocenter manoeuvre

(c) APR-E18 approach manoeuvre (d) E18 closest approach

Fig. 9 Confidence ellipses in B-vector components mapped from different instances of the robust trajectory
without successive manoeuvres and observations under epistemic uncertainty.

V. Conclusions

This paper proposed a novel development in optimal control problems under uncertainty for the design of space

trajectories. The main contribution of this work is the development of the BOC formulation and the generalisation of a

shooting-like stochastic transcription to the case of orbit determination arcs and statistical controllers.625

It was shown that the proposed belief-based formulation can accommodate both aleatory and epistemic and allows

the treatment of families of probability measures since no assumptions are made on the nature of the probability

distributions describing the uncertainties, or on the transition function to propagate them. This formulation further

enables the optimisation of the open-loop thrust profile taking into account the effect of closed-loop components in

continuous state space applications with sparse observations, thus coupling the trajectory optimisation process with the630

navigation analysis. Indeed, a belief-based model is particularly suited to model the inference step necessary for the
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state knowledge update when an orbit determination campaign is carried out.

The proposed transcription was generalised to the presence of orbit determination by adapting the shooting-like

discretisation through propagation and inference maps. A sparse polynomial mapping was employed to propagate the

belief state through the nonlinear dynamics. The developed scheme was shown to transcribe the continuous problem635

under uncertainty in a discrete form to be optimised with a local NLP solver.

The optimised solution resulting from this approach is highly informative as it determines the nominal control

profile given a predefined control policy for possible deviations due to uncertainty, hence directly providing multiple

control laws and the associated empirical margins for correction manoeuvres.

On the re-design of the Europa Clipper flyby tour, the BOC formulation was shown to simultaneously optimise the640

total cost of the executed manoeuvres and to satisfy all constraints under both aleatory and epistemic uncertainty. The

BOC was able to solve for the initial infeasibility in PoI of the deterministic solution, and find a robust trajectory that

simultaneously satisfies the statistical constraints and minimises the ∆v99, that is the .99 quantile for the total cost of the

manoeuvres. As a verification, it was shown that the BOC solution outperforms the deterministic initial guess when no

PoI constraint is considered.645

The optimisation over the epistemic set is currently carried out using a local search, although this problem is often

multimodal. Therefore, future developments will include a global solver for the outer optimisation loop to find the lower

and upper bounds of the quantity of interest. Furthermore, additional work will revolve around the development of an

efficient epistemic estimator for Bayesian inference to replace the current Monte Carlo sampling over the observation and

include epistemic uncertainty in the measurements more efficiently. Both theoretical and empirical complexity analyses650

should be carried out to formally assess the scalability of the method with the number of aleatory, epistemic, and control

parameters. Future theoretical work will also focus on the development of belief optimal control for continuous thrust

problems, which are characterised by more challenging operational constraints and increased dimensionality of the

transcribed optimisation. Finally, additional uncertainty sources will be considered for future applications, e.g., errors

in the time of execution of the manoeuvres and in the ephemerides of the moons.655

A. B-plane coordinate tranformation
The B-plane is the plane passing through the target body center of mass and perpendicular to the hyperbola incoming

asymptote [55, 62, 63]. It is defined by three unit vectors: ŝ is the unit vector parallel to the relative incoming asymptote

with positive direction aligned to the incoming asymptotic velocity; t̂ is the cross product between ŝ and the normal to

the ecliptic, that is ẑ vector in the inertial frame; r̂ is the cross product between ŝ and t̂.660

The transformation from inertial to B-plane coordinates is

B = [b, TCA] = B(x(t)) ,
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where the aiming point b = (b · t̂) t̂+ (b · r̂) r̂ is the target-centered vector to the intersection point between the incoming

asymptote and the B-plane (it would be the closest approach point if the target body were massless), whereas the

hyperbolic TCA is the time interval that the spacecraft needs to travel from x(t) to the flyby closest approach along the

relative hyperbolic orbit.

The transformation B therefore returns the two components, b · t̂ and b · r̂, and the hyperbolic TCA for a given

inertial state x in the proximity of the flyby. First the inertial state with respect to the central body is converted to the

inertial state with respect to the target body to flyby by a simple translation. Hence, let r and v be the relative position

and velocity of the spacecraft. Then, following [62], the unit vectors are first derived by computing the unit normal

vector

ĥ = r × v / ‖r × v‖ ,

the eccentricity vector

e =
( v2

µ
−

1
r

)
r −

(
r · v)
µ

v ,

and the asymptote angle

β = cos−1(1/e) .

Hence, ŝ can be written as

ŝ = cos β
e
‖e‖
+ sin β

ĥ × e
‖ĥ × e‖

,

and consequently

t̂ = ŝ × ẑ

r̂ = ŝ × t̂ .

Hence, from the hyperbolic semi-major axis

a = −
µ

2

/( v2

2
−
µ

2

)
,

the b vector magnitude is computed as

‖b‖ =
‖h‖
v∞
= −a

√
e2 − 1 .

Begin the aiming point within the B-plane (perpendicular to ŝ) and within the relative orbital motion (perpendicular to

ĥ), the b vector can be finally written as

b = ‖b‖
(
ŝ × ĥ

)
,

and its projections onto t̂ and r̂ can be found by a scalar product. The hyperbolic TCA is computed by the relation

36



between hyperbolic anomaly H and time (see Equation (8.23-1) of [63] )

TCA =
e sinh H − H√

µ/a3
,

where H is derived by its definition

r = a(1 − e cosh H) .

As the B-plane change of coordinates involves only algebric passages, the Jacobian of this transformation with

respect to the inertial state

JB =
∂B
∂x

can computed analytically. Specifically, the derivative of the equations above with respect to the parameters appearing665

on the right-hand side are derived by symbolic differentiation, and the Jacobian is constructed by chain rule.
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