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Comment [1] claims that the laser threshold emerg-
ing from a new Coherent-Incoherent Model (CIM) [2]

is “unattainable” when the term
∑

n6=l δ〈c
†
l vlv

†
ncn〉 is

added to the equation for the photon assisted polariza-
tion δ〈bc†v〉. Moreover, it identifies the classical polar-

ization |P |2 with
∑

n,l〈c
†
l vlv

†
ncn〉, thus claiming that ne-

glecting
∑

n6=l δ〈c
†
l vlv

†
ncn〉 violates the quantum-classical

correspondence.
Here we show that: 1) the threshold exists, persists

and is attainable even with the wrong assumptions of
[1]; 2) correctly taking into account terms of the order

of
∑

n6=l δ〈c
†
l vlv

†
ncn〉 and the sum’s spatial nonlocality

confirms that CIM provides accurate values of the laser
threshold.

In nanolasers, terms like
∑

n6=l δ〈c
†
l vlv

†
ncn〉 are nor-

mally neglected. They represent collective effects, like
superradiance, usually not observable in the presence of
strong polarisation dephasing due to high carrier density
screening [4, 5]. CIM [2] matches the parameters of stan-
dard GaAs-based QDs, with a very rapid decay [6] and
negligible correlations of the intrinsic polarization.

Furthermore, |P |2 does not correspond to∑
n,l〈c

†
l vlv

†
ncn〉. Imposing operator normal ordering

gives
∑

n,l〈c
†
l vlv

†
ncn〉 = 〈c†l cl〉 −

∑
n,l〈c

†
l v
†
nvlcn〉 6= |P |2,

where 〈c†l cl〉 is the excited state population and∑
n,l〈c

†
l v
†
nvlcn〉 the sum of the expectation values of the

product of polarisations between QDs placed at different
positions: a spatially nonlocal term. This decomposition
proves the point. The polarisation is local, does not
depend on population, and is related to |〈v†c〉|2, included
in CIM [2, Eq. (2)] but arbitrarily and inconsistently
removed from Eq. (1) in [1].

The correct dynamical form for 〈c†l v†nvlcn〉 is

(dt + 2γ + i∆ε)〈c†l v†nvlcn〉 = g∗ls
[
〈b†sv†ncn〉(1− 2〈c†l cl〉)

− 2〈v†ncn〉〈b†sc†l cl〉+ 2〈b†s〉〈c†l cl〉〈v†ncn〉
]

+ gns
[
〈bsc†l vl〉

(1− 2〈c†ncn〉)− 2〈c†l vl〉〈bsc†ncn〉+ 2〈bs〉〈c†ncn〉〈c†l vl〉
]

(1)

where the coefficients gns depend on the cavity-mode field
at the QDs positions [3]. Spatial nonlocality introduces
into Eq. (1) products of coupling coefficients, gls, and po-
larisation operators, v†ncn, from different QDs. Neglect-
ing these phase differences [1], assumes that QDs and gls,
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FIG. 1. Photon number versus pump for 40 QDs where the
laser threshold of the CIM plus the equation given in [1] (black
star) and CIM [2] (blue star) are shown. The red star corre-
sponds to the bifurcation in the model which accounts for the
variables ignored in [1]; the red diamond (red cross) shows the
bifurcation point assuming that only 90% (50%) of the QDs
have coupling coe�cients with the same phase and amplitude.
All parameter values are the same as in Ref. [2].

and �hb†bv†vi is the standard procedure with cluster ex-

pansions [7] truncated at the two-particle level where
these terms are perturbative [4]. There is a further mis-
understanding about the emission after the bifurcation:
close to threshold only a fraction of the photon field is
coherent and single frequency.
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FIG. 1. Photon number versus pump for 40 QDs. The blue
star is the laser threshold of the CIM [2], the black star of the
CIM plus Eq. (1) of [1], the red star when variables ignored
in [1] are included, the red diamond (red cross) assumes that
only 90% (50%) of the QDs are identical. All parameter values
are the same as in [2].

which depend on the mode [3], are identical. These ex-
tremely strict conditions cannot be satisfied by all QDs
for physically realistic boundary conditions.

Adding Eq. (1) of [1] to CIM [2] displaces the threshold
(black star in Fig.1) from its original position [2] (blue
star), rendering the post-bifurcation dynamics unstable
due to the arbitrary removal of terms of comparable size.
Consistently computing (as in [2]) the variables at the ap-
propriate order (cf. Eq. (1) above), but keeping the un-
physical assumption of identical QD coefficients [1] stabi-
lizes the dynamics, moving the threshold to a lower pump
(red star). Relaxing this unphysical condition returns the
threshold to approximately the CIM value (red diamond
and cross). In summary: thresholds leading to coherent
fields can always be observed. Contrary to claims [1], the
model of [2] is correct and widely applicable.

Note that neglecting δ〈b†bc†c〉 and δ〈b†bv†v〉 is stan-
dard procedure with cluster expansions [7] at the two-
particle level [4]. Finally, there is a misinterpretation
regarding the emission after the bifurcation in [1]: close
to threshold only a fraction of the photon field is coherent
and single-frequency.
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