## Shape preserving interpolation on surfaces

#### A.-A.I. Ginnis & P.D. Kaklis

National Technical University of Athens University of Strathclyde

Dagstuhl Seminar 17221 on Geometric Modelling, Interoperability and New Challenges May 28 - June 2, 2017  let be given an orientable, smooth parametric surface:
 S(u, v), (u, v)∈Ω ⊆ ℝ<sup>2</sup>, and an ordered set of points:
 I = {I<sub>i</sub> = S(u<sub>i</sub>, v<sub>i</sub>), (u<sub>i</sub>, v<sub>i</sub>)∈Ω, i = 0, 1, ..., n} on it.

- let be given an orientable, smooth parametric surface:
   S(u, v), (u, v)∈Ω ⊆ ℝ<sup>2</sup>, and an ordered set of points:
   I = {I<sub>i</sub> = S(u<sub>i</sub>, v<sub>i</sub>), (u<sub>i</sub>, v<sub>i</sub>)∈Ω, i = 0, 1, ..., n} on it.
- ▶ we aim to set up a methodology for constructing smooth curves c(t), t ∈ [t<sub>0</sub>, t<sub>n</sub>], that lie on S(u, v), interpolate the given points, c(t<sub>i</sub>) = I<sub>i</sub> on it, with t<sub>i</sub> being user-specified parameters in [t<sub>0</sub>, t<sub>n</sub>], and are *shape preserving* in an appropriately defined sense.

 to introduce a notion of shape-preserving interpolation on a surface, we appeal to the composite curve Γ consisting of the geodesic segments
 γ<sub>i</sub>(τ), τ ∈ [0,1], τ = (t − t<sub>i</sub>)/h<sub>i</sub>, h<sub>i</sub> = t<sub>i+1</sub> − t<sub>i</sub>,
 that connect each consecutive pair of interpolation points:
 γ<sub>i</sub>(0) = I<sub>i</sub>, γ<sub>i</sub>(1) = I<sub>i+1</sub>, i = 0, 1, ..., n − 1.

- to introduce a notion of shape-preserving interpolation on a surface, we appeal to the composite curve Γ consisting of the geodesic segments
   γ<sub>i</sub>(τ), τ ∈ [0, 1], τ = (t t<sub>i</sub>)/h<sub>i</sub>, h<sub>i</sub> = t<sub>i+1</sub> t<sub>i</sub>, that connect each consecutive pair of interpolation points:
   γ<sub>i</sub>(0) = I<sub>i</sub>, γ<sub>i</sub>(1) = I<sub>i+1</sub>, i = 0, 1, ..., n 1.
- ► the geodesic curvature κ<sub>g</sub> of a regular curve c(t) on S(u, v), is defined as:

$$\kappa_g(t; \mathbf{c}) = rac{(\dot{\mathbf{c}}(t), \ddot{\mathbf{c}}(t), \mathbf{n}(t))}{\|\dot{\mathbf{c}}(t)\|^3},$$

► in analogy to the notion of *convexity indicators* P<sub>planar,i</sub> used for shape-preserving interpolation on the plane

$$P_{planar,i} = rac{(\mathbf{L}_{i-1}, \mathbf{L}_i, \mathbf{e}_3)}{\|\mathbf{L}_{i-1} \times_{2D} \mathbf{L}_i\|},$$

where  $\mathbf{e}_3$  is the unit normal on the plane,  $\mathbf{L}_i = \mathbf{I}_{i+1} - \mathbf{I}_i$ .

► in analogy to the notion of *convexity indicators* P<sub>planar,i</sub> used for shape-preserving interpolation on the plane

$$P_{planar,i} = \frac{(\mathbf{L}_{i-1}, \mathbf{L}_i, \mathbf{e}_3)}{\|\mathbf{L}_{i-1} \times_{2D} \mathbf{L}_i\|},$$

where  $\mathbf{e}_3$  is the unit normal on the plane,  $\mathbf{L}_i = \mathbf{I}_{i+1} - \mathbf{I}_i$ .

we introduce the notion of generalized convexity indicators P<sub>i</sub> at the vertices I<sub>i</sub> of the composite geodesic Γ on S(u, v)

$$P_i = \frac{(\dot{\gamma}_{i-1}(1), \dot{\gamma}_i(0), \mathbf{n}(t_i))}{\|\dot{\gamma}_{i-1}(1) \times \dot{\gamma}_i(0)\|}.$$

## (i) convexity: If $P_m P_{m+1} > 0$ then $\kappa_g(t; \mathbf{c})P_n > 0, \quad t \in [t_m, t_{m+1}], n = m \text{ or } m+1.$

(i) *convexity*: If P<sub>m</sub>P<sub>m+1</sub> > 0 then κ<sub>g</sub>(t; c)P<sub>n</sub> > 0, t∈[t<sub>m</sub>, t<sub>m+1</sub>], n = m or m + 1.

(ii) *minimum variation*: If P<sub>m</sub>P<sub>m+1</sub> < 0 then κ<sub>g</sub>(t; c)P<sub>m</sub>≥0, t∈[t<sub>m</sub>, t<sub>m,m+1</sub>], κ<sub>g</sub>(t; c)P<sub>m+1</sub>≥0, t∈[t<sub>m,m+1</sub>, t<sub>m+1</sub>],
for some t<sub>m,m+1</sub>∈(t<sub>m</sub>, t<sub>m+1</sub>).

### the proposed spi criterion

 $\kappa_g(t; \mathbf{c}) P_{m+1} \ge 0, \ t \in [t_m, t_{m+1}] \setminus \eta_m,$ 

where  $\epsilon$  is a user-specified small positive number in (0, 1] and  $\eta_m$  is a closed subinterval of  $(t_{m-1}, t_{m+1})$  that includes  $t_m$  as an interior point.

the members  $\mathbf{c}(t)$  of this family are defined by composing  $\mathbf{S}(u, v)$  with a family of planar curves,  $\mathbf{q}(t)$ , which combine:

the shape-preserving interpolation properties of the so-called variable-degree polynomial splines, with

► the pre-images,  $\mathbf{g}_i(t) = \mathbf{S}^{-1}(\gamma_i(t))$ , of the geodesic arcs  $\gamma_i(\tau)$ :

## geodesic-based variable-degree splines (vd-splines)

the members  $\mathbf{c}(t)$  of this family are defined by composing  $\mathbf{S}(u, v)$  with a family of planar curves,  $\mathbf{q}(t)$ , which combine:

- the shape-preserving interpolation properties of the so-called variable-degree polynomial splines, with
- ► the pre-images,  $\mathbf{g}_i(t) = \mathbf{S}^{-1}(\gamma_i(t))$ , of the geodesic arcs  $\gamma_i(\tau)$ :

$$\mathbf{c}(t) = (\mathbf{S} \circ \mathbf{q})(t), \qquad (1)$$

$$\mathbf{q}(t) = \mathbf{g}_i(\tau) + h_i^2(\ddot{\mathbf{q}}_i - \ddot{\mathbf{g}}_i(t_i))F_i(1 - \tau) + h_i^2(\ddot{\mathbf{q}}_{i+1} - \ddot{\mathbf{g}}_i(t_{i+1}))F_i(\tau)$$

$$t \in [t_i, t_{i+1}], \ \ddot{\mathbf{q}}_i := d^2\mathbf{q}(t_i)/dt^2$$

$$F_i(\tau) = \frac{\tau^{k_i} - \tau}{k_i(k_i - 1)}, \quad 3 \le k_i \in \mathbb{N},$$

$$\tau = \frac{t - t_i}{h_i} \in [0, 1], \ h_i = t_{i+1} - t_i, \ i = 1, ..., n - 1$$

#### theorem

- Let be given a surface S(u, v), (u, v)∈Ω ⊆ ℝ<sup>2</sup>, along with a set *I* = {I<sub>0</sub>, ..., I<sub>n</sub>} of points on it, a user-specified knot sequence *T* = {t<sub>i</sub> : t<sub>i</sub> < t<sub>i+1</sub>, i = 0, 1, ..., n − 1} and a set *K* = {k<sub>1</sub>, ..., k<sub>n-1</sub>}, 3≤k<sub>i</sub> ∈ ℕ, i = 1, ..., n − 1.
- ► then, under appropriate boundary conditions B, there exists a unique C<sup>2</sup>([t<sub>0</sub>, t<sub>n</sub>]) curve c(t), represented as in (1), which lies on S(u, v) and interpolates I in conformity with the knot sequence T

## local asymptotic behaviour

#### theorem

▶ If *k*<sub>*i*−1</sub>, *k*<sub>*i*</sub> increase in compatibility with:

$$\lim_{k_{i-1},k_i\to\infty}\frac{k_{i-1}}{k_i}=\lambda_{i-1,i},$$

where  $\lambda_{i-1,i}$  is a non-zero positive constant,

► then, for sufficiently large degrees k<sub>i-1</sub> and k<sub>i</sub>, the sign of the geodesic curvature of c(t) at t = t<sub>i</sub> is equal to the sign of the quantity

 $\dot{\mathbf{g}}_{i-1}(t_i) \times_{2D} \dot{\mathbf{g}}_i(t_i)(\mathbf{S}_u(\mathbf{I}_i), \mathbf{S}_v(\mathbf{I}_i), \mathbf{n}(\mathbf{I}_i)),$ 

where the factor  $(S_u(I_i), S_v(I_i), n(I_i))$  has constant sign for the orientable surface S(u, v)

$$\mathbf{c}(t) = (\mathbf{S} \circ \mathbf{q})(t), \qquad (2)$$
$$\mathbf{q}(t) = \mathbf{g}_i(H_3^3(\tau)) + h_i \dot{\mathbf{q}}_i H_1^3(\tau) + h_i \dot{\mathbf{q}}_{i+1} H_2^3(\tau), \ t \in [t_i, t_{i+1}],$$
$$\tau = \frac{t - t_i}{h_i} \in [0, 1], \ h_i = t_{i+1} - t_i, \ i = 0, ..., n - 1, \dot{\mathbf{q}}_i := d\mathbf{q}(t_i)/dt$$
$$H_3^3(\tau) = B_2^3(\tau) + B_3^3(\tau)$$
$$H_1^3(\tau) = \frac{1}{3}B_1^3(\tau), H_2^3(\tau) = -\frac{1}{3}B_2^3(\tau)$$

 $G^2$ -continuity conditions

$$\ddot{\mathbf{q}}(t_i+) - \ddot{\mathbf{q}}(t_i-) = \nu_i \mathbf{q}_i, \ i = 1, ..., n-1$$

## example-1: spi on cylinder



#### Figure 1:

initial:  $\nu$ 's  $\rightarrow \{0, 0, 0, 0, 0\}$ 

## example-1: spi on cylinder



#### Figure 1:

spi:  $\nu$ 's  $\rightarrow$  {0, 2, 4, 4, 4}

## example-2: spi on sphere



# Figure 2:

initial:  $\nu$ 's  $\rightarrow$  {0,0,0,0,0}

## example-2: spi on sphere



#### Figure 2:

spi:  $\nu$ 's  $\rightarrow$  {0, 22, 22, 22, 1}

## example-3: spi on a free-form surface



Figure 3:

initial:  $\nu$ 's  $\rightarrow$  {0,0,0,0,0}

## example-3: spi on a free-form surface



Figure 3: spi:  $\nu$ 's  $\rightarrow$  {0, 4, 4, 4, 0}

►

#### spi & shape optimization

► local asymptotic behaviour for geodesic-based *v*-splines (in the neighborhood of interpolation points)

#### spi & shape optimization

- ► local asymptotic behaviour for geodesic-based *v*-splines (in the neighborhood of interpolation points)
- global asymptotic behaviour for geodesic-based vd- & nu-splines (along closed parametric intervals between knots)

#### spi & shape optimization

- ► local asymptotic behaviour for geodesic-based *v*-splines (in the neighborhood of interpolation points)
- global asymptotic behaviour for geodesic-based vd- & nu-splines (along closed parametric intervals between knots)
- optimal degrees or  $\nu$ -parameters against fairness criteria

#### some references

- 1. K. Shoemake, Animating rotations with quaternion curves, 1985.
- 2. L. Noakes, G. Heinziger, B. Paden, Cubic splines on curved spaces, 1989.
- R. Dietz, J. Hoschek, B. Jüttler, An algebraic approach to curves and surfaces on the spheres and other quadrics, 1993.
- 4. G. Brunnett, P.E. Crouch, Elastic curves on the sphere, 1994.
- 5. G. Brunnett, P.E. Crouch, F. Silva Leite, Spline elements on spheres, 1994.
- M.-J. Kim, M.-S. Kim, S. Shin, a general construction scheme for unit quaternion curves with simple high -order derivatives, 1995.
- 7. R. Ramamoorthi, A. Barr, Fast construction of accurate guaternion splines, 1997.
- 8. K. Sprott, B. Ravani, Ruled surfaces, Lie groups and mesh generation, 1997.
- 9. L. Noakes, Non-linear corner cutting, 1998.
- 10. H. Bohl, Kurven minimaler Energie aug getrimmten Flächen, 1999.
- 11. J. Wallner, N. Dyn, Smoothness of subdivision schemes by proximity, 2003.
- M. Hofer, H. Pottmann, B. Ravani, Geometric design of motions constrained by a contacting surface pair, 2003.
- 13. B. Jüttler, M. Wagner, Kinematics and animation, 2002.
- 14. H. Pottmann, M. Hofer, A variational approach to spline curve son surfaces, 2005.