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Abstract: This paper is dedicated to exploring the NASA Langley Challenge on Optimization under Uncertainty by 13 
proposing a series of approaches for both forward and inverse treatment of uncertainty propagation and quantification.  14 
The primary effort is placed on the categorization of the subproblems as to be forward or inverse procedures, such 15 
that dedicated techniques are proposed for the two directions, respectively. The sensitivity analysis and reliability 16 
analysis are categorized as forward procedures, while modal calibration & uncertainty reduction, reliability-based 17 
optimization, and risk-based design are regarded as inverse procedures. For both directions, the overall approach is 18 
based on imprecise probability characterization where both aleatory and epistemic uncertainties are investigated for 19 
the inputs, and consequently, the output is described as the probability-box (P-box). Theoretic development is focused 20 
on the definition of comprehensive uncertainty quantification criteria from limited and irregular time-domain 21 
observations to extract as much as possible uncertainty information, which will be significant for the inverse 22 
procedure to refine uncertainty models. Furthermore, a decoupling approach is proposed to investigate the P-box 23 
along two directions such that the epistemic and aleatory uncertainties are decoupled, and thus a two-loop procedure 24 
is designed to propagate both epistemic and aleatory uncertainties through the systematic model. The key for 25 
successfully addressing this challenge is in obtaining on the balance among an appropriate hypothesis of the input 26 
uncertainty model, a comprehensive criterion of output uncertainty quantification, and a computational viable 27 
approach for both forward and inverse uncertainty treatment.  28 

Keywords : uncertainty quantification, uncertainty propagation, reliability analysis, risk-based design, NASA 29 
Challenge, reliability-based optimization 30 

1 Introduction and problem pre-investigation  31 

The NASA Challenge on Optimization under Uncertainty [1] is proposed by researchers in the NASA Langley 32 
Research Center in 2019 to represent the difficulties that are frequently encountered in the practical development of 33 
safety-critical vehicle systems. The Challenge 2019 can be regarded as an enhanced version of the previous edition 34 
of the NASA Multidisciplinary Uncertainty Quantification (UQ) Challenge 2014 [2].The challenges are derived from 35 
the severe operating conditions that the flight vehicles are experiencing and the intractable trade-off between the 36 
vehicles’ performance requirement and their safety constraints. Furthermore, the quantitative data representing the 37 
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operating conditions may be very sparse, strongly irregular, and contaminated by observation noise, leading that the 1 
gross data cannot be directly used in the modelling and design stage. The above difficulties are presented as the 2 
challenging tasks of model calibration, sensitivity analysis, uncertainty reduction, reliability-based optimization, and 3 
robust design, which are key aspects integrating the NASA Challenge 2019 problems.  4 

 The Challenge 2019 consists of a series of interactional tasks that are expected to be encountered in practical 5 
modelling and design processes. The overview of the Challenge 2019 is illustrated in Fig. 1, where Subproblems B1) 6 
Sensitivity Analysis and C) Reliability Analysis are categorized as the forward procedure, Subproblems A) Model 7 
Calibration, B3) Uncertainty Reduction, D) Reliability-based Design, E) Design Tuning, and F) Risk-based Design 8 
are categorized as the inverse procedure.  9 

 10 

Fig. 1: Overview of the NASA Langley challenge on optimization under uncertainty 11 

In this problem, the physical system is represented as a black-box model, i.e. the integrated system in Fig. 1, 12 
where a sub-system 𝑦(𝑎, 𝑒, 𝑡) is extracted to derive all sources of uncertainties within the integrated system. The 13 
uncertainties in this work are investigated following the classical categorization as to be aleatory or epistemic. Briefly 14 
explained, the aleatory uncertainty refers to the natural randomness of the system, and it is presented as variables 15 
following probabilistic distributions 𝑎𝑖 ~𝑓𝑎. The epistemic uncertainty is the one caused by the lack of knowledge, 16 
and this type of uncertainty can be reduced as more information becomes available from the physical system. The 17 
epistemic uncertainty is presented in this problem as unknown-but-fixed constants situated within predefined 18 
intervals 𝑒𝑖 ∈ 𝐸. The aleatory variables 𝑎𝑖 and epistemic variables 𝑒𝑖 are the input of the sub-system 𝑦(𝑎, 𝑒, 𝑡), 19 
whose output is a time-domain sequence. The distribution 𝑓𝑎   and the predefined interval E are referred as the 20 
Uncertainty Model (UM). However, the prior knowledge of the UM is extremely limited in this problem, since only 21 
a wide boundary [0, 2] is given, and no further information of the distribution format or distribution coefficients is 22 
provided for 𝑎𝑖. One of the main tasks in this problem is to refine the UM regarding a set of observation of 𝑦(𝑎, 𝑒, 𝑡) 23 
as shown in Fig. 1. The observation set 𝐷1  is presented to be very limited and irregular, furthermore with the lack 24 
of any distribution properties of aleatory variable 𝑎𝑖, rendering the model refinement extremely challenging.  25 

The above-discussed model refinement task (including Subproblem A, B3, E2) belongs to the inverse procedure, 26 
because it is based on the output observation to calibrate the UM of the input. The other tasks of this problem are the 27 
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forward procedure including Subproblems B1) sensitivity and C) reliability analysis. The integrated system 1 
𝑧(𝑎, 𝑒, 𝜃, 𝑡) takes not only the uncertain parameters 𝑎𝑖 and 𝑒𝑖 but also the design parameter 𝜃𝑖  as inputs. The 2 
outputs, also presented as time-domain sequences, are further employed to define the performance and worst-case 3 
performance function. Since both aleatory and epistemic variables are involved in the system, the output quantity of 4 
interest is presented as an infinite collection of probability distributions, i.e. the probability-box (P-box). The 5 
objective of the forward procedure herein is to investigate how the aleatory and epistemic uncertainties are propagated 6 
from the inputs to the outputs, and how the aleatory and epistemic uncertainties influence the failure probability of 7 
the system. This task requires a decoupling approach to investigate the aleatory and epistemic uncertainties 8 
respectively, and requires a comprehensive uncertainty quantification approach to measure the P-box of time-domain 9 
sequences. 10 

The last task is the optimization design considering reliability and risk regarding uncertainties, including 11 
Subproblems D) reliability-based design, E4) Design tuning, and F) Risk-based design. It is required to search for a 12 
new design based on the provided baseline design, whereby the reliability of the system should be integrated into the 13 
objective function. The risk-based design requires the trade-off between the portion of the epistemic uncertainty one 14 
can neglect and the gain that can be obtained. This optimization task is performed in the presence of both aleatory 15 
and epistemic uncertainties, and hence the key challenge is the definition of the optimal criterion and the development 16 
of the computational viable optimization algorithm. 17 

Based on the pre-investigation above, the featured challenging points of the overall problem are summarized as 18 
follows. 19 

 The output features of the system are not scalars but time-domain sequences, rendering the classical model 20 
updating approaches developed for scalars no longer applicable on this occasion;  21 

 The provided observation sequence data 𝐷1  has only 100 samples and is presented in a complicated curve shape 22 
in the time domain, rendering the uncertainty information can be hardly extracted from the gross data; 23 

 The aleatory variable 𝑎𝑖  is supposed to follow a probability distribution, but no distribution information is 24 
provided other than a general boundary [0, 2], rendering the inverse model calibration task extremely challenging;  25 

 Both aleatory and epistemic uncertainties are involved in the output features, rendering the failure probability of 26 
the system to be also governed by a P-box, which dramatically increases the calculation burden for the reliability-27 
based optimization; 28 

 The intractable trade-off between the risk to neglect a portion of epistemic uncertainty and the gain obtained from 29 
taking this risk is disturbed by the aleatory uncertainty, rendering the deterministic optimization to be prohibitive 30 
for the risk-based optimization. 31 

To cope with the above challenges, the following theoretic developments are proposed in this paper to further 32 
develop both the quantification and propagation strategies: 33 

 A feature extraction approach to first process the irregular and noisy time-domain sequences, and then to define 34 
a comprehensive UQ metric to extract as much as possible uncertainty information from the limited data; 35 

 A parameterization hypothesis to represent the imprecise probability of the aleatory variables, such that the prior 36 
uncertainty model can be parameterized and calibrated through a model updating procedure; 37 

 A two-level decoupling approach to investigate the P-box, and to propagate both aleatory and epistemic 38 
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uncertainties from the parameters to the output quantity of interest;  1 

 The definition of the optimal criterion for the Subproblem D) Reliability-based design, the risk and gain criteria 2 
for the Subproblem F) Risk-based design, considering both aleatory and epistemic uncertainties to make sure the 3 
calculation cost is acceptable.  4 

The above theories and methods are explained in Section 2. More attention and details are presented in Section 5 
3 to give an elaborate presentation of the application of the method, and a detailed discussion of the results of each 6 
subproblem. Section 4 gives the conclusion and perspectives gained from addressing the NASA Challenge 2019 7 
based on the developed systematical UQ approaches. 8 

2 Theoretical development 9 

Form the pre-investigation, the subproblems are categorized into forward procedure and inverse procedure. The 10 
sensitivity analysis and reliability analysis belong to the forward procedure, where the key investigation lies on how 11 
the aleatory and epistemic uncertainties propagate from the system inputs to the output quantity of interest. A forward 12 
approach to decouple the influence of aleatory and epistemic uncertainties in the P-box is proposed in Section 2.1. 13 
The uncertainty reduction, reliability-based and risk-based design belong to the inverse procedure where the UQ 14 
metrics and optimal criteria should be first defined based on the output features and inversely to tune the prior models 15 
and design. The UQ metrics definition and feature extraction are explained in Section 2.2, and subsequently, the 16 
inverse algorithm for uncertainty reduction and optimization are explained in Section 2.3.  17 

2.1 Forward decoupling approach for uncertainty propagation 18 

2.1.1 Parameterization hypothesis of the input P-box 19 

Considering the readability, we employ the same terminology as the one used in the original document [1] of 20 
Challenge 2019. The model of the sub-system is expressed as 21 

𝑦(𝑡) = 𝑦(𝑎, 𝑒, 𝑡)                                          (1) 22 

where 𝑎 ∈ ℝ𝑛𝑎 and 𝑒 ∈ ℝ𝑛𝑒  are the aleatory and epistemic variables, respectively; 𝑦(𝑡) is the output feature of 23 
the sub-system presented as a time-domain sequence. The uncertainty model (UM) of a is denoted as 𝑎~𝑓𝑎 where 24 
𝑓𝑎   is the Probability Density Function (PDF); the UM of e is denoted as 𝑒~𝐸 , where E is the interval of the 25 
unknown-but-fixed parameter. While a and e are prescribed to be variables exclusively with aleatory or epistemic 26 
uncertainty, the output y(t) is governed by both aleatory and epistemic uncertainties, and hence it is described as P-27 
box.  28 

Compared with e, the UM of a is more limited since the functional form of 𝑓𝑎  is unknown. A parameterization 29 
process is hence necessary to characterize the unknown distribution using a series of quantitative coefficients. The 30 
parameterization approach is nonunique, and we propose to employ the Beta Mixture Model (BMM) to represent the 31 
UM of a. The basic Beta distribution is a continuous probability distribution defined on the interval [0, 1] with two 32 
positively real shape coefficients A and B: 33 

Beta(𝑥, 𝐴, 𝐵) =
Γ(𝐴 +𝐵)

Γ(𝐴)Γ (𝐵)
𝑥𝐴−1(1 − 𝑥)𝐵−1                              (2) 34 

where Γ(. )  is the gamma function Γ(∎) = ∫ 𝑥∎−1𝑒−𝑥𝑑𝑥
∞

0  . The BMM is defined as the sum of N basic Beta 35 
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distributions, which is expressed as 1 

BMM(x) = ∑ 𝛽𝑖 Beta(𝑥, 𝐴𝑖, 𝐵𝑖 )𝑁
𝑖=1                                 (3) 2 

where N is the number of basic Beta distribution employed, 𝛽𝑖  is the weighting coefficients satisfying ∑ 𝛽𝑖
𝑁
𝑖=1 = 1. 3 

There are two reasons for selecting the BMM as the UM of a: 1) the format flexibility and 2) the interval definiteness. 4 
First, the BMM is qualified to present multiple distribution formats in the given interval. For example, as shown in 5 
Fig. 2, a BMM with two components can represent PDF curves with different numbers of poles and 6 
increasing/decreasing features. Second, since the variable a has been limited on the interval [0, 2] by the problem 7 
host, the distributions with unlimited boundaries, e.g. Gaussian distribution, are inapplicable. The standard Beta 8 
distribution is limited on [0, 1], and hence it is convenient to control the interval of BMM by adjusting the weighing 9 
coefficient 𝛽𝑖 . In this problem, we propose the BMM with two components and adjusted weighting coefficients 10 
expressed as: 11 

𝑓𝑎𝑖
(𝑎, 𝐴1

(𝑖)
, 𝐵1

(𝑖)
, 𝐴2

(𝑖)
, 𝐵2

(𝑖)
) =

1

4
Beta (

1

2
𝑎, 𝐴1

(𝑖)
, 𝐵1

(𝑖)
) +

1

4
Beta (

1

2
𝑎, 𝐴2

(𝑖)
, 𝐵2

(𝑖)
)                  (4) 12 

The reason for proposing two components is that: On the one hand, the BMM with only one component is reduced 13 
to the normal Beta distribution and hence not flexible enough to fit the potential true distribution; On the other hand, 14 
the BMM with too many components will lead to too much unknown coefficients leading the updating process very 15 
difficult. As a result, the choice of the two-component BMM has a balance of the flexibility and complexity. As 16 
illustrated in Fig. 2, by changing the 4 coefficients, the two-component BMM can present different shapes of the PDF 17 
curves. This distribution hypothesis will make sure the boundary of 𝑎𝑖 falls within in [0, 2], and the UM of 𝑎𝑖 is 18 
parameterized using four parameters, 𝐴1

(𝑖)
, 𝐵1

(𝑖)
, 𝐴2

(𝑖)
, 𝐵2

(𝑖), which brings convenience for the following uncertainty 19 
reduction and model updating procedures. 20 

 21 
Fig. 2: Various formats of BMM PDFs with different configurations of shape coefficients 22 

2.1.2 The two-loop approach for uncertainty propagation in the form of P-box 23 

This subsection proposes a two-loop strategy to propagate both the aleatory uncertainty in 𝑎𝑖 and the epistemic 24 
uncertainty in 𝑒𝑖  to the output quantity through the black-box model, which will be used to solve the forward 25 
reliability analysis task in the Challenge. If only the aleatory uncertainty of the input is considered, the output 26 
quantities 𝑦(𝑎, 𝑒, 𝑡)  and 𝑧(𝑎, 𝑒, 𝜃, 𝑡)  are characterized as aleatory variables following certain probabilistic 27 
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distributions. However, because of the involvement of the epistemic uncertainty from 𝑒𝑖 , the output quantities 1 
contain both the aleatory and epistemic uncertainties, and hence should be characterized as imprecise probabilities. 2 
In other words, they will be described as P-box in the proposed approach.   3 

As the first step, in order to propagate both types of uncertainties, we propose a two-directional approach to 4 
investigate the uncertainty properties of 𝑎𝑖  and 𝑒𝑖 , as illustrated in Fig. 3. The uncertainty property of 𝑎𝑖  is 5 
presented as a single Cumulative Distribution Function (CDF) curve as shown in Fig. 3(a), where the CDF curve is 6 
determined by the BMM distribution as proposed in Section 2.1.1. We observe the CDF curve along the vertical 7 
direction and truncate a range 𝛼  from the [0, 1] probability space. Here the 𝛼  presents a portion of aleatory 8 
uncertainty according to the single CDF curve, which projects to the horizontal axis obtaining an interval of the 9 
aleatory variable: [𝑎𝑖 , 𝑎𝑖 ]. The interval presents exclusively the aleatory uncertainty since it is the projection of a 10 
single CDF.  11 

In Fig. 3(b), let’s consider the uncertainty property of the epistemic variable 𝑒𝑖. Since 𝑒𝑖 is prescribed as an 12 
unknown-but-fixed constant fallen within an interval, its “generalized” CDF is presented as a unit-impulse function 13 
at the position 𝑒𝑖

∗ . Considering the its interval [𝑒𝑖 ,𝑒𝑖 ], infinite number of impulse functions constitute the shaded 14 
area, which can be regarded as a “generalized” P-box of the epistemic variable. Now consider a single probability 15 
point 𝛼∗ and observe the P-box along the horizontal direction. Any 𝛼∗ value results in the same interval projected 16 
on the horizontal axis [𝑒𝑖 , 𝑒𝑖 ], which is governed only by the epistemic uncertainty. 17 

 18 
Fig. 3: The two-directional approach to investigate the P-box: (a) along the vertical direction for aleatory uncertainty; (b) 19 

along the horizontal direction for epistemic uncertainty 20 

Based on the above two-directional investigation, the forward propagation approach is executed as a two-loop 21 
strategy to propagate the aleatory and epistemic uncertainties, respectively, by first a Monte Carlo sampling process 22 
for the probability point 𝛼∗ , and an optimization process performed on each 𝛼∗  to search the minimum and 23 
maximum of the output feature on the input interval [𝑒𝑖 , 𝑒𝑖 ]. This propagation approach was first proposed by the 24 
authors in Ref. [3] for sensitivity analysis. But this approach is proved to be efficient also for the reliability analysis 25 
in this problem.  26 

The two-loop strategy is illustrated in Fig. 4. In the outer loop, the Monte Carlo sampling is executed on the 27 
complete aleatory space [0, 1] along the vertical axis, where a set of samples of the probability value 𝛼∗ is obtained. 28 
For each of the aleatory value 𝛼∗, the corresponding interval [𝑒𝑖 , 𝑒𝑖 ] is projected on the horizontal axis presenting 29 
exclusively the epistemic uncertainty. Within the epistemic interval, the inner loop is performed through an 30 

optimization process, where the 𝑦𝑚𝑎𝑥 = argmax
𝑒∈𝐸

𝑦(𝑥)  and  𝑦𝑚𝑖𝑛 = argmin
𝑒 ∈𝐸

𝑦(𝑥)  will be found. The function 31 
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𝑦(𝑥) in the inner loop represents the sub-system model, as illustrated in Fig. 1, to calculate the time sequence D1 1 
from the aleatory variables ai and epistemic variables ei. Let 𝑛𝛼 denotes the number of samples obtained from the 2 
outer loop, then the whole procedure requires totally 𝑛𝛼 optimizations, which leads to considerable calculation cost. 3 
However, the optimizations are independent to each other, making the parallel calculation applicable to the inner loop, 4 
which significantly reduced the calculation time on the consumer multi-core computer.  5 

 6 

Fig. 4: The two-loop decoupling uncertainty propagation approach 7 

The two-loop procedure results in two sets of the output samples, i.e. the maximum 𝑦(max ) and the minimum 8 
𝑦(min ) , with the number of samples 𝑛𝛼 . The distributions of the maximum and minimum samples are fitted, 9 
respectively, and the CDF of these two distributions are plotted in the same plane, as illustrated in Fig. 4, where the 10 
P-box of the output feature is propagated from the input variables. The proposed strategy makes it possible for the 11 
forward reliability analysis to evaluate the range of the system failure probability when the epistemic uncertainty is 12 
involved. 13 

2.2 Feature extraction and uncertainty quantification for time-domain variables 14 

2.2.1 The Empirical Mode Decomposition 15 

In this problem, the outputs of the system model are not scalars but time-domain sequences. The provided 16 
observations are limited (with only 100 samples), irregular (with multiple numbers of poles), and chaotic, see the 17 
data sets D1 and D2 in Fig. 1, rendering the direct usage of the data to extract uncertainty information prohibitive. In 18 
this case, pretreatment of the “gross” observation data is necessary, and we propose to employ the Empirical Mode 19 
Decomposition (EMD) method in this problem. The EMD, also known as Hilbert-Huang transform [4], is a featured 20 
method widely applied to time-domain signal processing. The purpose of EMD is to decompose a signal into so-21 
called Intrinsic Mode Functions (IMF). An IMF is a component decomposed from the original signal that fulfils the 22 
following constraints: 1) An IMF is a function run through the horizontal axis multiple times with the number of 23 
poles and the number of zero crossings to the axis must be either equal or be differ at most by one; and (2) the envelop 24 
defined by the multiple maximums and minimums should be symmetric according to the horizontal axis.  25 
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 1 

Fig. 5: The EMD results of 5 sets of observation 2 

Therefore, compared to the original function, the IMF is more regular and has more explicit extrema so that the 3 
uncertainty feature will be captured more easily and comprehensively cover the whole-time domain. Fig. 5 illustrates 4 
the EMD results based on 5 original sequences which are randomly selected from the 100 samples. As a result, the 5 
uncertainty information will be extracted from the EMD components using the recently Uncertainty Quantification 6 
(UQ) metrics defined in the following subsection.  7 

2.2.2 The Bhattacharyya distance: A comprehensive UQ metrics 8 

The UQ metric is defined as a quantity measuring the difference between the provided observations and the 9 
simulation of the system model. The UQ metrics on this occasion is required to be as comprehensive as possible, 10 
such that the uncertainties in both the observation and simulation can be captured. The Bhattacharyya distance, the 11 
statistical distance measuring the overlap between two distributions [5], has been proved to be an efficient UQ metric 12 
in the application of stochastic model updating [6], especially, when solving the previous edition of the NASA 13 
Challenge 2014. The definition of the Bhattacharyya between two distributions is given as 14 

𝑑𝐵(𝑦𝑜𝑏𝑠 , 𝑦𝑠𝑖𝑚) = − log {∫ √𝑃(𝑦𝑜𝑏𝑠)𝑃(𝑦𝑠𝑖𝑚)d𝑦
𝕐

}                      (5) 15 

where the 𝑃(𝑦𝑜𝑏𝑠) and 𝑃(𝑦𝑠𝑖𝑚) are the PDF of the observational and simulated quantity. However, note that the 16 
quantity can only be a scalar such that the PDF can be estimated based on a number of samples. This means the 17 
original definition of the Bhattacharyya distance is only applicable to scalars. In the presence of continuous time-18 
domain sequences, Eq. (5) cannot be directly employed. Consequently, a further feature extraction approach to 19 
transfer the time-domain sequence into several discrete quantities is proposed as illustrated in Fig. 6. 20 

It is suggested to set a series of “time points” on the complete time range. The time 𝑡0 = 2.5𝑠 is chosen as an 21 
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example in Fig. 6. The left and right parts of Fig. 6 present respectively the observation and simulation curve sets of 1 
the 2nd IMF components, extracted by EMD method as shown in Fig. 5. The scalar samples under the timepoint 2.5s 2 
are obtained, which defines the disperse range of the sequence curves. Compared with the disperse range, it is more 3 
important to investigate the distribution property of the scalar samples within this range, where the Bhattacharyya 4 
distance can be naturally employed. Then more time points from 0s to 5s are chosen, and finally the mean value of 5 
the Bhattacharyya distances at those time points are defined as the quantification metric which describes the 6 
discrepancy between observations and predicted responses.  7 

 8 

Fig. 6: Feature extraction approach on the sequence to employ the BD 9 

2.3 Inverse uncertainty reduction and optimization  10 

2.3.1 Bayesian model updating 11 

In Subproblems A), B3), E2) and E4), it is required to update the Uncertainty Model (UM) of the input variables 12 
based on given observation data. This task is regarded as the inverse procedure. Various approaches are available for 13 
such an inverse procedure, for example, different optimization algorithms to minimize the discrepancy between the 14 
observation and model simulation. However, we propose to employ the Bayesian updating framework [6], since this 15 
approach is known to be specifically efficient for problems with limited observation data and prior knowledge of the 16 
input data. The foundation of Bayesian updating given as 17 

𝑃(𝑥|𝑦𝑜𝑏𝑠) =
𝑃𝐿 (𝑦𝑜𝑏𝑠 |𝑥)𝑃(𝑥)

𝑃 (𝑦𝑜𝑏𝑠 )
                                (6) 18 

where 𝑃(𝑥) is the prior distribution of the calibrating parameter representing the prior knowledge to the system. 19 
Note that, the calibrating parameter x is not necessarily to be the actual input variable of the system model. For 20 
example, the actual input variables of the model 𝑦(𝑡) = 𝑦(𝑎, 𝑒, 𝑡) is the aleatory variable 𝑎𝑖 and epistemic variable 21 
𝑒𝑖, and the calibrating parameter x refers to the distribution coefficients of 𝑎𝑖, i.e. 𝐴

1

(𝑖)
, 𝐵

1

(𝑖)
, 𝐴

2

(𝑖)
,𝐵

2

(𝑖) in Eq. (4). It 22 
is also important to not confuse the prior distribution of 𝐴1

(𝑖)
, 𝐵1

(𝑖)
, 𝐴2

(𝑖)
, 𝐵2

(𝑖), and the actual probability distribution of 23 
𝑎𝑖.  24 

𝑃(𝑥|𝑦𝑜𝑏𝑠) in Eq. (6) is the posterior distribution of the calibrating parameter x, representing the updating result 25 
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based on the provided observation data. 𝑃(𝑦𝑜𝑏𝑠)  is the normalization factor ensuring the posterior distribution 1 
integrates to one. 𝑃𝐿(𝑦𝑜𝑏𝑠|𝑥)  is the likelihood function of 𝑦𝑜𝑏𝑠   for an instance of the parameters 𝑥 . In this 2 
framework, the Approximate Bayesian Computation (ABC) method is utilized to provide a simplified version of 3 
𝑃𝐿(𝑦𝑜𝑏𝑠|𝑥) using the Bhattacharyya distance-based feature: 4 

𝑃𝐿(𝑦𝑜𝑏𝑠|𝑥) ∝ 𝑒𝑥 𝑝 {−
𝑑2

𝜀2
}                                 (7) 5 

where 𝜀 is the width factor determined to lie in the interval [10−3 , 10−1]; the d is the distance-based UQ metric, in 6 
this paper specifically, will be the Bhattacharyya distance mentioned in Section 2.2.2. Furthermore, the Transitional 7 
Markov Chain Monte Carlo (TMCMC) along with the Metropolis-Hasting algorithm is employed to sample from 8 
some extremely complex posterior distributions. The TMCMC algorithm has been developed as a widely used 9 
approach for Bayesian updating. Not actually being the main scope of this paper, the detailed information of the 10 
algorithm can be found in the originating paper Ref. [7]. And the tutorial paper [8] is also suggested for the reader 11 
for more practical applications of the TMCMC algorithm.  12 

2.3.2 Optimization tools selection 13 

In Subproblems D1), E2), E4) and F2), the task of reliability- and risk-based design are presented with the 14 
requirement to find a new design point based on a meaningful optimal criterion, which is essentially an inverse and 15 
optimization process. The challenging features of the task lie on two aspects: 1) The optimization must be executed 16 
in a high dimension space, where the design parameter 𝜃 is a nine-dimensional variable with no boundary given; 2) 17 
the optimal criteria can only be defined based on the complicated and implicit P-box, leading the optimization 18 
extremely calculation-consuming. In this case, the optimization algorithm is required to have global search ability 19 
and derivative-free property. The Particle Swarm Optimization (PSO) method first proposed by Eberhart and 20 
Kennedy [9] is employed here because of its high speed of convergence and adaptability to the nonlinear functions 21 
in multidimensional space. 22 

For the Subproblem F) Risk-based design requires to define the Risk to represent the portion of the epistemic 23 
uncertainty to be neglected, and the corresponding Gain resulting from taking the risk. The definition of the objective 24 
function, the gain, and the risk leading the optimization tremendously complex and expensive, when the search space 25 
is built with both aleatory and epistemic uncertainties. A surrogate optimization algorithm is consequently proposed 26 
to further release the calculation cost. This algorithm is a global optimization method proposed by Regis and 27 
Shoemaker [10] based on adaptive or sequential learning Radial Basis Function (RBF) which is perfectly suitable for 28 
the time-consuming objective function. The detailed definition of the objective function, the gain, and the risk will 29 
be elaborated in the following Subsection 3.6 where a clear explanation is expected only after the successful execution 30 
of the foregoing Subproblems A-E). 31 

3 Problem investigation and outcome analysis 32 

3.1 Subproblem A): Model calibration & UQ for the subsystem 33 

3.1.1 Stochastic model updating process  34 

In Subproblem A), the main objective is to calibrate the UM of both the aleatory variables ai and epistemic 35 
variables ei based on the limited number of observations D1. This UM calibration task belongs to the classical topic 36 
known as stochastic model updating, which is regarded as the inverse procedure. Three key steps are required to 37 
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solve this problem: 1 

i) Parameterization hypothesis of the aleatory variable ai based on the Beta Mixture Model (BMM) described 2 
in Section 2.1.1; 3 

ii) Feature extraction based on the Bhattacharyya distance as described in Section 2.2; 4 

iii) Parameter calibration employing the Bayesian updating framework as described in Section 2.3.1.  5 

The epistemic variable ei is prescribed as the unknown-but-fixed constant within the pre-defined interval [0, 2]. 6 
And hence the ei is directed calibrated in the Bayesian updating process. For the aleatory variable ai, the BMM 7 
hypothesis is applied, and hence the UM of each ai is parameterized for calibrating parameters 𝐴1

(𝑖)
, 𝐵1

(𝑖)
, 𝐴2

(𝑖)
, 𝐵2

(𝑖). 8 
The UM parameterization hypothesis for both aleatory and epistemic variables are summarized in Table 1, where the 9 
total number of calibrating parameters are 24 (four parameters for each of the five ai plus four ei). In Bayesian 10 
updating, the prior distributions of these calibrating parameters are assumed to be uniform on the pre-defined intervals 11 
as shown in Table 1. 12 

Table 1: Prior distributions of aleatory and epistemic variables 13 

Parameter Uncertainty model hypothesis Calibrating parameters and intervals 

𝑎𝑖,   𝑖 = 1, … , 5 𝑎𝑖 ~𝐵𝑀𝑀(𝐴1

(𝑖)
, 𝐵1

(𝑖)
, 𝐴2

(𝑖)
, 𝐵2

(𝑖)
) 𝐴1

(𝑖)
, 𝐵1

(𝑖)
, 𝐴2

(𝑖)
,𝐵2

(𝑖)
∈ [0.01,30] 

𝑒𝑖 ,   𝑖 = 1, … , 4 Unknown-but-fixed constant 𝑒𝑖 ∈ [0, 2] 

 14 

Fig. 7: The selected time points to investigate the 1st and 2nd IMF of the sequences 15 

The EMD method and the Bhattacharyya distance are employed to quantify the discrepancy between 16 
observations and simulated sequences. All the 100 sequence curves are employed in the updating process. As 17 
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illustrated in Fig. 7, the 1st and 2nd EMD components are employed at the selected time points ([0.25s, 2.00s, 2.76s, 1 
3.48s, 4.00s, 4.50s, 5.00s] for IMF1 and [0.25s, 0.88s, 1.50s, 2.10s, 2.70s, 3.30s, 4.50s] for IMF2), implying 14 sets 2 
of feature samples are employed to calculate the Bhattacharyya distances between the observation and simulation. 3 
There is no unique standard to select the featured time points. The general rule is that the most obvious local maxima 4 
and minima throughout the time sequence should be covered. The mean of the 14 Bhattacharyya values is employed 5 
to evaluate the likelihood function in Eq. (7), and after 12 iterations the TMCMC algorithm converged.  6 

After the Bayesian updating process, the posterior distributions of the 24 calibration parameters are presented 7 
in Fig. 8. For the ahead 20 parameters (𝐴1

(𝑖)
, 𝐵1

(𝑖)
, 𝐴2

(𝑖)
, 𝐵2

(𝑖)
, 𝑖 = 1, … , 5), their exact values are estimated by taking the 8 

maximum pole of the posterior PDF, representing the position where the likelihood gets the maximum value in the 9 
Bayesian updating. The estimated values are listed in Table 2, which are essentially the distribution coefficients of 10 
the BMM model. As a result, the actual BMM distributions of the aleatory variables 𝑎𝑖 are plotted in Fig. 9.  11 

 12 

Fig. 8: Posterior distribution of the 24 calibrating parameters 13 

 14 

 15 

 16 
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Table 2: The calibrated UM of the input variables 1 

Uncertainty Model of the input variables 

Aleatory variables Epistemic variables 

 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5  Original interval Reduced interval 

𝐴
1

(𝑖) 10.8476 17.8747 12.7699 16.5293 11.0813 𝑒1  [0, 2] [0.2103, 0.8185] 

𝐵
1

(𝑖) 12.6593 10.2992 18.8625 10.6599 16.5631 𝑒2 [0, 2] [0.2528, 0.7105] 

𝐴
2

(𝑖) 7.0381 15.8893 22.5654 12.6301 23.7887 𝑒3 [0, 2] [0.0521, 0.5510] 

𝐵2

(𝑖) 14.6622 23.4767 17.0233 16.2537 21.0530 𝑒4 [0, 2] [0.0788, 1.4256] 

For the last four calibrating parameters, i.e. the four epistemic variables of the model (𝑒𝑖 ,𝑖 = 1, … , 4), further 2 
treatment is required to estimate their intervals, as illustrated in Fig. 10. The posterior PDFs are estimated employing 3 
the well-known Kernel Density Estimation (KDE) approach based on the posterior samples obtaining from the 4 
Bayesian updating. The PDFs are normalized within the range [0, 1]. It is suggested to define a so-called “cutting 5 
ratio”, denoted as 𝛼, which lies in the range [0.0, 1.0]. As shown in Fig. 10, a larger 𝛼 results in a smaller truncated 6 
interval. In the extreme case, when 𝛼 = 0.0, we will get the largest interval in the bottom of the subfigures in Fig. 7 
10; when 𝛼 = 1.0, the single value of 𝑒𝑖 is obtained located at the maximum pole as shown in Fig. 10. For the 8 
epistemic variables, we expect to obtain larger intervals to make sure the reduced epistemic intervals can still include 9 
the true values of 𝑒𝑖. Consequently, 𝛼 = 0.1 is employed and the resulting intervals are listed as in Table 2. Note 10 
that, although we expect to obtain relatively large intervals of 𝑒𝑖, compared with their pre-defined interval [0, 2], the 11 
updated intervals in Table 2 are nevertheless very narrow, implying the epistemic uncertainty space has been 12 
dramatically reduced by the Bayesian updating framework.  13 

Till now, we already get the explicit distributions of the aleatory variables 𝑎𝑖 and the reduced intervals of the 14 
epistemic variables 𝑒𝑖. In other words, the UM of the input uncertain variables has been updated based on the 15 
provided observation sequences D1. 16 

 17 

Fig. 9: Posterior PDF of aleatory variables 18 
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 1 

Fig. 10: Normalized PDFs of 21-24 calibrating parameters (the epistemic variables of the model) 2 

3.1.2 Assessment of the UM calibration results  3 

In this section, further assessment of the calibrating results is performed focusing on the output features of the 4 
sub-system model 𝑦(𝑎, 𝑒, 𝑡). Fig. 11 illustrates the cross-comparison among the observation sequences, original 5 
sequences, and calibrated sequences. The original sequences are obtained by randomly sampling input variables 𝑎𝑖 6 
and 𝑒𝑖 from the original boundary [0, 2]. The comparison shows that the original output sequences are obviously 7 
disparate from the observations, while the calibrated sequence shows relative similarity with the target data.  8 

To provide a more informative assessment of agreement between the calibrated sequences and the observation 9 
sequences, we select specific time points on the time-domain and take a similar treatment as the one performed in 10 
Fig. 7. But here the time points are taken directly from the original sequences (no longer from the IMFs after EMD), 11 
and the distribution properties of the captured values are compared in Fig. 12. The left part of Fig. 12 presents the 12 
two-dimensional scatters in the plane of values according to time points 1.0s and 2.0s; the right part of Fig. 12 presents 13 
the two-dimensional scatters in the plane of values according to time points 3.0s and 4.0s.  14 

The samples in Fig. 12 are extracted from the output time sequences according to different time points. For 15 
example, the observation scatter has 100 samples because there are 100 sequences in the observation data set D1. We 16 
employ the Gaussian Mixture Model (GMM) to fit the joint distribution of the scatters, and the contour with 0.05 17 
normalized height is plotted as the estimated intervals. In other words, the interval in Fig. 12 represents the 95% 18 
confidence interval of the scatter based on the estimated GMM distribution. This is why some samples fall outside 19 
the estimated intervals. For the observation interval in the left part of Fig. 12, only one component of GMM is used, 20 
and hence the interval appears as a standard ellipse. For the other intervals, two components of GMM are employed, 21 
and hence the intervals have complicated shapes. Both planes show that the original scatters are obviously different 22 
from the target scatters (the observation data), while the calibrated scatters have been tuned to be relatively close to 23 
the observations.  24 

The quantitative assessment of the calibration effect is performed by evaluating Bhattacharyya distances 25 
between the original, calibrated, and observation sequences, as listed in Table 3. The first two columns of the tables 26 
present the Bhattacharyya distances of original sequences vs. observations and calibrated sequences vs. observations. 27 
It is shown no matter the distances in specific time points or the mean are clearly reduced by the Bayesian calibration 28 
process.  29 

The last column of Table 3 is presented to address Subproblem A2) which requires to analyze the impact of 𝑛1  30 
on the calibration effect. The 𝑛1  is defined in the original document [1] as the number of curve samples (from the 31 
observation D1) employed in the calibration process. The above calibration results are obtained based on all the 32 
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provided samples, that it, 𝑛1 = 100 . We repeat the Bayesian updating by employing 50 samples, and the 1 
Bhattacharyya distances of the results are presented in the last column. It is natural that as the observation samples 2 
are more limited, the uncertainty, i.e. distribution information, is more difficult to be captured, and hence the 3 
Bhattacharyya distances between the calibrated sequences and the observation are relatively larger than the ones 4 
using 100 observation samples. 5 

Table 3: The Bhattacharyya distances between observations and simulated sequences 6 

 t=1s t=2s t=3s t=4s t=5s Mean 

BD between original 
sequences and observations 

0.1761 0.2756 0.1118 0.3081 0.1292 0.2255 

BD between calibrated 
sequences and observations 

0.0495 0.0594 0.0943 0.1028 0.0616 0.0749 

BD with reduced 𝑛1 = 50 0.1711 0.0536 0.0862 0.0591 0.0641 0.0806 

 7 

 8 

Fig. 11: The cross-comparison among the observations, original sequences, and calibrated sequences 9 
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 1 

Fig. 12: Scatters of the original, calibrated, and observation values of the sequences on specific time points  2 

3.2 Subproblem B): Uncertainty reduction 3 

This subproblem includes three tasks: 4 

i) Sensitivity analysis to rank the epistemic variables 𝑒1 −4 according to their influence on the system model 5 
prediction; 6 

ii) Interaction with the problem host to ask for uncertainty reduction based on the result of sensitivity analysis; 7 

iii) Repeat the model calibration in Subproblem A) to further updated the UM of the input variables.  8 

To address the 1st task, it is important to define a ranking criterion based on how much the uncertainty space of 9 
the output feature can be reduced when the epistemic uncertainty of each variable 𝑒𝑖 is reduced. Considering the 10 
sub-system model 𝑦(𝑎, 𝑒, 𝑡) , since 𝑎𝑖  involves aleatory uncertainty and 𝑒𝑖  involves epistemic uncertainty, the 11 
output feature 𝑦(𝑡) will be a quantity that involves both aleatory and epistemic uncertainty, and presented as a time-12 
domain sequence. As a result, the degree of dispersion of the sequence along the time-domain can be regarded as a 13 
criterion of the influence of the epistemic uncertainty. We use 𝐷(𝑡)  to denote the degree of dispersion of the 14 
sequence in time-domain, and it is evaluated as follows 15 

𝐷(𝑡) = max
𝑛

𝑦(𝑡) − min
𝑛

𝑦(𝑡)                                   (8) 16 

where n is the number of samples of the sequences. In other words, 𝐷(𝑡) is presented as an envelope of the total 17 
samples of time-domain sequences. When epistemic uncertainties of all 𝑒1−4  are not reduced, we obtain the largest 18 
envelope, denoted as 𝐷0(𝑡). 𝐷0(𝑡) is obtained by randomly generating 10000 samples of 𝑒1−4  from their original 19 
boundary [0, 2], and 10000 samples of 𝑎1−5 from their calibrated distributions as shown in Fig. 9. The sensitivity 20 
of each 𝑒𝑖 is defined as the reduction from the full envelope 𝐷0(𝑡) to the 𝐷𝑖 (𝑡) obtained by reducing the original 21 
interval of 𝑒𝑖 to an explicit value. The sensitivity is expressed as 22 

∆𝐷𝑖 (𝑡) = 𝐷0(𝑡) − 𝐷𝑖 (𝑡)     0𝑠 ≤ 𝑡 ≤ 5𝑠                          (9) 23 

𝐷𝑖 (𝑡) is obtained by fixing 𝑒𝑖 to its explicit value and keeping other three still free within the boundary [0, 2]. 24 
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The explicit value of 𝑒𝑖 is determined based on their posterior PDFs in Fig. 10 by taking the cutting ratio 𝛼 = 1.0.  1 
In other words, the kept value represents the maximum possible point of 𝑒𝑖 based on the model calibration in Section 2 
3.1. The ∆𝐷𝑖 (𝑡), as well as the envelops before and after the reduction are illustrated in Fig. 13. Scales of the 3 
boundaries can be referred from the left-vertical axis of each subfigure, and scales of the sensitivity ∆𝐷𝑖 (𝑡) can be 4 
referred from the right-vertical axis of each subfigure. It can be observed that the envelop boundaries before reduction 5 
(plotted in red dot line) and after reduction (plotted in blue and solid line) are nearly overlap for 𝑒3 and 𝑒4. As a 6 
comparison, the boundaries before and after reduction for 𝑒2 are clearly different. This means the sensitivity of 𝑒2 7 
is clearly larger than the other epistemic variables. As a quantitative measure, we evaluate the average value of ∆𝐷(𝑡) 8 
in 5 seconds, denoted as ∆𝐷(𝑡)̅̅ ̅̅ ̅̅ ̅̅ , and present it in Table 4. It’s obvious that the ∆𝐷(𝑡)̅̅ ̅̅ ̅̅ ̅̅  for 𝑒2 is the largest. The 9 
final ranking regarding ∆𝐷(𝑡)̅̅ ̅̅ ̅̅ ̅̅  is obtained as 𝑒2 > 𝑒1 > 𝑒3 ≈ 𝑒4. Note that the ∆𝐷(𝑡)̅̅ ̅̅ ̅̅ ̅̅  for 𝑒3 and 𝑒4 are nearly 10 
zero, hence no meaningful order of 𝑒3 and 𝑒4 is provided based on the current definition of ranking criterion. 11 

 12 
Fig. 13: The boundaries of sequences (left y-axis) and the ∆𝐷(𝑡) (right y-axis) before and after epistemic uncertainty 13 

reduction 14 

Table 4: ∆𝐷(𝑡)̅̅ ̅̅ ̅̅ ̅̅  of each epistemic variable 15 

Epistemic variable 𝑒1  𝑒2 𝑒3 𝑒4 

∆𝐷(𝑡)̅̅ ̅̅ ̅̅ ̅̅  0.0029 0.0125 -0.0004 -0.0001 

After the sensitivity analysis, we request to the Challenge host for the refined UM (i.e. the further reduced 16 
interval of 𝑒𝑖) and then we repeat the Bayesian updating process using the new interval. The further calibrated BMM 17 
distributions of the aleatory variables 𝑎𝑖 are illustrated in Fig. 14, with the comparison with the ones before the UM 18 
is refined. The estimated values of the BMM coefficients of 𝑎𝑖 and the reduced intervals of 𝑒𝑖 are listed in Table 5. 19 
The resulting Bhattacharyya distances are presented in Table 6. Because of the new interval, the Bayesian updating 20 
process obtains a better calibration effect, which can be reflected by the even smaller Bhattacharyya distances 21 
compared with the calibrated ones in Subproblem A). 22 

Fig. 15 illustrates the comprehensive comparison among the scatters from four sets of data, namely, the original, 23 
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calibrated before reduction of UM, calibrated after the reduction of UM, and the observation data. The generation of 1 
the samples and intervals follows the same treatment as the one taken for Fig. 12. It can be observed that, especially 2 
from the left plane, the calibrated scatters after the reduction of UM are further close to the target observations, which 3 
once again demonstrates the significance of the interval reduction to the calibration effect.   4 

 5 

Fig. 14: The calibrated BMM distributions of a before and after the uncertainty reduction of UM 6 

Table 5: Calibrated UM of the input variables after the reduction of UM 7 

Uncertainty models of the input variables 

Aleatory variables Epistemic variables 

 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5  Reduced interval 

𝐴
1

(𝑖) 7.2873 21.8143 25.3483 17.2455 2.3861 𝑒1  [0.3346, 0.6453] 

𝐵1

(𝑖) 16.3419 10.3400 20.8685 18.2005 12.3553 𝑒2 [0.5433, 0.7312] 

𝐴
2

(𝑖) 14.8134 19.4945 13.9479 26.6700 7.2420 𝑒3 [0.0393, 0.5555] 

𝐵
2

(𝑖) 22.4664 19.7355 21.0413 19.1393 12.4983 𝑒4 [0, 1.0372] 

 8 

Table 6: The Bhattacharyya distances before and after the reduction of UM 9 

 t=1s t=2s t=3s t=4s t=5s mean 

BD between calibrated 
sequences and observations 

with original interval 
0.0495 0.0594 0.0943 0.1028 0.0616 0.0749 

BD between calibrated 
sequences and observations 

with reduced interval 
0.0461 0.0747 0.0624 0.0852 0.0536 0.0586 
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 1 

Fig. 15: The samples of responses before and after the reduction 2 

3.3 Subproblem C): Reliability analysis of baseline design 3 

From this subproblem, the integrated system model 𝑧(𝑎, 𝑒, 𝜃, 𝑡) is considered. Based on the outputs of this 4 
model, a series of performance functions are defined. 𝑔1(𝑎, 𝑒, 𝜃) is a built-in function provided along with the 5 
problem. 𝑔2 and 𝑔3 are respectively defined as 6 

𝑔2 = max
𝑡∈[

𝑇

2
,𝑇]

|𝑧1(𝑎, 𝑒, 𝜃, 𝑡)| − 0.02                               (10) 7 

𝑔3 = max
𝑡∈[0,𝑇]

|𝑧2(𝑎, 𝑒, 𝜃, 𝑡)| − 4                               (11) 8 

where 𝑧1  and 𝑧2 are the output features of the integrated system model 𝑧(𝑎, 𝑒, 𝜃, 𝑡) presented in time-domain. 9 
The worst-case performance function is defined as 10 

 𝑤(𝑎, 𝑒, 𝜃) = max
𝑖=1,2,3

𝑔𝑖 (𝑎, 𝑒, 𝜃)                               (12) 11 

Based on the performance functions, the reliability analysis is performed with regard to three metrics, namely, 12 
the failure probability for each individual requirement 𝑔𝑖, i.e. 𝑅𝑖(𝜃); the failure probability for all requirements  13 
𝑔1−3, i.e. 𝑅(𝜃); and the severity of each individual requirement violation 𝑔𝑖 , i.e. 𝑆𝑖, defined as follows, respectively.  14 

𝑅𝑖 (𝜃) = [min
𝑒∈𝐸

ℙ [𝑔𝑖 (𝑎, 𝑒, 𝜃) ≥ 0], max
𝑒∈𝐸

ℙ [𝑔𝑖 (𝑎, 𝑒, 𝜃) ≥ 0]] (13) 15 

𝑅(𝜃) = [min
𝑒∈𝐸

ℙ [𝑤(𝑎, 𝑒, 𝜃) ≥ 0], max
𝑒∈𝐸

ℙ [𝑤(𝑎, 𝑒, 𝜃) ≥ 0]] (14) 16 

𝑆𝑖 = max
𝑒 ∈𝐸

𝔼[𝑔𝑖|𝑔𝑖 ≥ 0] ℙ[𝑔𝑖 ≥ 0] (15) 17 

where ℙ[∙] is the probability operator, 𝔼[∙ | ∙] is the conditional expectation; E is the whole epistemic uncertainty 18 
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space of the epistemic variables 𝑒𝑖. To calculate those metrics, we employ a two-loop strategy to search the minimum 1 
and maximum of the failure probability on the whole space E (see Fig. 4). To ensure the fidelity and computational 2 
feasibility, the Monte Carlo sampling size in the outer loop is set to be 1000, and the failure probability for each 3 
realization in the inner loop is also determined by Monte Carlo simulation with 1000 samples on the BMM 4 
distribution of 𝑎𝑖. The corresponding range of failure probability and severity are listed in Table 7. 5 

Table 7: The result of reliability metrics based on current UM and 𝜃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 6 

Range of failure possibility Severity 

 𝑅1 𝑅2 𝑅3 R 𝑆1 𝑆2 𝑆3 

 [0.021, 0.288] [0.009, 0.392] [0, 0.016] [0.025, 0.404] 0.0952 0.0019 0.0055 

 7 

 8 

Table 8: The range of the failure probability with the reduction of the specific epistemic variables (% percentage 9 
contraction ratio compared with the full interval before any reduction) 10 

Reduction 
variable 

Range of 𝑅1 Range of 𝑅2 Range of 𝑅3 Range of R 
Mean contraction 

ratio 

No  

reduction 
[0.021, 0.288] [0.009, 0.392] [0, 0.016] [0.025, 0.404] -- 

𝑒1  
[0.027, 0.225] 

(-25.8%) 

[0.026, 0.290] 

(-31.1%) 

[0, 0.011] 

(-31.3%) 

[0.043, 0.304] 

(-31.1%) 
-29.9% 

𝑒2 
[0.018, 0.210] 

(-28.1%) 

[0.018, 0.342] 

(-15.4%) 

[0, 0.014] 

(-12.5%) 

[0.029, 0.347] 

(-16.1%) 
-18.0% 

𝑒3 
[0.015, 0.219] 

(-23.6%) 

[0.018, 0.303] 

(-25.6%) 

[0, 0.012] 

(-25.0%) 

[0.036, 0.307] 

(-28.5%) 
-25.7% 

𝑒4 
[0.021, 0.246] 

(-15.7%) 

[0.008, 0.389] 

(-0.5%) 

[0, 0.015] 

(-6.3%) 

[0.028, 0.393] 

(-3.7%) 
-6.6% 

 11 

The next task in the subproblem is the sensitivity analysis to rank the epistemic variables 𝑒1−4  according to the 12 
ratio of contraction of 𝑅(𝜃) that might result from the reduction of the epistemic variable 𝑒𝑖. Like what has been 13 
done in Subproblem B), we respectively reduce the epistemic uncertainty of each variable from its full interval to the 14 
explicit value meanwhile keeping the other 3 variables unchanged. The approach to determine the explicit value is 15 
the same as the one taken in Subsection 3.2. Then calculate the range of failure probability using the reduced 16 
epistemic intervals and the results are shown in Table 8. The first row presents the full interval when no epistemic 17 
uncertainty is reduced. The following four rows are the range of the failure probability according to the reduction of 18 
a specific epistemic variable. Clearly, the reduction of any epistemic variable leads to the contraction of the range, 19 
compared with the full ranges before reduction. The last column of Table 8 provides the mean contraction ratio, 20 
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implying the ranking of epistemic variables according to the contraction of 𝑅(𝜃) should be 𝑒1 > 𝑒3 > 𝑒2 > 𝑒4 . 1 

3.4 Subproblem D): Reliability-based design 2 

In this subproblem, it is required to find a new design 𝜃𝑛𝑒𝑤  to improve the system’s reliability. It’s essentially 3 
an optimization process and thus it’s important to choose an optimality criterion that can represent reliability and also 4 
have computational feasibility. To make sure the optimal solution can actually improve the system’s reliability, the 5 
worst-case failure probability is taken as the basis to define the optimality criterion. However, directly using the 6 
metrics in Subproblem C) will bring a huge computational complexity, because the probability of failure should be 7 
described as a P-box. Each evaluation of the forward procedure through the two-loop strategy to estimate the P-box 8 
is extremely calculation consuming, leading the normal optimization computationally prohibitive. Consequently, we 9 
propose a simplified version of the objective function defined as: 10 

𝑓(𝜃) = max
𝑒∈𝐸,𝑎~𝑓𝑎

ℙ[𝑤(𝑎, 𝑒, 𝜃) ≥ 0] (16) 11 

This objective function is defined as the maximum of the failure probability according to the worst-case performance 12 
function in Eq. (12). In the reliability-based design, our objective is to minimize the objective function, i.e. to 13 
minimize the maximum of the failure probability. In the simplified objective function, instead of the two-loop strategy, 14 
the aleatory variables ai and epistemic variables ei are sampled subsequently in a single loop. The first step is to 15 
generate a certain number (denoted as Ne) of samples of 𝑒𝑖. For each sampled 𝑒𝑖, generate a certain number (denoted 16 
as Na) of 𝑎𝑖, and a failure probability can be calculated based on these Na samples of 𝑎𝑖. The maximum value from 17 
the Ne failure probabilities is finally identified as the maximum failure probability. By minimizing the failure 18 
probability, i.e. the objective function, the new design 𝜃 with improved system reliability will be found. The Particle 19 
Swarm Optimization (PSO) algorithm is employed here to find the new design. Furthermore, the parallelization 20 
calculation strategy is employed herein to dramatically reduce the calculation time, because the optimizations are 21 
independent to each other. However, when employing the PSO algorithm, a search boundary of 𝜃 is required. The 22 
search boundary is set to be ±50% of the provided 𝜃baseline  to ensure the convergence.  23 

Table 9: The result of reliability metrics based on 𝜃new 24 

Range of failure possibility Severity 

 𝑅1 𝑅2 𝑅3 R 𝑆1 𝑆2 𝑆3 

 [0, 0.021] [0, 0.036] [0, 0.025] [0, 0.038] 0.0068 0.0001 0.0020 

 25 

After determining the 𝜃𝑛𝑒𝑤 , it’s necessary to repeat the reliability analysis as performed in Subproblem C) 26 
employing the optimized 𝜃𝑛𝑒𝑤  instead of 𝜃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 , so that the optimization effect on the system reliability can be 27 
assessed. The new range of the failure probability and severity are listed in Table 9. Compared with the results before 28 
optimization (in Table 7), a huge contraction of the range of failure probability is observed. The width of the range 29 
of 𝑅1, 𝑅2, and 𝑅 are reduced -91.2%, -92.3%, -90.31%. However, it’s also noted that the length of 𝑅3 is not 30 
reduced. But considering the big contraction of 𝑅, it is reasonable to conclude that the optimum 𝜃new  improves the 31 
system reliability significantly. The output features (𝑍1  and 𝑍2) regarding 𝜃baseline  and 𝜃new  are shown in Fig. 32 
16, where the improvement of system reliability is illustrated intuitively. Based on the Eqs. (10) and (11), the system 33 
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failure thresholds (0.02 and 4) are plotted in the figure. The left subfigure shows the system responses before 1 
optimization where multiple sample curves of 𝑍1  have exceeded the threshold, and some sample curves of 𝑍2 are 2 
tending to divergency. In contrast, the new design after optimization in the right subfigure presents satisfactory steady 3 
and convergence in the whole time-domain for both 𝑍1  and 𝑍2.  4 

 5 

Fig. 16: Model outputs 𝑧1(𝑡) and 𝑧2(𝑡) regarding 𝜃baseline (left) and 𝜃new (right) 6 

3.5 Subproblem E): Model update and design tuning 7 

This subproblem contains the following tasks: 8 

i) Interact with the host to provide the new design 𝜃𝑛𝑒𝑤   and ask for the corresponding new set of 9 
observations, namely 𝐷2. Repeat the process in Subproblem A) to further update the UM using the new 10 
observation set 𝐷2. 11 

ii) Based on the further updated UM, interact with the host to ask for further refinements of the epistemic 12 
intervals of 𝑒𝑖. Repeat the processes in Subproblems A) and D) to further updated the UM and optimize 13 
the design. Denote the resulting design as 𝜃𝑓𝑖𝑛𝑎𝑙 . 14 

iii) Repeat the reliability analysis in Subproblem C), and compare the reliability metrics according to 𝜃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒, 15 
𝜃𝑛𝑒𝑤 , and 𝜃𝑓𝑖𝑛𝑎𝑙 . 16 

Note that, the previous model updating in Subproblem A) was performed employing the output observations D1 17 
of the sub-system model 𝑦(𝑎, 𝑒, 𝑡) , while the updating task here is employing the output observations D2 of 18 
integrated system model 𝑧(𝑎, 𝑒, 𝜃, 𝑡), as plotted in the left subfigure of Fig. 17. The EMD method is applied to both 19 
sequences of 𝑍1  and 𝑍2. The Bayesian updating framework with the TMCMC algorithm is employed again, and 20 
the process converged after 13 iterations. The BMM coefficients of the aleatory variables 𝑎𝑖 and reduced intervals 21 
of the epistemic variables 𝑒𝑖 are presented in Table 10. Compare the results here and the ones in Subproblem B) 22 
(Table 5), it is observed the reduced intervals of 𝑒𝑖 are not same, where the intervals of 𝑒1  and 𝑒3 are shifted, and 23 
the widths of intervals of 𝑒2 and 𝑒4 are further reduced, implying the new observations D2 has a clear influence on 24 
the updating results.  25 
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 1 

Fig. 17: Sequences 𝑧1 and 𝑧2 from the observation set D2 (left) and from the updated UMfinal (right) 2 

 3 

 4 

Table 10: The updated UM of the input variables using new observation D2 5 

Uncertainty models of the input variables 

Aleatory variables Epistemic variables 

 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5  Reduced interval 

𝐴1

(𝑖) 11.5641 12.5038 2.5797 24.2593 13.8089 𝑒1  [0.6794, 0.9482] 

𝐵
1

(𝑖) 21.9746 18.0192 5.9776 5.1945 6.3405 𝑒2 [0.5495, 0.6750] 

𝐴2

(𝑖) 16.8877 17.0460 20.4014 4.2724 5.0556 𝑒3 [0.4334, 0.8168] 

𝐵
2

(𝑖) 29.0872 9.8369 21.4181 8.3106 15.454 𝑒4 [0.4928, 0.9174] 

 6 

In task ii), we obtained the new (reduced) intervals of all 𝑒1 −4  from the host, together with the new observation 7 
D2, another round of model updating is repeated. The results, denoted as 𝑈𝑀𝑓𝑖𝑛𝑎𝑙  , are presented in Table 11. 8 
Comparing the results in Table 10 and Table 11, it is observed that the final reduced intervals of 𝑒1−4  are extremely 9 
narrow, implying the explicit values of the epistemic variables can be expected now, based on the supplementary data 10 
from the host. The estimated BMM distribution of the aleatory variables 𝑎1−5   are illustrated in Fig. 18. Clear 11 
differences are observed by comparing the PDF curves with the ones in Fig. 14, especially for 𝑎4−5. The potential 12 
reason for the complicated PDF curves of 𝑎4−5 can be: on the one hand, there is inevitable compensation effect 13 
among 𝑎4−5 and other aleatory and epistemic variables; on the other hand, the shape coefficients of the BMM model 14 
can be very sensitive to the updated PDF curves. 15 
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Table 11: UMfinal of the input variables using new observation D2 and new intervals from the host 1 

Uncertainty models of the input variables 

Aleatory variables Epistemic variables 

 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5  Reduced interval 

𝐴
1

(𝑖) 6.5137 12.2259 4.7597 0.8439 1.3977 𝑒1  [0.8353, 0.8791] 

𝐵
1

(𝑖) 11.2953 15.9885 7.8330 14.9097 24.5739 𝑒2 [0.4440, 0.5377] 

𝐴
2

(𝑖) 24.4351 5.9262 20.2813 23.0357 18.8409 𝑒3 [0.2351, 0.3126] 

𝐵2

(𝑖) 16.8815 4.7437 20.2739 17.6006 26.0315 𝑒4 [0.9902, 1.0520] 

 2 

 3 

Fig. 18: The final updated BMM distributions of a1-5 in UMfinal 4 

Task ii) also requires the reliability-based design starting from the 𝜃𝑛𝑒𝑤  and employing the UMfinal obtained 5 
from task i). The resulting design, denoted as 𝜃𝑓𝑖𝑛𝑎𝑙 , is obtained and employed to calculate the final feature sequences 6 
𝑍1  and 𝑍2 as illustrated in the right subfigure of Fig. 17. In task iii), the reliability metrics of 𝜃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 , 𝜃𝑛𝑒𝑤 , and 7 
𝜃𝑓𝑖𝑛𝑎𝑙  are calculated according to Eqs. (13-15) and presented in Table 12. It is observed that from 𝜃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒  to 𝜃𝑛𝑒𝑤 , 8 
and finally to 𝜃𝑓𝑖𝑛𝑎𝑙  to system reliability is gradually improved. The ranges of the failure probability are more and 9 
more reduced by these three designs, and the severities are successively decreased.  10 

Table 12: Reliability metrics evaluated based on the designs 𝜃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒, 𝜃𝑛𝑒𝑤, and 𝜃𝑓𝑖𝑛𝑎𝑙 11 

Employed 
design 

Range of failure possibility Severity 

𝑅1 𝑅2 𝑅3 R 𝑆1 𝑆2 𝑆3 

𝜃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒  [0.021, 0.288] [0.009, 0.392] [0, 0.016] [0.025, 0.404] 0.0952 0.0019 0.0055 
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𝜃𝑛𝑒𝑤  [0, 0.036] [00.34, 0.120] [0.040, 0.140] [0.059, 0.146] 0.0105 0.0005 0.0346 

𝜃𝑓𝑖𝑛𝑎𝑙  [0, 0.027] [0.025, 0.076] [0, 0.007] [0.027, 0.078] 0.0069 0.0002 0.0019 

 1 

3.6 Subproblem F): Risk-based design 2 

In this Subproblem, we focus on the definition of the risk and the gain regarding the influence of the epistemic 3 
uncertainty on the system reliability. Considering the remaining epistemic uncertainty space of the epistemic variables 4 
𝑒𝑖 in Subproblem E), the risk r% is defined as the portion of the epistemic space E to be neglected, where 𝑟 ∈5 
[0, 100]. The gain should be defined as the improvement of the system performance benefitting from the retained 6 
100 − 𝑟% epistemic space. Clearly, the more the epistemic space is neglected (more risk), the more gain should be 7 
obtained. We define the gain here as the improvement degree of the system reliability in the presence of the retained 8 
epistemic uncertainty. Based on the definition above, the gain 𝑙 can be expressed as 9 

𝑙(𝑟) =
𝑃𝐸

𝑃𝐸∗

=
max
𝑒∈𝐸

ℙ[𝑤(𝑎, 𝑒, 𝜃) ≥ 0]

max
𝑒∈𝐸∗ (𝑟)

ℙ[𝑤(𝑎, 𝑒, 𝜃) ≥ 0]
(17) 10 

where max
𝑒∈𝐸

ℙ[𝑤(𝑎, 𝑒, 𝜃) ≥ 0]  is the maximum of the failure probability based on the worst-case performance 11 

function defined in Eq. (12); 𝐸∗(𝑟)  is the retained epistemic space after taking the risk r%. The portion to be 12 
neglected is determined as follows: 13 

𝐸𝑐𝑢𝑡(𝑟, 𝑒∗) = [𝑒∗ ± 0.5 ∙ (𝑒𝑢𝑝𝑝𝑒𝑟 − 𝑒𝑙𝑜𝑤𝑒𝑟 ) ∙ 𝑟% ]                    (18) 14 

where 𝑒𝑢𝑝𝑝𝑒𝑟  and 𝑒𝑙𝑜𝑤𝑒𝑟 , respectively, are the upper bound and lower bound of the epistemic interval; and 𝑒∗  is 15 
the epistemic point leading the system failure probability to take the maximum value: 16 

𝑒∗ = argmax
𝑒 ∈𝐸

ℙ[𝑤(𝑎, 𝑒, 𝜃) ≥ 0] . (19) 17 

The retained epistemic space is calculated as 𝐸∗(𝑟) = 𝐸 − 𝐸𝑐𝑢𝑡(𝑟, 𝑒∗). The process of taking the risk is shown in 18 
Fig. 19 so that it will be easier to understand. Clearly, the maximum failure probability in the full epistemic space 𝑃𝐸 19 
is larger than the one evaluated in the retained space 𝑃𝐸∗ . The gain l(r) in Eq. (17) will be larger than one.  20 
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 1 

Fig. 19: Schematic of the process of taking the risk 2 

After the risk and the gain are defined, the risk-based design is performed to find a design point, denoted as 3 
𝜃𝑟%𝑟𝑖𝑠𝑘 , that maximizes the gain 𝑙(𝑟). This is an even more complicated optimization process compared with the 4 
optimization performed in the previous subproblems. As illustrated in Fig. 20, it contains not only the two-loop 5 
procedure for forward reliability analysis, but also a sub-optimization to find the 𝑒∗   maximizing the failure 6 
probability in the epistemic space E, according to each instance of the design 𝜃.  7 

 8 

Fig. 20: Schematic of the risk-based optimization process 9 

The sub-optimization is performed employing the PSO algorithm as the previous reliability-based optimizations. 10 
For the outer loop to find the 𝜃, the main calculation burden originated from the complexity when evaluating the 11 
gain 𝑙(𝑟). In order to release the huge calculation cost, we employ the Surrogate Optimization Algorithm which 12 
interpolates an adaptive Radial Basis Function (RBF) to substitute the complex objective function. This technique is 13 
found to be well applicable for the multi-loop complicated optimization problem not only because of the adaptively 14 
trained RBF surrogate model but also the parallel calculation feature for the two-loop Monte Carlo sampling process. 15 
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Table 13: Reliability metrics according to 𝜃final and 𝜃0.05%𝑟𝑖𝑠𝑘 with both full epistemic space and retained space 1 

Metrics 
𝜃𝑓𝑖𝑛𝑎𝑙  𝜃0 .05%𝑟𝑖𝑠𝑘  

Full space Retained space  Full space Retained space 

𝑅1 [0, 0.027] [0, 0.024] [0, 0.051] [0, 0.048] 

𝑅2 [0.025, 0.076] [0.025, 0.073] [0.030, 0.120] [0.034, 0.106] 

𝑅3 [0, 0.007] [0, 0.007] [0, 0.007] [0, 0.007] 

R [0.027, 0.078] [0.026, 0.074] [0.033, 0.120] [0.035, 0.109] 

𝑆1 0.0071 0.0060 0.0125 0.0118 

𝑆2 0.0002 0.0002 0.0002 0.0002 

𝑆3 0.0019 0.0011 0.0043 0.0027 

 2 

The risk-based optimization is first performed for the prescribed risk level 𝑟 = 0.05. It is required to repeat the 3 
processes in Subproblem C) to calculate the reliability metrics using 𝜃𝑓𝑖𝑛𝑎𝑙  and 𝜃𝑟̂%𝑟𝑖𝑠𝑘  in both the full epistemic 4 
space E and the retained space 𝐸∗(0.05%). The results are presented in Table 13, where it is observed that, no matter 5 
for 𝜃𝑓𝑖𝑛𝑎𝑙  or 𝜃0.05%𝑟𝑖𝑠𝑘 , the system performance in the retained epistemic space is improved than the ones in the 6 
full space. Because the ranges of the system failure probability (𝑅1−3  and R) in the retained space are reduced and 7 
also the severities of in the retained space are clearly increased. This represents the gain after taking the risk. Another 8 
perspective to investigate the results is the comparison between the result under 𝜃𝑓𝑖𝑛𝑎𝑙  and the one under 𝜃0 .05%𝑟𝑖𝑠𝑘 . 9 
It is observed that both the failure probabilities (𝑅1−3  and R) and the severities (𝑆1−3) under 𝜃0 .05%𝑟𝑖𝑠𝑘  are higher 10 
than the ones under 𝜃𝑓𝑖𝑛𝑎𝑙 . This phenomenon is normal because 𝜃𝑓𝑖𝑛𝑎𝑙  is the design optimized under the whole 11 
epistemic space E, while 𝜃0 .05%𝑟𝑖𝑠𝑘  is the local design within the reduced epistemic space 𝐸∗(0.05%). It is natural 12 
that the local optimization cannot get the system performance as good as the global one. 13 

The last task is to investigate the trade-off between the gains and the risks on various levels under specific design. 14 
Multiple risk-based optimizations are performed to find the 𝜃𝑟%𝑟𝑖𝑠𝑘  for risk levels of [0, 0.05, 0.5, 1, 5, 10]. The 15 
gains 𝑙(𝑟) are evaluated on these different risk levels employing both 𝜃𝑓𝑖𝑛𝑎𝑙  and 𝜃𝑟%𝑟𝑖𝑠𝑘 . The results are presented 16 
in Table 14. First, based on the vertical comparison between the results regarding 𝜃𝑓𝑖𝑛𝑎𝑙  and 𝜃𝑟%𝑟𝑖𝑠𝑘 , the gains 17 
regarding 𝜃𝑟% 𝑟𝑖𝑠𝑘  is larger than the one regarding 𝜃𝑓𝑖𝑛𝑎𝑙 . This demonstrates the optimization effect of the proposed 18 
risk-based optimization as shown in Fig. 20, since for the same risk level the gain has been maximized when this new 19 
design 𝜃𝑟%𝑟𝑖𝑠𝑘  is applied to the system.  20 

The trade-off between the gain and the risk is revealed by the horizontal comparison along each row of Table 21 
14. It is observed that with the increasing of the risk levels (from 0% to 10%), the gain is indeed increased. As a 22 
conclusion to support decision making, it is necessary to adopt risk 0.05% because taking such a small risk will lead 23 
to a huge increasing of gain, i.e. growth of 12% from 𝑙(𝜃0%𝑟𝑖𝑠𝑘 ) to 𝑙(𝜃0.05%𝑟𝑖𝑠𝑘). But the risk 10% is suggested to 24 
be rejected, since such a large increase of risk (from 0.05% to 10%) only results in a small growth of 2% of the gain. 25 
This trade-off tendency is illustrated in Fig. 21, where the gain is increased significantly when the risk is taken on a 26 
tiny level in the preliminary stage, implying it is worthy to take such risk. When the risk is larger than 1%, it is shown 27 
that the increase of the gain is limited and hence the further risk should be rejected because of the flat trade-off curve 28 
between the gain and the risk. 29 
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Table 14: The gain based on different values of risks according to both 𝜃𝑓𝑖𝑛𝑎𝑙 and 𝜃𝑟%𝑟𝑖𝑠𝑘 1 

r% 0 0.05 0.5 1 5 10 

𝑙(𝑟) regarding 𝜃final  1.0048 1.0552 1.0772 1.1202 1.1448 1.1348 

𝑙(𝑟) regarding 𝜃𝑟%𝑟𝑖𝑠𝑘  1.0443 1.1609 1.1764 1.1660 1.1769 1.1812 

 2 

Fig. 21: The increase tendency between the risk and gain 3 

3.7 Summary of the calculation cost 4 

This subsection summarizes the calculation cost of the proposed techniques for each subproblem. The TMCMC 5 
algorithm employed in the Bayesian updating task has a nature feature that the randomly generated chains are 6 
independent with each other, making the parallel computation especially suitable here to reduce the time cost. Besides 7 
the parallel computation, the PSO algorithm and the adaptive REF-based surrogate optimization algorithm are 8 
employed in the reliability-based and risk-based optimization.  9 

The overall problem is solved on a small-scale work station with 64 CPU cores (AMD EPYC 7742) to make 10 
full use of the parallel computation. The elapsed time as well as the Black-box function evaluation counts of each 11 
subproblem are listed in Table 15. It is observed that the Bayesian updating requires more elapsed time than the 12 
optimization processes because the Bayesian updating executes a huge number of the black-box functions yfun and 13 
zfun. The elapsed time of the optimization processes are acceptable, especially for the complicated risk-based 14 
optimization, because of the employment of the adaptive RBF-based surrogate optimization algorithm.   15 

 16 

 17 

 18 

 19 

 20 
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Table 15: The calculation cost of the proposed approach for each subproblem 1 

Subproblems Tasks Elapsed time* 
Function evaluation counts 

yfun zfun gfun 

A Bayesian updating 19031s 4.48e10 -- -- 

B Bayesian updating 14183s 3.92e10 -- -- 

C Reliability Analysis 260s -- -- 1.0e6 

D 
Reliability-based 

Optimization 
1725s -- -- 4.96e6 

E 

Bayesian updating 17046s -- 3.36e10 -- 

Reliability-based 
Optimization 

1584s -- -- 4.54e6 

Bayesian updating 27843s 4.20e10 4.20e10 0 

F Risk-based Optimization 19869s -- -- 5.0e7 

*Work station with 64 CPU cores (AMD EPYC 7742) 2 

4 Conclusion 3 

This work addresses the NASA Optimization Challenge 2019 by proposing a series of systematically forward 4 
and inverse approaches for both uncertainty propagation and quantification, including key techniques such as UQ 5 
metrics based on Bhattacharyya distance, feature extraction based on EMD, UM parameterization based on BMM, 6 
the decoupling two-loop strategy for uncertainty propagation, and the inverse Bayesian updating approach. The 7 
challenging features of the problem originate from 1) the limited and irregular outputs, 2) the absent distribution 8 
information of the inputs, 3) the simultaneously involved aleatory and epistemic uncertainties in the reliability-based 9 
optimization, and 4) the intractable trade-off between the gain and risk in the risk-based optimization. Five key tasks 10 
are derived as uncertainty reduction, reliability-based design, risk-based design, sensitivity analysis, and reliability 11 
analysis, where the first three are categorized as the inverse procedure, and the two latter are categorized as the 12 
forward procedure. The proposed forward uncertainty propagation approach is designed to be capable of decoupling 13 
the aleatory and epistemic uncertainty in a two-loop strategy, where the P-box is investigated along with two 14 
directions and the influence of the aleatory and epistemic uncertainties on the sensitivity and reliability are assessed 15 
separately. The inverse uncertainty reduction approach first employs the Bhattacharyya distance and EMD method 16 
to preprocess the provided observations, after which the BMM coefficients are calibrated through the Bayesian 17 
updating framework. The PSO algorithm and parallel computation are employed in the reliability- and risk-based 18 
optimization to release the calculation burden caused by the inverse procedure performed along the P-box.  19 

The key in addressing this problem lies in the principle to compromise with the inevitable uncertainties. We 20 
change our perspective by regarding the uncertainties as a concomitant partner but not a heinous evil that must be 21 
completely eliminated. It is not necessary, also impossible, to completely reduce the uncertainties during simulation-22 
based design. This is reflected in the parameterization hypothesis of the aleatory distribution using the BMM method. 23 
Given the fact of limited outputs and the absence of prior distribution knowledge of inputs, we admit that the pursuing 24 
of the “true” aleatory distributions and epistemic constants becomes a mission impossible. But an appropriate 25 
hypothesis of parameterization and the comprehensive feature extraction allows the inverse procedure to reduce the 26 
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uncertainty meanwhile ensures the reserved uncertainty from the inputs can represent similar dispersion properties 1 
of the outputs, where a balance is achieved between the fidelity and robustness during the reliability- and risk-based 2 
design. 3 
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