Shape preserving interpolation on surfaces

A.-A.I. Ginnis \& P.D. Kaklis
National Technical University of Athens
University of Strathclyde

Dagstuhl Seminar 17221 on
Geometric Modelling, Interoperability and New Challenges
May 28 - June 2, 2017

introduction

- let be given an orientable, smooth parametric surface: $\mathbf{S}(u, v),(u, v) \in \Omega \subseteq \mathbb{R}^{2}$,
and an ordered set of points:
$\mathcal{I}=\left\{\mathbf{I}_{i}=\mathbf{S}\left(u_{i}, v_{i}\right),\left(u_{i}, v_{i}\right) \in \Omega, i=0,1, \ldots, n\right\}$ on it.

introduction

- let be given an orientable, smooth parametric surface: $\mathbf{S}(u, v),(u, v) \in \Omega \subseteq \mathbb{R}^{2}$,
and an ordered set of points:
$\mathcal{I}=\left\{\mathbf{I}_{i}=\mathbf{S}\left(u_{i}, v_{i}\right),\left(u_{i}, v_{i}\right) \in \Omega, i=0,1, \ldots, n\right\}$ on it.
- we aim to set up a methodology for constructing smooth curves $\mathbf{c}(t), t \in\left[t_{0}, t_{n}\right]$, that lie on $\mathbf{S}(u, v)$, interpolate the given points, $\mathbf{c}\left(t_{i}\right)=\mathbf{I}_{i}$ on it, with t_{i} being user-specified parameters in $\left[t_{0}, t_{n}\right]$, and are shape preserving in an appropriately defined sense.

a criterion for shape-preserving interpolation (spi)

- to introduce a notion of shape-preserving interpolation on a surface, we appeal to the composite curve Γ consisting of the geodesic segments
$\gamma_{i}(\tau), \tau \in[0,1], \tau=\left(t-t_{i}\right) / h_{i}, h_{i}=t_{i+1}-t_{i}$,
that connect each consecutive pair of interpolation points:
$\gamma_{i}(0)=\mathbf{l}_{i}, \gamma_{i}(1)=\mathbf{l}_{i+1}, i=0,1, \ldots, n-1$.

a criterion for shape-preserving interpolation (spi)

- to introduce a notion of shape-preserving interpolation on a surface, we appeal to the composite curve Γ consisting of the geodesic segments
$\gamma_{i}(\tau), \tau \in[0,1], \tau=\left(t-t_{i}\right) / h_{i}, h_{i}=t_{i+1}-t_{i}$, that connect each consecutive pair of interpolation points: $\gamma_{i}(0)=\mathbf{I}_{i}, \gamma_{i}(1)=\mathbf{I}_{i+1}, i=0,1, \ldots, n-1$.
- the geodesic curvature κ_{g} of a regular curve $\mathbf{c}(t)$ on $\mathbf{S}(u, v)$, is defined as:

$$
\kappa_{g}(t ; \mathbf{c})=\frac{(\dot{\mathbf{c}}(t), \ddot{\mathbf{c}}(t), \mathbf{n}(t))}{\|\dot{\mathbf{c}}(t)\|^{3}}
$$

generalised convexity indicator

- in analogy to the notion of convexity indicators $P_{\text {planar }, i}$ used for shape-preserving interpolation on the plane

$$
P_{\text {planar }, i}=\frac{\left(\mathbf{L}_{i-1}, \mathbf{L}_{i}, \mathbf{e}_{3}\right)}{\left\|\mathbf{L}_{i-1} \times{ }_{2 D} \mathbf{L}_{i}\right\|},
$$

where \mathbf{e}_{3} is the unit normal on the plane, $\mathbf{L}_{i}=\mathbf{I}_{i+1}-\mathbf{I}_{i}$.

generalised convexity indicator

- in analogy to the notion of convexity indicators $P_{\text {planar }, i}$ used for shape-preserving interpolation on the plane

$$
P_{\text {planar }, i}=\frac{\left(\mathbf{L}_{i-1}, \mathbf{L}_{i}, \mathbf{e}_{3}\right)}{\| \mathbf{L}_{i-1} \times 2 D} \mathbf{L}_{i} \|
$$

where \mathbf{e}_{3} is the unit normal on the plane, $\mathbf{L}_{i}=\mathbf{I}_{i+1}-\mathbf{I}_{i}$.

- we introduce the notion of generalized convexity indicators P_{i} at the vertices \mathbf{I}_{i} of the composite geodesic Γ on $\mathbf{S}(u, v)$

$$
P_{i}=\frac{\left(\dot{\gamma}_{i-1}(1), \dot{\gamma}_{i}(0), \mathbf{n}\left(t_{i}\right)\right)}{\left\|\dot{\gamma}_{i-1}(1) \times \dot{\gamma}_{i}(0)\right\|}
$$

the proposed spi criterion

(i) convexity: If $P_{m} P_{m+1}>0$ then

$$
\kappa_{g}(t ; \mathbf{c}) P_{n}>0, \quad t \in\left[t_{m}, t_{m+1}\right], n=m \text { or } m+1
$$

the proposed spi criterion

(i) convexity: If $P_{m} P_{m+1}>0$ then

$$
\kappa_{g}(t ; \mathbf{c}) P_{n}>0, \quad t \in\left[t_{m}, t_{m+1}\right], n=m \text { or } m+1
$$

(ii) minimum variation: If $P_{m} P_{m+1}<0$ then
$\kappa_{g}(t ; \mathbf{c}) P_{m} \geq 0, t \in\left[t_{m}, t_{m, m+1}\right], \kappa_{g}(t ; \mathbf{c}) P_{m+1} \geq 0, t \in\left[t_{m, m+1}, t_{m+1}\right]$,
for some $t_{m, m+1} \in\left(t_{m}, t_{m+1}\right)$.

the proposed spi criterion

(i) convexity: If $P_{m} P_{m+1}>0$ then

$$
\kappa_{g}(t ; \mathbf{c}) P_{n}>0, \quad t \in\left[t_{m}, t_{m+1}\right], n=m \text { or } m+1
$$

(ii) minimum variation: If $P_{m} P_{m+1}<0$ then
$\kappa_{g}(t ; \mathbf{c}) P_{m} \geq 0, t \in\left[t_{m}, t_{m, m+1}\right], \kappa_{g}(t ; \mathbf{c}) P_{m+1} \geq 0, t \in\left[t_{m, m+1}, t_{m+1}\right]$,
for some $t_{m, m+1} \in\left(t_{m}, t_{m+1}\right)$.
(iii) co-geodesity: If $P_{m}=0$ and $P_{m-1} P_{m+1} \neq 0$ then

$$
\begin{gathered}
\left\|\kappa_{g}(t ; \mathbf{c})\right\|<\epsilon, t \in \eta_{m}, \kappa_{g}(t ; \mathbf{c}) P_{m-1} \geq 0, t \in\left[t_{m-1}, t_{m}\right] \backslash \eta_{m} \\
\kappa_{g}(t ; \mathbf{c}) P_{m+1} \geq 0, t \in\left[t_{m}, t_{m+1}\right] \backslash \eta_{m}
\end{gathered}
$$

where ϵ is a user-specified small positive number in $(0,1]$ and η_{m} is a closed subinterval of $\left(t_{m-1}, t_{m+1}\right)$ that includes t_{m} as an interior point.

geodesic-based variable-degree splines (vd-splines)

the members $\mathbf{c}(t)$ of this family are defined by composing $\mathbf{S}(u, v)$ with a family of planar curves, $\mathbf{q}(t)$, which combine:

- the shape-preserving interpolation properties of the so-called variable-degree polynomial splines, with
- the pre-images, $\mathbf{g}_{i}(t)=\mathbf{S}^{-1}\left(\gamma_{i}(t)\right)$, of the geodesic arcs $\gamma_{i}(\tau)$:

geodesic-based variable-degree splines (vd-splines)

the members $\mathbf{c}(t)$ of this family are defined by composing $\mathbf{S}(u, v)$ with a family of planar curves, $\mathbf{q}(t)$, which combine:

- the shape-preserving interpolation properties of the so-called variable-degree polynomial splines, with
- the pre-images, $\mathbf{g}_{i}(t)=\mathbf{S}^{-1}\left(\gamma_{i}(t)\right)$, of the geodesic arcs $\gamma_{i}(\tau)$:

$$
\begin{gathered}
\mathbf{c}(t)=(\mathbf{S} \circ \mathbf{q})(t), \\
\mathbf{q}(t)=\mathbf{g}_{i}(\tau)+h_{i}^{2}\left(\ddot{\mathbf{q}}_{i}-\ddot{\mathbf{g}}_{i}\left(t_{i}\right)\right) F_{i}(1-\tau)+h_{i}^{2}\left(\ddot{\mathbf{q}}_{i+1}-\ddot{\mathbf{g}}_{i}\left(t_{i+1}\right)\right) F_{i}(\tau) \\
t \in\left[t_{i}, t_{i+1}\right], \ddot{\mathbf{q}}_{i}:=d^{2} \mathbf{q}\left(t_{i}\right) / d t^{2} \\
F_{i}(\tau)=\frac{\tau^{k_{i}}-\tau}{k_{i}\left(k_{i}-1\right)}, \quad 3 \leq k_{i} \in \mathbb{N}, \\
\tau=\frac{t-t_{i}}{h_{i}} \in[0,1], \quad h_{i}=t_{i+1}-t_{i}, i=1, \ldots, n-1
\end{gathered}
$$

on surface interpolation problem

theorem

- Let be given a surface $\mathbf{S}(u, v),(u, v) \in \Omega \subseteq \mathbb{R}^{2}$, along with a set $\mathcal{I}=\left\{\mathbf{I}_{0}, \ldots, \mathbf{I}_{n}\right\}$ of points on it, a user-specified knot sequence $\mathcal{T}=\left\{t_{i}: t_{i}<t_{i+1}, i=0,1, \ldots, n-1\right\}$ and a set $\mathcal{K}=\left\{k_{1}, \ldots, k_{n-1}\right\}, 3 \leq k_{i} \in \mathbb{N}, i=1, \ldots, n-1$.
- then, under appropriate boundary conditions \mathcal{B}, there exists a unique $C^{2}\left(\left[t_{0}, t_{n}\right]\right)$ curve $\mathbf{c}(t)$, represented as in (1), which lies on $\mathbf{S}(u, v)$ and interpolates \mathcal{I} in conformity with the knot sequence \mathcal{T}

local asymptotic behaviour

theorem

- If k_{i-1}, k_{i} increase in compatibility with:

$$
\lim _{k_{i-1}, k_{i} \rightarrow \infty} \frac{k_{i-1}}{k_{i}}=\lambda_{i-1, i}
$$

where $\lambda_{i-1, i}$ is a non-zero positive constant,

- then, for sufficiently large degrees k_{i-1} and k_{i}, the sign of the geodesic curvature of $\mathbf{c}(t)$ at $t=t_{i}$ is equal to the sign of the quantity

$$
\dot{\mathbf{g}}_{i-1}\left(t_{i}\right) \times{ }_{2 D} \dot{\mathbf{g}}_{i}\left(t_{i}\right)\left(\mathbf{S}_{u}\left(\mathbf{I}_{i}\right), \mathbf{S}_{v}\left(\mathbf{I}_{i}\right), \mathbf{n}\left(\mathbf{I}_{i}\right)\right),
$$

where the factor $\left(\mathbf{S}_{u}\left(\mathbf{I}_{i}\right), \mathbf{S}_{v}\left(\mathbf{I}_{i}\right), \mathbf{n}\left(\mathbf{I}_{i}\right)\right)$ has constant sign for the orientable surface $\mathbf{S}(u, v)$

geodesic-based ν-splines

$$
\begin{gathered}
\mathbf{c}(t)=(\mathbf{S} \circ \mathbf{q})(t), \\
\tau=\frac{t-t_{i}}{h_{i}} \in[0,1], h_{i}=t_{i+1}-t_{i}, i=0, \ldots, n-1, \dot{\mathbf{q}}_{i}:=d \mathbf{q}\left(t_{i}\right) / d t \\
H_{3}^{3}(\tau)=B_{2}^{3}(\tau)+B_{3}^{3}(\tau) \\
H_{1}^{3}(\tau)=\frac{1}{3} B_{1}^{3}(\tau), H_{2}^{3}(\tau)=-\frac{1}{3} B_{2}^{3}(\tau)
\end{gathered}
$$

G^{2}-continuity conditions

$$
\ddot{\mathbf{q}}\left(t_{i}+\right)-\ddot{\mathbf{q}}\left(t_{i}-\right)=\nu_{i} \mathbf{q}_{i}, i=1, \ldots, n-1
$$

example-1: spi on cylinder

Figure 1:
initial: ν 's $\rightarrow\{0,0,0,0,0\}$

example-1: spi on cylinder

Figure 1:
spi: ν 's $\rightarrow\{0,2,4,4,4\}$

example-2: spi on sphere

Figure 2:
initial: ν 's $\rightarrow\{0,0,0,0,0\}$

example-2: spi on sphere

Figure 2:
spi: ν 's $\rightarrow\{0,22,22,22,1\}$

example-3: spi on a free-form surface

Figure 3:
initial: ν 's $\rightarrow\{0,0,0,0,0\}$

example-3: spi on a free-form surface

Figure 3:
spi: ν 's $\rightarrow\{0,4,4,4,0\}$

future work

spi \& shape optimization

- local asymptotic behaviour for geodesic-based ν-splines (in the neighborhood of interpolation points)

future work

spi \& shape optimization

- local asymptotic behaviour for geodesic-based ν-splines (in the neighborhood of interpolation points)
- global asymptotic behaviour for geodesic-based vd- \& nu-splines (along closed parametric intervals between knots)

future work

spi \& shape optimization

- local asymptotic behaviour for geodesic-based ν-splines (in the neighborhood of interpolation points)
- global asymptotic behaviour for geodesic-based vd- \& nu-splines (along closed parametric intervals between knots)
- optimal degrees or ν-parameters against fairness criteria

some references

1. K. Shoemake, Animating rotations with quaternion curves, 1985.
2. L. Noakes, G. Heinziger, B. Paden, Cubic splines on curved spaces, 1989.
3. R. Dietz, J. Hoschek, B. Jüttler, An algebraic approach to curves and surfaces on the spheres and other quadrics, 1993.
4. G. Brunnett, P.E. Crouch, Elastic curves on the sphere, 1994.
5. G. Brunnett, P.E. Crouch, F. Silva Leite, Spline elements on spheres, 1994.
6. M.-J. Kim, M.-S. Kim, S. Shin, a general construction scheme for unit quaternion curves with simple high -order derivatives, 1995.
7. R. Ramamoorthi, A. Barr, Fast construction of accurate quaternion splines, 1997.
8. K. Sprott, B. Ravani, Ruled surfaces, Lie groups and mesh generation, 1997.
9. L. Noakes, Non-linear corner cutting, 1998.
10. H. Bohl, Kurven minimaler Energie aug getrimmten Flächen, 1999.
11. J. Wallner, N. Dyn, Smoothness of subdivision schemes by proximity, 2003.
12. M. Hofer, H. Pottmann, B. Ravani, Geometric design of motions constrained by a contacting surface pair, 2003.
13. B. Jüttler, M. Wagner, Kinematics and animation, 2002.
14. H. Pottmann, M. Hofer, A variational approach to spline curve son surfaces, 2005.
