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introduction

I let be given an orientable, smooth parametric surface:
S(u, v), (u, v)∈Ω ⊆ R2,
and an ordered set of points:
I = {Ii = S(ui , vi ), (ui , vi )∈Ω, i = 0, 1, ..., n}
on it.
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and an ordered set of points:
I = {Ii = S(ui , vi ), (ui , vi )∈Ω, i = 0, 1, ..., n}
on it.

I we aim to set up a methodology for constructing smooth
curves c(t), t ∈ [t0, tn], that lie on S(u, v), interpolate the
given points, c(ti ) = Ii on it, with ti being user-specified
parameters in [t0, tn], and are shape preserving in an
appropriately defined sense.



a criterion for shape-preserving interpolation (spi)

I to introduce a notion of shape-preserving interpolation on a
surface, we appeal to the composite curve Γ consisting of the
geodesic segments
γi (τ), τ ∈ [0, 1], τ = (t − ti )/hi , hi = ti+1 − ti ,
that connect each consecutive pair of interpolation points:
γi (0) = Ii , γi (1) = Ii+1, i = 0, 1, ..., n − 1.



a criterion for shape-preserving interpolation (spi)

I to introduce a notion of shape-preserving interpolation on a
surface, we appeal to the composite curve Γ consisting of the
geodesic segments
γi (τ), τ ∈ [0, 1], τ = (t − ti )/hi , hi = ti+1 − ti ,
that connect each consecutive pair of interpolation points:
γi (0) = Ii , γi (1) = Ii+1, i = 0, 1, ..., n − 1.

I the geodesic curvature κg of a regular curve c(t) on S(u, v),
is defined as:

κg (t; c) =
(ċ(t), c̈(t), n(t))

‖ċ(t)‖3
,



generalised convexity indicator

I in analogy to the notion of convexity indicators Pplanar ,i used
for shape-preserving interpolation on the plane

Pplanar ,i =
(Li−1,Li , e3)

‖Li−1×2DLi‖
,

where e3 is the unit normal on the plane, Li = Ii+1 − Ii .
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I in analogy to the notion of convexity indicators Pplanar ,i used
for shape-preserving interpolation on the plane

Pplanar ,i =
(Li−1,Li , e3)

‖Li−1×2DLi‖
,

where e3 is the unit normal on the plane, Li = Ii+1 − Ii .

I we introduce the notion of generalized convexity indicators Pi

at the vertices Ii of the composite geodesic Γ on S(u, v)

Pi =
(γ̇i−1(1), γ̇i (0), n(ti ))

‖γ̇i−1(1)×γ̇i (0)‖
.
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for some tm,m+1∈(tm, tm+1).

(iii) co-geodesity: If Pm = 0 and Pm−1Pm+1 6=0 then

‖κg (t; c)‖ < ε, t∈ηm, κg (t; c)Pm−1≥0, t∈[tm−1, tm]\ηm,

κg (t; c)Pm+1≥0, t∈[tm, tm+1]\ηm,

where ε is a user-specified small positive number in (0, 1] and
ηm is a closed subinterval of (tm−1, tm+1) that includes tm as
an interior point.



geodesic-based variable-degree splines (vd-splines)

the members c(t) of this family are defined by composing S(u, v)
with a family of planar curves, q(t), which combine:

I the shape-preserving interpolation properties of the so-called
variable-degree polynomial splines, with

I the pre-images, gi (t) = S−1(γi (t)), of the geodesic arcs γi (τ):
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the members c(t) of this family are defined by composing S(u, v)
with a family of planar curves, q(t), which combine:

I the shape-preserving interpolation properties of the so-called
variable-degree polynomial splines, with

I the pre-images, gi (t) = S−1(γi (t)), of the geodesic arcs γi (τ):

c(t) = (S ◦ q)(t), (1)

q(t) = gi (τ) + h2i (q̈i − g̈i (ti ))Fi (1− τ) + h2i (q̈i+1 − g̈i (ti+1))Fi (τ)

t ∈ [ti , ti+1], q̈i := d2q(ti )/dt
2

Fi (τ) =
τki − τ

ki (ki − 1)
, 3≤ki ∈ N,

τ =
t − ti
hi
∈[0, 1], hi = ti+1 − ti , i = 1, ..., n − 1



on surface interpolation problem

theorem

I Let be given a surface S(u, v) , (u, v)∈Ω ⊆ R2, along with a
set I = {I0, ..., In} of points on it, a user-specified knot
sequence T = {ti : ti < ti+1, i = 0, 1, ..., n − 1} and a set
K = {k1, ..., kn−1}, 3≤ki ∈ N, i = 1, ..., n − 1.

I then, under appropriate boundary conditions B, there exists a
unique C 2([t0, tn]) curve c(t), represented as in (1), which lies
on S(u, v) and interpolates I in conformity with the knot
sequence T



local asymptotic behaviour

theorem

I If ki−1, ki increase in compatibility with:

lim
ki−1,ki→∞

ki−1
ki

= λi−1,i ,

where λi−1,i is a non-zero positive constant,

I then, for sufficiently large degrees ki−1 and ki , the sign of the
geodesic curvature of c(t) at t = ti is equal to the sign of the
quantity

ġi−1(ti )×2D ġi (ti )(Su(Ii ),Sv (Ii ), n(Ii )),

where the factor (Su(Ii ),Sv (Ii ), n(Ii )) has constant sign for
the orientable surface S(u, v)



geodesic-based ν-splines

c(t) = (S ◦ q)(t), (2)

q(t) = gi (H
3
3 (τ)) + hi q̇iH

3
1 (τ) + hi q̇i+1H

3
2 (τ), t ∈ [ti , ti+1],

τ =
t − ti
hi
∈[0, 1], hi = ti+1 − ti , i = 0, ..., n − 1, q̇i := dq(ti )/dt

H3
3 (τ) = B3

2 (τ) + B3
3 (τ)

H3
1 (τ) =

1

3
B3
1 (τ),H3

2 (τ) = −1

3
B3
2 (τ)

G 2-continuity conditions

q̈(ti+)− q̈(ti−) = νiqi , i = 1, ..., n − 1



example-1: spi on cylinder
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Figure 1:

initial: ν’s → {0, 0, 0, 0, 0}
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example-2: spi on sphere

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0.35

0.4

0.45

0.5

0.55

0.6

0.65

Figure 2:

initial: ν’s → {0, 0, 0, 0, 0}



example-2: spi on sphere

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0.35

0.4

0.45

0.5

0.55

0.6

0.65

Figure 2:

spi: ν’s → {0, 22, 22, 22, 1}



example-3: spi on a free-form surface
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future work

spi & shape optimization

I local asymptotic behaviour for geodesic-based ν−splines (in
the neighborhood of interpolation points)

I global asymptotic behaviour for geodesic-based vd- &
nu-splines (along closed parametric intervals between knots)

I optimal degrees or ν−parameters against fairness criteria
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