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ABSTRACT 11 

The reliable prediction of pedestrian-induced vibration is essential for vibration 12 
serviceability assessment and further vibration mitigation design of footbridges. The response 13 
of the footbridge is governed by not only the structure dynamic model but also the crowd-14 
induced load, which naturally involves randomness and uncertainty. It is consequently 15 
significant to appropriately characterize the uncertainties during the numerical modelling of the  16 
crowd behaviour effects on crowd-induced load. This work proposes a comprehensive approach 17 
to quantify the uncertainty from both the structure dynamic model and the crowd behaviour, 18 
and subsequently, to propagate the multiple sources of uncertainties from the input parameters 19 
to the response of the footbridge. The crowd behaviour is simulated using the social force model 20 
and translated to the crowd-induced load by combining with a single pedestrian induced 21 
walking force model. By decoupling the continuous model into several single degrees of 22 
freedom systems according to relevant modes in the vibration serviceability evaluation, the 23 
structure dynamic model of the footbridge is developed where the structural responses are 24 
calculated. In this paper, all the uncertain parameters are investigated together in a double-loop 25 
framework to perform uncertainty quantification and propagation in the form of probabilit y-26 
box (shortly termed as P-box). The uncertainty space of the peak structural responses is finally 27 
obtained by the Monte Carlo sampling and optimization in the outer loop and inner loop, 28 
respectively. Feasibility and performance of the overall approach are demonstrated by 29 
considering a real scale footbridge, and the failure probability of each comfort class regarding 30 
the peak acceleration response is also evaluated. Results show that, special attention should be 31 
paid on both the epistemic and aleatory uncertainties from the crowd behaviour in the vibration 32 
serviceability assessments of footbridges. The proposed uncertainty quantification framework 33 
may provide significant insights and improve the reliability for future vibration serviceabilit y 34 
evaluations of footbridges by incorporating the crowd behaviour effects. 35 

Keywords: human-induced vibrations; footbridges; vibration serviceability; crowd behaviour; 36 
social force model; uncertainty quantification; uncertainty propagation  37 

1. Introduction 38 

Modern footbridges are sensitive to human-induced excitations (Živanović et al. 2005, 39 
Gong et al. 2021). When the vibration serviceability criteria are not satisfied, vibration 40 
mitigation measures are required (e.g., Diaz and Reynolds 2010, and Ferreira et al. 2019). In 41 
dynamic design of footbridges, vibration serviceability is satisfied by controlling the predicted 42 
vibration levels within comfort levels required by users and guidelines (HiVoSS 2008, Sétra 43 
2006, and ISO 10137, 2007). Comfort levels in guidelines are commonly defined as limit ing 44 
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accelerations. The reliable prediction of structural responses is essential for vibration 45 
serviceability assessment and further vibration mitigation design of footbridges if relevant.  46 

The response of the footbridge is governed by not only the structure dynamic model but 47 
also the crowd-induced load (Wei et al. 2017 and Fu and Wei 2020). Sources of uncertainties 48 
exist in the prediction of pedestrian-induced vibrations of footbridges both for the structure and 49 
excitation parts. For the structure part, the natural frequencies may be variant due to 50 
environmental changes e.g., temperature and humidity (e.g., Xia et al. 2006, Moser and 51 
Moaveni 2011, and Borges et al. 2021). Damping ratios are also inherently uncertain (e.g., 52 
Kareem and Gurley 1996 and Geweth et al. 2021). Furthermore, due to the mechanical 53 
interaction between the pedestrian crowd and the structure (the so-called human-structure 54 
interaction, HSI), the dynamic parameters of the coupled crowd-structure system can be 55 
significantly modified when compared to the empty structure before the arrival of the 56 
pedestrians (e.g., Alexander 2006 and Mohammed and Pavic 2020). Basically, researchers 57 
agree that, the HSI can add damping to the coupled system and the modal frequencies can be 58 
slightly modified. Lievens et al. (2016) investigated the effect of modal parameter uncertainties 59 
on the predicted structural responses. More specifically, it reports that, the deviation from the 60 
nominal value can be up to 10% for natural frequency; the deviation can be up to 50% for 61 
damping ratio. Based on the vibration serviceability assessment of real footbridges, it shows 62 
that, the modal parameter uncertainties significantly affect the prediction results.  63 

Considering the human-induced excitation loaded on the footbridge, significant sources of 64 
the crowd-induced load include: crowd density, arrival times, pedestrian walking speeds, 65 
walking trajectories, step frequencies, body weights, etc. For the crowd density, current 66 
guidelines (e.g., HiVoSS 2008 and Sétra 2006) suggest considering six typical densities in the 67 
design, i.e., 0.1, 0.2, 0.5, 0.8, 1.0, 1.5 persons/m2. To consider the randomness of arrival times, 68 
a Poisson distribution is generally employed (Živanović 2012). The importance of considering 69 
the inter- and intra-subject variabilities in walking speeds, walking trajectories, step frequencies, 70 
and body weights in the prediction of structural responses are investigated by recent research 71 
(e.g., Wei et al. 2017 and Fu and Wei 2020). Results also show it is essential to consider crowd 72 
behaviour effects in the prediction of pedestrian-induced vibrations.  73 

However, to the best of the authors’ knowledge, few works directly applies uncertainty 74 
quantification methodology to account for crowd behaviour effects, and thus few relevant 75 
investigations is performed on how the uncertainties propagate and how much the uncertainties 76 
affect the pedestrian-induced responses of the footbridge. Uncertainty quantification and 77 
propagation have been widely investigated in various engineering fields such as, probabilist ic 78 
model updating (Behmanesh et al. 2018) of and reliability analysis (Jiang et al. 2021, Zhang 79 
2005 and Zhang et al. 2010) of civil structures, parameter estimation of ultrasonic inspection 80 
system (Ben Abdessalem et al. 2018), precise numerical modelling of aerospace structures 81 
(Vishwanathan and Vio 2019), and performance assessment of heavy-duty vehicle system 82 
(Kwon 2020), etc.  83 

The uncertainty quantification and propagation approaches allow the numerical simulation 84 
to be extended from the deterministic domain to the stochastic domain, where the predicted 85 
system responses are regarded as imprecisely probabilistic variables that fall into the 86 
uncertainty space. In this work, the uncertainty space is characterized by the conception 87 
probability-box, shortly termed as P-box, (Bi et al. 2019) where both the aleatory uncertainty 88 
and the epistemic uncertainty are considered. As a classical categorization approach, the 89 
uncertainties are divided to be either aleatory or epistemic according to it is caused either by 90 
the natural randomness of the system, or caused by the lack of knowledge. In current study, all 91 
the uncertain parameters of the structure dynamic model and the crowd-induced load of the 92 
footbridge are investigated together and classified into four categories according to whether the 93 
aleatory and/or epistemic uncertainties are involved. The P-boxes are calculated for each of the 94 
four categories of input parameters, and subsequently propagated through a double-loop 95 
framework, after which the P-box of the system response of the footbridge, i.e. the maximum 96 
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acceleration responses, is obtained. The double-loop approach is motivated from the interval 97 
Monte Carlo method for reliability analysis proposed by Zhang et al. (2010). This approach 98 
investigates the aleatory uncertainty and the epistemic uncertainty separately, where the 99 
aleatory uncertainty is characterized by specific distribution of the parameter, while the 100 
epistemic uncertainty is presented by assuming the distribution coefficients as unknown-but-101 
bounded values. The reliability analysis therefor considers families of distributions whose 102 
parameters are within the intervals. Correspondingly, the failure probability is no longer a 103 
determined value but an uncertain value fallen within an interval. Being different from the 104 
interval Monte Carlo methods, this work proposes a double-loop approach where the outer loop 105 
employs the Monte Carlo sampling approach, and the inner loop employs the optimization to 106 
search the epistemic uncertainty space. The double-loop allows the propagation of the 107 
uncertainty from the input parameters to the output features. As a result, the P-box of the system 108 
behaviours, such as the human-induced vibration, is available.  109 

The P-box of the human-induced vibration provides an effective means to estimate 110 
confidence for the predicted structural responses of the footbridge. For instance, the range of 111 
the failure probability regarding the peak vibration response can be assessed. From the aspect 112 
of engineering practices of the vibration serviceability analysis, it is essential to provide 113 
references for footbridge designers with the information on the maximum acceleration 114 
responses, such that to avoid the design to be either too risky or conservative. 115 

The proposed approaches and the remaining parts of the paper are explained as follows. 116 
Section 2 presents the social force model to characterize the crowd behaviours, i.e. the time-117 
variant position and velocity of pedestrians, which are subsequently translated into the crowd-118 
induced load. Section 3 develops the structural responses calculation of the footbridge excited 119 
by the above obtained crowd-induced load, through a linear dynamic system with proportiona l 120 
damping. The double-loop uncertainty quantification and propagation framework are 121 
formulated in Section 4, where the Monte Carlo technique and optimization are performed in 122 
the outer and inner loops, respectively. Section 5 presents an illustrative example. Finally, 123 
conclusions are drawn in Section 6.  124 

2. Representation of crowd-induced load 125 

2.1 Crowd behaviour simulation  126 

In a pedestrian crowd, there are necessarily different pedestrians. Different persons may 127 
inevitably have different walking parameters and induce different walking forces, i.e. the so-128 
called inter-person variability. Even for a single person, he/she can also walk in different ways 129 
and thus results in different walking parameters and loads. This is the intra-person variabilit y 130 
(Živanović et al. 2005 and Fu and Wei 2020). To consider the inter- and intra-person variabilit y 131 
in walking parameters and induced forces among pedestrians in a crowd, the pedestrian crowd 132 
model is required to consider the individual and microscopic crowd behaviour. Furthermore, to 133 
reliably predict the pedestrian-induced vibrations of footbridges, it also requires knowing 134 
relevant crowd behaviour such as passing trajectories and speeds of each pedestrian in the 135 
crowd (e.g., Wei et al. 2017 and Fu and Wei 2020). When passing on a structure, the crowd 136 
behaviour is influenced not only by their personal motivation and psychological effects, but 137 
also the interactions with their surroundings, i.e. other people in the crowd and obstacles in the 138 
walkway. Mathematically, all these influencing factors can be treated as forces acting on and 139 
guiding each person in the crowd (Helbing et al. 1995, 2000a, 2005).  140 

Due to its ease of use and its effectiveness to capture the main characteristics of crowd 141 
behaviour, the social force model becomes one of the most widely applied models to simulate 142 
pedestrian crowd behaviour on pedestrian structures (Helbing et al. 1995, 2000a, 2005, Wei et 143 
al. 2017 and Fu and Wei 2020). The basic idea is that each person (represented by a randomly 144 
selected pedestrian 𝛼) in a crowd is guided by the social force composed of three force items. 145 
To be simplified and uniform for all persons, the force items [N] are expressed in terms of 146 
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acceleration [m/s2], which can be easily converted to force by multiplying the corresponding 147 
body mass 𝑚𝛼  [kg]. The three force items, namely the driving force, the repulsive force 148 
subject to collision, and the repulsive force subject to borders, are explained as follows. 149 

(1) The driving force  150 

A driving item to motivate the person to the desired destination:  151 

 𝑓𝛼
0(𝑡) = [ 𝑣𝛼

0(𝑡)𝑒𝛼(𝑡) − �⃗�𝛼(𝑡) ] 𝜏𝛼⁄  (1) 

which is dependent on the desired speed 𝑣𝛼
0(𝑡), the desired direction 𝑒𝛼(𝑡), the actual velocity 152 

�⃗�𝛼(𝑡), and the relaxation time 𝜏𝛼 = 0.5 s (Helbing et al. 1995, 2000a and Wei et al. 2017). 153 
The relaxation time is the time required to eliminate the difference between the actual and the 154 
desired velocities. The desired speed is time-variant and shows an increasing trend, which can 155 
be considered as:  156 

  𝑣𝛼
0(𝑡) = [1 − 𝑛𝛼(𝑡) ] 𝑣𝛼

0(0) +  𝑛𝛼(𝑡)𝑣𝛼
𝑚𝑎𝑥  (2) 

In which, 𝑣𝛼
0(0)   and 𝑣𝛼

𝑚𝑎𝑥(= 1.3 ×  𝑣𝛼
0(0))  are the initial and maximum desired walking 157 

speeds, respectively. 𝑛𝛼(𝑡) is a quantity to reflect the person’s nervousness and impatience in 158 
the walking process to attain the desired destination:  159 

 𝑛𝛼(𝑡) = 1 − �̅�𝛼(𝑡)  𝑣𝛼
0(0)⁄  (3) 

with �̅�𝛼(𝑡) the average walking speed.  160 

 161 

(2) The repulsive force subject to collision 162 

A repulsive item is considered to avoid collision with or try to keep a certain distance from 163 
others. This force is mainly due to psychological effect. To illustrate it, another random person 164 
(pedestrian 𝛽) in the crowd is introduced. The interaction force between the pedestrian 𝛼 and 165 
𝛽 is:  166 

 
𝑓𝛼𝛽(𝑡) = 𝐴𝛼

1𝑒

𝑟𝛼𝛽−𝑑𝛼𝛽

𝐵𝛼
1

�⃗⃗�𝛼𝛽[𝜆𝛼 + (1 − 𝜆𝛼)
1 + cos(∅𝛼𝛽)

2
] 

(4) 

with two parameters related to the territorial effect 𝐴𝛼
1 = 9.43 m/s2 (the interaction strength) 167 

and 𝐵𝛼
1 = 0.35  m (the repulsive interaction range) (Wei et al. 2017 and Wei 2021). 𝑟𝛼𝛽 =168 

𝑟𝛼 + 𝑟𝛽 = 0.6 m is the sum of the two pedestrian radii (Helbing et al. 1995, 2000a). The radii 169 
of the two persons can be assumed as the same, i.e., 𝑟𝛼 = 𝑟𝛽 = 0.3 m. 𝑑𝛼𝛽  is the distance 170 
between these two mass centres. 𝜆𝛼 = 0.82 is a factor to account for the anisotropic nature of 171 
the pedestrian interaction (Wei et al. 2017 and Wei 2021). The anisotropic nature refers to the 172 
fact that, the walking person is influenced by more the front pedestrians than the persons behind. 173 
�⃗⃗�𝛼𝛽  is the normalized vector directing from the pedestrians 𝛽 towards 𝛼, which depends on 174 
the locations 𝑟𝛼(𝑡) and 𝑟𝛽(𝑡) of the two persons:  175 

 
�⃗⃗�𝛼𝛽 =

𝑟𝛼(𝑡) − 𝑟𝛽(𝑡)

𝑑𝛼𝛽(𝑡)
 

(5) 

Furthermore, ∅𝛼𝛽  is the angle between the vector �⃗⃗�𝛼𝛽  and the direction 𝑒𝛼(𝑡): 176 
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 cos ∅𝛼𝛽 (𝑡) = − �⃗⃗�𝛼𝛽(𝑡) ∙ 𝑒𝛼(𝑡) (6) 

In a real crowd, all neighbouring pedestrians contribute the interaction force acting on the 177 

pedestrian 𝛼 , i.e., the total interaction force is ∑ 𝑓𝛼𝛽(𝑡)
𝑛𝑝
𝛽≠𝛼

 , with 𝑛𝑝  the total number of 178 

involved pedestrians, but the force contributions only come from the other 𝑛𝑝 − 1 persons 179 
since the pedestrian 𝛼 him/herself does not have such force item. 180 

(3) The repulsive force subject to borders 181 

Another repulsive item is to keep clear from borders, e.g., obstacles in the walkway and 182 
boundaries of the walking area. The illustration is provided by considering a random border 𝐵: 183 

 
𝑓𝛼𝐵(𝑡) = 𝐴𝛼

𝐵𝑒

𝑟𝛼−𝑑𝛼𝐵

𝐵𝛼
𝐵
�⃗⃗�𝛼𝐵 

(7) 

with the interaction strength 𝐴𝛼
𝐵 = 5 m/s2 and the repulsive interaction range 𝐵𝛼

𝐵 = 0.1 m 184 
due to borders (Helbing et al. 2000a and 2005). 𝑑𝛼𝐵(𝑡) is the distance between the mass centre 185 
of the pedestrian α  and the nearest point of the border; �⃗⃗�𝛼𝐵(t)  is the normalized vector 186 
directing from the nearest point of the border to the pedestrian α:    187 

 
�⃗⃗�𝛼𝐵(t) =

𝑟𝛼(𝑡) − 𝑟𝐵(𝑡)

𝑑𝛼𝐵(𝑡)
 

(8) 

As a sum, the interaction forces with borders are ∑ 𝑓𝛼𝐵(𝑡)
𝑛𝐵
𝐵 . 𝑛𝐵 is the number of borders 188 

involved. 189 

Thus, the total social force acting on the pedestrian 𝛼 is 190 

 
𝑓𝛼(𝑡) = 𝑓𝛼

0(𝑡) + ∑ 𝑓𝛼𝛽(𝑡)

𝑛𝑝

𝛽≠𝛼

+∑𝑓𝛼𝐵(𝑡)

𝑛𝐵

𝐵

 
(9) 

To better illustrate the social force model acting on the pedestrian 𝛼, a visualized plot is 191 
presented in Fig. 1. Guided by the social force, the time-variant position 𝑟𝛼(𝑡) and velocity 192 
�⃗�𝛼(𝑡) of the person can be obtained by solving the set of coupled differential equations: 193 

 d𝑟𝛼(𝑡)

d𝑡
= �⃗�𝛼(𝑡) 

(10) 

 d�⃗�𝛼(𝑡)

d𝑡
= 𝑓𝛼(𝑡) 

(11) 

The equations can be solved in a time-stepping procedure. Specially, to keep a balance between 194 
the accuracy and the efficiency for the obtained positions and velocities, the time step can be 195 
set as, e.g. 0.1 s. 196 
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 197 

Fig. 1 Visualization for the social force model acting on the pedestrian 𝛼.  198 

 199 

 200 

Fig. 2 The coordinate system and dimensions of the walking area on the footbridge deck. X 201 
(along the length), Y (along the width), and Z (along the height) are the longitudinal, lateral, 202 

and vertical directions, respectively.  203 

For a given structure (Fig. 2), to simulate the possible crowd behaviour that may pass on 204 
it, the structural dimensions (width 𝑊 and length 𝐿) are reasonably assumed to be constant. 205 
However, different pedestrian traffic scenarios are expected on the structure. The most relevant 206 
cases are defined as pedestrian crowds with six different densities, i.e., 0.1, 0.2, 0.5, 0.8, 1.0, 207 
1.5 persons/m2 (HiVoSS 2008 and Sétra 2006). Furthermore, for a pedestrian crowd with a 208 
given density 𝑑, three key random variables should be considered, i.e., the arrival time 𝑡arr,α, 209 
the initial position in lateral direction at the entrance 𝑌𝛼

0, and the initial desired walking speed 210 
𝑣𝛼
0(0). These random variables are explained as follows. 211 

● The arrival time 𝑡arr,α : different pedestrians may arrive at the structure at different times. 212 
The different arrival times are expressed as a Poisson distribution (Živanović 2012, Wei et al.  213 
2017 and Fu and Wei 2020). The probability mass function of the Poisson distribution is 214 

 
𝑓(𝑥) =

𝜆𝑥

𝑥!
∙ 𝑒−𝜆 , 

(12) 

with 𝜆 = 𝑊 ∙ 𝑑 ∙ �̅�(𝑑). The pedestrian arrival rate 𝜆 [persons/s] is determined by the bridge 215 
width 𝑊, the (target) crowd density 𝑑, and the mean walking speed of the crowd �̅�(𝑑). The 216 
latter is variant for different geographic areas and travel purposes (Bruno and Venuti, 2008):  217 

 
�̅�(𝑑) = 𝛼G ∙ 𝛼T ∙ �̅�free ∙ {1 − exp[−𝛾 ∙ (

1

𝑑
−

1

𝑑jam
)]} , 

(13) 

In which, �̅�free = 1.34 m/s is the average free walking speed (Helbing et al. 1995, 2000a, Wei 218 
et al. 2017 and Fu and Wei 2020). 𝛼G and 𝛼T are adjusting coefficients to consider different 219 
geographic areas and travel purposes, respectively. Another parameter to consider the travel 220 
purposes is the adjusting coefficient 𝛾: for the rush hour, the commuter, and the leisure 221 
purposes, 𝛾 = 0.273𝑑jam , 0.214𝑑jam , and 0.245𝑑jam , respectively (Bruno and Venuti, 222 
2008). 𝑑jam is jam density, which can be considered with 5.4 persons/m2, as Weidmann et al.  223 
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(Bruno and Venuti, 2008, Weidmann 1993, Buchmueller and Weidmann 2006). As shown in 224 
the Table 1 and Fig. 3, basically, European people on average walk faster than people in USA 225 
and Asia; people walk slowest in leisure status and fastest in rush hour. It is also notable that, 226 
when mixed factors are considered for geographic areas and travel purposes, the comparative 227 
relationship may be changed, e.g., for most densities, Asia people in rush hour walk faster than 228 
European and American people in commuters; however, the relationship is opposite for low 229 
densities. In other words, commuter pedestrians can walk faster than rush-hour people, when 230 
different geographic areas are considered. As the aforementioned expressions, for a crowd in 231 
known geographic area and travel purpose, the corresponding Poisson distribution can be 232 
determined for given bridge width 𝑊 and crowd density 𝑑. 233 

● The initial positions in lateral (Y) direction at the entrance 𝑌𝛼
0: different pedestrians start 234 

walking from different initial positions at the entrance of the walking area. To ensure safety, the 235 
body centre of each person at least keeps away from the border with a distance of the pedestrians’ 236 
radii 𝑟𝛼   (= 0.3  m, according to (Helbing et al. 1995, 2000a)). Thus, 𝑌𝛼

0  is considered to 237 
follow a Uniform distribution: 𝑈(𝑟𝛼 , 𝑊 − 𝑟𝛼) m.  238 

● The initial desired walking speed 𝑣𝛼
0(0): when start walking, different pedestrians may 239 

have different initial walking speeds. On average, at the free walking status, the speeds follow 240 
a Normal distribution as: 𝒩(1.34,0.26) m/s (Helbing et al. 1995, 2000a, Wei et al. 2017 and 241 
Fu and Wei 2020). 242 

Table 1: adjusting coefficients 𝛼G and 𝛼T. 243 

𝜶𝐆 for geographic areas  𝜶𝐓 for travel purposes  

Europe USA Asia Rush-hour /Business Commuters /Events Leisure /Shopping 

1.05 1.01 0.92 1.20 1.11 0.84 

 244 

 245 

Fig. 3. The speed-density relations for pedestrian crowds at different geographic areas and 246 
travel purposes. 247 
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2.2 Translation from crowd behaviour to crowd-induced load  248 

During the passing process of the crowd, the pedestrians excite the structure in terms of 249 
walking forces. Based on the time-variant positions and velocities of each person regulated by 250 
the social force, the loading trajectories and step frequencies of each pedestrian are determined. 251 
The loading trajectories of the walking forces are just following the walking trajectories for 252 
each person. The step frequencies of each person are obtained by the translation relation as 253 
follows (Wei et al. 2017 and Fu and Wei 2020):  254 

 𝑓𝑠,𝛼 = 0.35𝑣𝑠,𝛼
3 − 1.59𝑣𝑠,𝛼

2 +2.93𝑣𝑠,𝛼 (14) 

By inputting the step frequencies into the walking force model of a single pedestrian, the 255 
actual walking forces acting on the structure by the person are determined. This study considers 256 
the vertical force component as (Wei et al. 2017 and Fu and Wei 2020):  257 

 
𝐹𝑧,𝛼(𝑡) = 𝐺𝛼 ∙ [1 +∑𝐷𝐿𝐹𝑧,𝛼,𝑗 ∙ sin(2𝜋 ∙ 𝑗 ∙ 𝑓𝑠,𝛼 ∙ 𝑡 + 𝜑𝑧,𝛼,𝑗)

𝑛𝑧

𝑗=1

] 
 (15) 

Where, the pedestrian-induced force component in vertical direction (the Z direction of the 258 
bridge deck as shown in Fig. 2) is expressed as 𝐹𝑧,𝛼(𝑡). 𝐺𝛼 = 𝑚𝛼 ∙ 𝑔 is the body weight. 𝑛𝑧  259 
is the number of harmonics. The walking force is theoretically composed of infinite harmonics, 260 
but in practice, it is usually enough to consider only the first several harmonics, which are 261 
relevant in the vibration serviceability assessments for most footbridges. It can be even more 262 
simplified: as suggested by the design guidelines (e.g., HiVoSS 2008 and Sétra 2006), the 263 
structural responses are often governed by the mode with natural frequency in the range of 264 
walking forces; and thus, it is often reasonable to only consider the relevant single mode in the 265 
vibration serviceability assessment. 𝐷𝐿𝐹𝑧,𝛼,𝑗 is the corresponding dynamic load factor (DLF) 266 
for the 𝑗th harmonic. According (Young 2001), the DLFs are dependent on step frequency 𝑓𝑠,𝛼 , 267 
which are defined as:  268 

𝐷𝐿𝐹𝑧 ,𝛼,1 = 0.41(𝑓𝑠,𝛼 −0.95), for the 1st harmonic, with 𝑓𝑠,𝛼  in [1, 2.8] Hz; (16a) 

𝐷𝐿𝐹𝑧 ,𝛼,2 = 0.069 + 0.0056 × 2𝑓𝑠,𝛼 , for the 2nd harmonic, with 2𝑓𝑠,𝛼  in [2, 5.6] 
Hz; 

(16b) 

𝐷𝐿𝐹𝑧 ,𝛼,3 = 0.033 + 0.0064 × 3𝑓𝑠,𝛼, for the 3rd harmonic, with 3𝑓𝑠,𝛼  in [3, 8.4] Hz; (16c) 

𝐷𝐿𝐹𝑧 ,𝛼,4 = 0.013 + 0.0065 × 4𝑓𝑠,𝛼, for the 4th harmonic, with 4𝑓𝑠,𝛼 in [4, 11.2] 
Hz. 

(16d) 

The corresponding phase angle is considered as 𝜑𝑧,𝛼,𝑗 = 0 in the calculations, due to lack of 269 
reliable experimental data and precise physical meaning. 270 

The time-variant crowd-induced load is constructed by superposition of the force 271 
contributions from all real-time pedestrians on the structure. The sources of randomness of the 272 
pedestrian-induced loads (directly and indirectly) come from:  273 

● The body weight 𝐺𝛼 : different pedestrians may have different body weights. The scatter 274 
can be described with a Normal distribution, e.g., 𝒩(750,150) N (Živanović 2012).  275 

● The walking speeds 𝑣𝑠,𝛼 : the walking speeds are determined by the parameters of the 276 
social force model (see subsection 2.1) and may affect the time history of the loading. The 277 
distributions are unknown and thus require to be determined.  278 

● The step frequency 𝑓𝑠,𝛼: the step frequencies are determined by the speeds 𝑣𝑠,𝛼  (see 279 
Eq. (14)). The distributions are also to be determined.  280 



9 
 

● The DLFs 𝐷𝐿𝐹𝑧,𝛼,𝑗 : the DLFs are dependent on step frequency 𝑓𝑠,𝛼 , as defined in Eq. 281 
(16). The distributions are unknown and to be given.  282 

3. Structural response calculation 283 

To calculate the structural responses induced by the crowd, basic assumptions as 284 
mentioned in classic dynamics of structures are applied (Chopra 2012), i.e., linear system and 285 
proportional damping are assumed. The basic equations of motion can be:  286 

 𝐌�̈� + 𝑪�̇� + 𝑲𝒁 = 𝑷(𝒕)  (17) 

with the mass matrix 𝐌, the damping matrix 𝑪, and the stiffness matrix 𝑲. �̈�, �̇�, and 𝒁 are 287 
the acceleration, velocity, and displacement matrix, respectively. 𝑷(𝒕)  is the load matrix. 288 

Based on the basic assumptions, the system is decoupled into 𝑛𝑑𝑜𝑓  equivalent single 289 
degree of freedom (SDOF) systems. The 𝑛𝑑𝑜𝑓  can be determined by considering the relevant 290 
modes in the vibration serviceability evaluation. For each SDOF system, it has a set of modal 291 
parameters (the modal mass 𝑀𝑛, natural frequency 𝑓n and modal damping ratio 𝐷n). The 292 
SDOF system is governed by:  293 

 𝑀𝑛�̈�𝑛 + 𝐶𝑛�̇�𝑛+ 𝐾𝑛𝑧𝑛 = {∅𝑛}
𝑇𝑷(𝒕)  (18) 

with 𝐶𝑛 = 2𝑀𝑛𝐷n(2𝜋𝑓n)  and 𝐾𝑛 = 𝑀𝑛(2𝜋𝑓n )
2  the corresponding damping and stiffness 294 

coefficients, respectively. �̈�n , �̇�n  and 𝑧n  are the modal acceleration, velocity, and 295 
displacement, respectively. ∅𝑛  is the corresponding vibration mode. The corresponding modal 296 
load {∅𝑛}

𝑇𝑷(𝒕)  is obtained by superposition of the force contributions from all real-time 297 
pedestrians on the structure.  298 

In the structural response calculation, the modal mass 𝑀𝑛 is reasonably assumed to be 299 
constant. However, the natural frequency 𝑓𝑛 and damping ratio 𝐷𝑛 are expected to be variant 300 
(Xia et al. 2006, Moser and Moaveni 2011, and Lievens et al. 2016).  301 

● To consider the corresponding scatters in 𝑓𝑛 and 𝐷𝑛, the basic assumptions are made 302 
as: the 𝑓𝑛  and 𝐷𝑛  have nominal values 𝑓�̅�  and 𝐷𝑛  as the corresponding mean values, 303 
respectively. The actual values of 𝑓𝑛 and 𝐷𝑛 may vary and thus respectively considered as 304 
variable within intervals of [0.9𝑓�̅�, 1.1𝑓�̅�] Hz and [0.5𝐷𝑛, 1.5𝐷𝑛], according to observations in 305 
(Lievens et al. 2016). 306 

 307 

4. Uncertainty quantification (UQ) framework  308 

4.1 Uncertainty sources and parameter categorisation 309 

Uncertainties in the prediction of pedestrian-induced vibrations of footbridges come from 310 
both the structure and the excitation parts. The former can include the structure’s modal 311 
parameters (modal mass, natural frequency, and damping ratio), geometric size (length, 312 
width, …), etc. The latter covers the properties of the crowd as described in Sec. 2, including 313 
geographic area, travel purpose, the pedestrians’ arrival times, initial positions, initial speeds, 314 
body weights, etc. Although the above parameters are regarded to be “uncertain”, they can be 315 
governed by different types of uncertainties. The uncertainty is classified to be either epistemic 316 
or aleatory. The epistemic uncertainty is caused by lack of knowledge, and thus it can be 317 
reduced as the better understanding of the investigated problem is achieved; the aleatory 318 



10 
 

uncertainty is the natural feature of the physical system which cannot be avoided; however, it 319 
still requires the appropriate representation. For example, the pedestrians’ arrival times, initia l 320 
positions, initial speeds, and body weights are governed by the aleatory uncertainty, while the 321 
analytical model of the structure dynamic model of the bridge involves epistemic uncertainty 322 
leading the natural frequency and damping ratio cannot be precisely determined. Note that, it 323 
is also possible that some parameters would involve both the epistemic and aleatory 324 
uncertainties simultaneously.  325 

To perform a comprehensive uncertainty analysis involving all the uncertainty sources 326 
above, it is necessary to first categorize these parameters into four types according to whether 327 
the epistemic uncertainty or the aleatory uncertainty is involved (Bi et al. 2019). 328 

● Type I: parameters without any uncertainty, i.e., explicit constants. For instance, for a 329 
given structure, the length and width can be regarded as fully determined constant values.  330 

● Type II: parameters with only epistemic uncertainty. These parameters are unknown-331 
but-fixed constants, bounded by a known interval. For example, the natural frequency and 332 
damping ratio can be variant within certain intervals.  333 

● Type III: parameters with only aleatory uncertainty. These parameters are no longer 334 
constants but can be described as random variables. Because no epistemic uncertainty is 335 
involved, the random variable can be fully determined by its probability characteristics e.g., the 336 
distribution format, mean and variance. 337 

● Type IV: parameters with both aleatory and epistemic uncertainties. Being more 338 
complex than the Type III and II, theses parameters are imprecise probability variables with 339 
only vaguely determined uncertainty characteristics.  340 

Different representations of uncertainty characteristics are applied according to the 341 
corresponding categorisation of parameters. Ferson (2003) proposed the P-box to describe the 342 
uncertainty space of variables with imprecise probability, i.e., the Type IV parameters. More 343 
detailed information can be found in (Bi et al. 2019). The following text briefly introduces the 344 
most relevant contents for uncertainty quantification and propagation through the analytical 345 
model in the format of P-box. 346 

4.2 Footbridge uncertainty behaviour quantification through P-box 347 

The P-box is a visualized representation for uncertainty space of variables with imprecise 348 
probability. More specifically, a distributional P-box is a family of cumulative distribut ion 349 
functions (CDF) for a random variable, encompassing an infinite number of CDF curves. The 350 
CDF family ℱ(𝑝) for a variable 𝑝 is expressed as:  351 

 ℱ(𝑝) ⊇ ℱ(𝑝, 𝜃), 𝜃 ∈ [𝜽, 𝜽]  (19) 

with 𝜃 the distribution coefficients of 𝑝. The parameter p can be any type of the previously 352 
categorized four parameter types, which corresponds to different formats of P-boxes (Fig. 4). 353 
For the most complex case (type IV variable), the epistemic uncertainty is presented by the 354 
interval [𝜽, 𝜽]. This interval leads to infinite number of CDF curves within the distribut iona l 355 
P-box, and that is why a P-box is also known as an uncertainty space of an imprecise probabilit y 356 
variable 𝑝. The lower and upper bounds of the curve family ℱ and ℱ can be determined by 357 
the interval of the distribution coefficients [𝜽,𝜽]. The shape (horizontal position and slope) of 358 
each CDF curve is controlled by the mean and variance of a distribution: the horizontal position 359 
is determined by the mean value; the slope is dependent on the variance value (scatter level of 360 
the distribution). More specifically, the horizontal position moves along the direction of the 361 
increase in the mean; the slope tends to gentler with the increase of the variance value. It is 362 
notable that a P-box border is not always a complete CDF curve of a specific distribution, but 363 
sometimes a combination of multiple CDF curves.   364 
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4.3 Propagation of the P-box from the input parameters to the footbridge behaviour 365 

A double-loop approach is proposed in this subsection to propagate the uncertainty sources 366 
from the input parameters to the output behaviour of the footbridge, i.e., the pedestrian-induced 367 
vibrations, such that the uncertainty properties of the footbridge vibration can be quantified. 368 
The double-loop process is illustrated in Fig. 4, where the outer loop employs the Monte Carlo 369 
approach to handle the aleatory uncertainty, and the inner loop executes the optimization to 370 
determine the maximum and minimum of the output regarding to each Monte Carlo sampling. 371 
In the outer loop, it quantifies the aleatory uncertainty by a Monte Carlo process within the 372 
probability space of the cumulative distribution function. Specifically, in each Monte Carlo 373 
simulation, for each parameter, it randomly samples a separate probability value along the 374 
vertical direction of the P-box (Fig. 4). As shown in Fig. 4, different categories of parameters 375 
correspond to different forms P-boxes. To be clear in expressions, 𝑝1 , 𝑝2 , 𝑝3 , and 𝑝4  are 376 
applied to represent the four types of parameters, i.e., Type I, II, III, IV, respectively. 377 
Correspondingly, 𝛼1, 𝛼2, 𝛼3, and 𝛼4 represent the probability values in a sample.  378 

● For Type I: this type of parameter has no uncertainty and thus the CDF simply appears 379 
as an impulse function with amplitude of 1, at the fixed position with the parameter value 𝑝∗. 380 
Thus, a randomly sampled probability value 𝛼1 corresponds to an invariant parameter value 381 
𝑝∗. 382 

● For Type II: due to epistemic uncertainty, this type of parameter has a family of impulse 383 
functions with the given interval [𝑝 ∗, 𝑝∗]. The corresponding P-box is a standard rectangle. A 384 
random value 𝛼2, corresponds to the known interval [𝑝 ∗,𝑝∗].  385 

● For Type III: the type of parameter is described by a fully determined probability 386 
distribution. Thus, each probability value 𝛼3 is related to a separate parameter value 𝑝(𝛼3). In 387 
other words, different probability values correspond to different parameter values according to 388 
the CDF curve of the distribution.  389 

● For Type IV: for the most complex type of parameter, each probability value 𝛼4 390 
corresponds to a separate interval [𝑝 (𝛼4) , 𝑝(𝛼4)]. The interval is obtained during the Monte Carlo 391 
simulation.  392 

The inner loop is performed simultaneously during the Monte Carlo simulation of the outer 393 
loop. For each sample of the Monte Carlo simulation, the inner loop is carried out to propagate 394 
the epistemic uncertainty from the inputs to the outputs, by solving an optimisation problem.  395 
The constrains of the optimisation problem are exert from the outcome of the first loop (the 396 
random set realisations). In this study, the ‘random set realisations’ refer to the different 397 
realisations (fixed/varying point or interval) of the parameter (Fig. 4). The inner loop deals with 398 
the epistemic uncertainty involved in the random set realisations. To be general, the problem is 399 
illustrated with an uncertain system:  400 

 𝔁 = ℎ(𝒑) (20) 

where, the system represents the whole simulation process, i.e., from the inputs 𝒑 , the 401 
simulator ℎ(∙), to the outputs 𝔁.  402 

The uncertainty propagation is proceeded by solving an optimisation problem to determine 403 
the minimum and maximum of the outputs. The optimisation problem is to find:  404 

 min
𝒑
{𝔁 = ℎ(𝒑)} and max

𝒑
{𝔁 = ℎ(𝒑)} (21) 

using the random set realisations as constraints (Fig. 4), i.e.:  405 
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{
 
 

 
 

𝑝1
(𝛼1) = 𝑝∗

𝑝2
(𝛼2) ∈ [𝑝 ∗, 𝑝

∗
]

𝑝3
(𝛼3) = 𝑝(𝛼3)

𝑝4
(𝛼4) ∈ [𝑝 (𝛼4) , 𝑝

(𝛼4)]

 

(22) 

where values of the parameters with the superscript (*) are fixed, while the parameters with the 406 
superscript (𝛼) are variant with the probability value  𝛼. It is notable that, constraints defined 407 
by Eq. (22) are simple interval constraints, i.e., no complex nonlinear constraints are involve d. 408 
Furthermore, the interval constraints represent only the epistemic uncertainty, implying the 409 
ranges of the intervals are much smaller than the whole domain of definition of the parameters 410 
in the system. Thus, the optimisation problem can be solved by typical techniques, e.g., simplex 411 
algorithm and interior point method.  412 

Fig. 4 presents the overall double loop procedure of uncertainty quantification and 413 
propagation. To be generalized, it assumes 𝑁𝑀𝐶  Monte Carlo simulations are performed in the 414 
UQ, i.e., the sampling size is 𝑁𝑀𝐶 . Correspondingly, 𝑁𝑀𝐶  random set realisations of the input 415 
parameters will be obtained in the first loop. Meanwhile, it executes 𝑁𝑀𝐶  times optimisat ion, 416 
with once for each random set realisation. 𝑁𝑀𝐶  pairs of minimum and maximum output values 417 
will be generated. Two CDFs can be estimated based on the 𝑁𝑀𝐶   pairs of minimum and 418 
maximum output values. The P-box of the outputs is thus bounded by the two fitted CDFs.  419 

After the aforementioned procedures, the P-box provides a clear representation of the 420 
uncertainty space of the vibration behaviour of the footbridge. The P-box presentation makes it 421 
possible to evaluate the range of the failure probability, which is influenced by both aleatory 422 
and epistemic uncertainties from not only the footbridge dynamic model but also the uncertain 423 
crowd-induced load added on the footbridge.   424 

 425 
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 426 

Fig. 4. The double-loop procedure for uncertainty quantification and propagation. 427 

 428 

4.4 Basic workflow  429 

Fig. 5 summarizes the basic workflow of the uncertainty quantification and propagation 430 
framework. The first step is to categorize all input parameters into Type I /II /III / IV according 431 
to whether the aleatory and/or epistemic uncertainties are involved, as stated in subsection 4.1. 432 
In this study, the inputs include both the structure and the excitation parameters. Detailed 433 
descriptions of uncertainty characteristics of the input parameters are provided in subsection 434 
5.3. Next, the double-loop procedure is performed to quantify and propagate the uncertainties 435 
from inputs to outputs in the form of P-box (Fig. 4). The main model of the simulator is the 436 
calculation model from crowd-induced load to structural response calculation (see section 2 437 
and 3). Then, the P-box of the outputs is obtained. The outputs can be interested parameters in 438 
vibration serviceability assessments, e.g., the maximum acceleration responses of the structure 439 
(see section 3).  440 

 441 
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 442 

Fig. 5. Basic workflow.  443 

 444 

5. An illustrative example  445 

5.1 Structural parameters 446 

A footbridge with 30 m length and 3 m width is considered as an illustrative example. The 447 
coordinate system and dimensions are set the same as shown in Fig. 2. In current example, the 448 
considered footbridge is a simply supported Bernoulli beam structure. Correspondingly, its 449 
fundamental bending mode in vertical (Z) direction is relevant and considered. The modal shape 450 
is sinusoidal with ∅𝑛 = sin (𝜋𝑥/𝐿). The modal mass is 𝑀𝑛 = 20 tons. The structure has a 451 
nominal (mean) natural frequency of 𝑓�̅� = 2 Hz. The nominal damping ratio is 𝐷𝑛 = 0.01. 452 
As stated in Section 3, the actual values of 𝑓𝑛  and 𝐷𝑛  may vary and thus respectively 453 
considered as variable within intervals of [0.9𝑓�̅�, 1.1𝑓�̅�] Hz and [0.5𝐷𝑛, 1.5𝐷𝑛].  454 

5.2 Excitation parameters 455 

The example considers a uni-directional Asian crowd with commuter purpose. The density 456 
is set as 𝑑 = 0.2 persons/m2, corresponding to weak traffic as defined in (HiVoSS 2008 and 457 
Sétra 2006). The adjusting coefficients are set as: for geographic area, 𝛼G = 0.92; and for 458 
travel purpose, 𝛼T = 1.11 and 𝛾 = 0.214𝑑jam = 1.156 persons/m2. Correspondingly, the 459 
mean walking speed of the crowd is �̅�(𝑑) = 1.36 m/s and thus the initial walking speeds 460 
𝑣𝛼
0(0) of the crowd follow the Normal distribution: 𝒩(1.36, 0.26) m/s. The arrival times 461 
𝑡arr,α follow a Poisson distribution with 𝜆 = 8.18 persons/s. The initial positions in lateral 462 
(Y) direction 𝑌𝛼

0 are random values following the Uniform distribution: 𝑈(0.3, 2.7) m. The 463 
pedestrian body weights 𝐺𝛼  follow a Normal distribution: 𝒩(750,150) N, as reported in 464 
(Živanović 2012). 465 

 466 

 467 
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5.3 Uncertainty characteristics of input parameters  468 

According to the principles as stated in section 4.1, the structure and excitation parameters for 469 
the current illustrative example are categorized into four types. More detailed descriptions are 470 
summarized in Table 2 and Table 3. The basic categorization information is listed as follows:  471 

● Type I parameters (constant values): 𝐿, 𝑊, 𝑑, 𝛼G, 𝛼T, 𝛾, 𝑀𝑛, ∅𝑛 ; 472 

● Type II parameters (constants within a known interval): 𝑓𝑛, 𝐷𝑛; 473 

● Type III parameters (described with fully determined probability distribution): 𝑡arr,α , 474 
𝑌𝛼
0, 𝑣𝛼

0(0), 𝐺𝛼 ;  475 

● Type IV parameters (imprecise probability variables with only vaguely determined 476 
uncertainty characteristics): �⃗�𝛼(𝑡), 𝑟𝛼(𝑡), 𝑣𝑠,𝛼 , 𝑓𝑠,𝛼 , 𝐷𝐿𝐹𝑧 ,𝛼,1, 𝐷𝐿𝐹𝑧,𝛼,2, 𝐷𝐿𝐹𝑧 ,𝛼,3 , 𝐷𝐿𝐹𝑧,𝛼,4. 477 

It is notable that, some parameters are indirect input parameters, i.e., �⃗�𝛼(𝑡), 𝑟𝛼(𝑡), 𝑣𝑠,𝛼 , 478 
𝑓𝑠,𝛼 , 𝐷𝐿𝐹𝑧 ,𝛼,1, 𝐷𝐿𝐹𝑧,𝛼,2, 𝐷𝐿𝐹𝑧,𝛼,3 , and 𝐷𝐿𝐹𝑧,𝛼,4, are determined by other input parameters:  479 

 �⃗�𝛼(𝑡) = 𝐹1(𝐿, 𝑊, 𝑑, 𝛼G , 𝛼T, 𝛾, 𝑡arr,α, 𝑌𝛼
0, 𝑣𝛼

0(0)) (23a) 

 𝑟𝛼(𝑡) = 𝐹2(𝐿, 𝑊,𝑑,𝛼G , 𝛼T, 𝛾, 𝑡arr,α, 𝑌𝛼
0, 𝑣𝛼

0(0)) (23b) 

 𝑣𝑠,𝛼 = 𝐹3(𝐿,𝑊, 𝑑,𝛼G , 𝛼T, 𝛾, 𝑡arr,α, 𝑌𝛼
0, 𝑣𝛼

0(0)) (23c) 

 𝑓𝑠,𝛼 = 𝐹4(𝑣𝑠,𝛼) (23d) 

 𝐷𝐿𝐹𝑧,𝛼,1 = 𝐹5(𝑓𝑠,𝛼) (23e) 

 𝐷𝐿𝐹𝑧,𝛼,2 = 𝐹6(𝑓𝑠,𝛼) (23f) 

 𝐷𝐿𝐹𝑧,𝛼,3 = 𝐹7(𝑓𝑠,𝛼) (23g) 

 𝐷𝐿𝐹𝑧,𝛼,4 = 𝐹8(𝑓𝑠,𝛼) (23h) 

where ‘𝑂𝑢𝑡𝑝𝑢𝑡𝑠 = 𝐹𝑘(𝐼𝑛𝑝𝑢𝑡𝑠)’ represents the ‘𝑂𝑢𝑡𝑝𝑢𝑡𝑠’ is a function of ‘𝐼𝑛𝑝𝑢𝑡𝑠’, i.e., the 480 
‘𝑂𝑢𝑡𝑝𝑢𝑡𝑠’ depend on the ‘𝐼𝑛𝑝𝑢𝑡𝑠’. 481 

Thus, the peak acceleration response 𝑎𝑝𝑒𝑎𝑘  depends on and can be formulated by the 482 
direct input parameters, as:  483 

 𝑎𝑝𝑒𝑎𝑘 = 𝐹(𝐿,𝑊, 𝑀𝑛, 𝑓𝑛, 𝐷𝑛, ∅𝑛 , 𝑑,𝛼G , 𝛼T, 𝛾, 𝑡arr,α, 𝑌𝛼
0, 𝑣𝛼

0(0) ,𝐺𝛼) (24) 

 484 

485 
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Table 2: The uncertainty characteristics of direct input parameters for crowd behaviour 486 
simulation.  487 

Sub-models  Parameter Category  Distribution  Uncertainty characteristics  

Structure  𝐿  I  Constant Fixed value for a given structure, e.g., 30 m 

 𝑊  I Constant Fixed value for a given structure, e.g., 3 m 

Crowd  𝑑  I Constant  Fixed value applied in vibration serviceability 
assessments, e.g., 0.1, 0.2, 0.5, 0.8, 1.0, 1.5 
persons/m2 (HiVoSS 2008 and Sétra 2006) 

 𝛼G  I Constant  Fixed value for known geographic area, e.g., 
𝛼G = 0.92 for Asian crowds. 

 𝛼T  I Constant  Fixed value for given travel purpose, e.g., 𝛼T =
1.11 for Commuters. 

 𝛾  I Constant  Fixed value for given travel purpose, e.g., 𝛾 = 
0.214𝑑jam = 1.156 persons/m2 for Commuters. 

 𝑡arr,α  III Poisson 𝜆 = 𝑊 ∙ 𝑑 ∙ �̅�(𝑑) = 30 ∙ 0.2 ∙ 1.3632 = 8.18 
persons/s (Živanović 2012, Wei et al. 2017 and Fu 
and Wei 2020) in the considered example 

 𝑌𝛼
0  III  Uniform 𝑌𝛼

0~𝑈(𝑟𝛼 , 𝑊 − 𝑟𝛼) = 𝑈(0.3,2.7)  m (Wei et al. 
2017 and Fu and Wei 2020) 

 𝑣𝛼
0(0)  III Normal 𝑣𝛼

0(0) ~𝒩(𝜇𝑣𝑠 , 𝜎𝑣𝑠) = 𝒩(1.36,0.26) m/s  

(Helbing et al. 1995, 2000a, Wei et al. 2017 and 
Fu and Wei 2020) 

 488 

  489 
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Table 3: The uncertainty characteristics of direct and indirect input parameters for structural 490 
response calculation.  491 

Sub-models  Parameter Category  Distribution  Uncertainty characteristics  

Structure  𝐿  I  Constant Fixed value for a given structure, e.g., 30 m 

 𝑊  I Constant Fixed value for a given structure, e.g., 3 m 

 𝑓𝑛  II Constant  Constant within interval [0.9𝑓�̅�, 1.1𝑓�̅�] (Lievens et 
al. 2016) 

 𝐷𝑛  II Constant Constant within interval [0.5𝐷𝑛, 1.5𝐷𝑛] (Lievens et 
al. 2016) 

 𝑀𝑛  I Constant Fixed value for a specific mode of a given structure, 
e.g., 20 tons 

 ∅𝑛   I Constant Keep constant for a specific mode of a given 
structure, e.g., sinusoidal with ∅𝑛 = sin (𝜋𝑥/𝐿) 

Crowd  �⃗�𝛼(𝑡)  IV Unknown  Indirectly output from crowd behaviour simulation 

 𝑟𝛼(𝑡)  IV Unknown  Indirectly output from crowd behaviour simulation 

 𝑣𝑠,𝛼   IV Unknown  Indirectly output from crowd behaviour simulation 

Excitation  𝐺𝛼   III Normal  𝐺𝛼~𝒩(𝜇𝐺 , 𝜎𝐺) = 𝒩(750,150)  N  

(Živanović 2012) 

 𝑓𝑠,𝛼   IV Unknown  Indirectly derived from the outputs of crowd 
behaviour simulation, using the step frequency-
speed relation (Eq. (14)). 

 𝐷𝐿𝐹𝑧,𝛼,1  IV Unknown  Indirectly derived by (Eq. (16a)). 

 𝐷𝐿𝐹𝑧,𝛼,2  IV Unknown  Indirectly derived by (Eq. (16b)). 

 𝐷𝐿𝐹𝑧,𝛼,3  IV Unknown  Indirectly derived by (Eq. (16c)). 

 𝐷𝐿𝐹𝑧,𝛼,4  IV Unknown  Indirectly derived by (Eq. (16d)). 

Note: the indirect input parameters are marked with ‘indirectly’ and obtained before structural 492 
response calculations. 493 

 494 

5.4 Results  495 

5.4.1 Uncertainty characterization of the direct inputs  496 

Fig. 6 shows the uncertainty characterization of the direct inputs. For clarity, the Type I 497 
parameters (constant values without any uncertainty) are not plotted. Clearly, Type III 498 
parameters are described as fully-determined random variables, and hence are presented as 499 
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single CDF curves as shown in Fig. 6(c-f). For Type II parameters, since they contain only the 500 
epistemic uncertainty, their intervals are transferred into a special shape of P-box, whose right 501 
and left bounds are essentially two vertical CDF functions of the bounds of the intervals, as 502 
illustrated in Fig. 6(a-b). To follow the workflow (Fig. 5), 1000 random probability data points 503 
are firstly sampled during the Monte Carlo simulation in the first loop, according to the 504 
descriptions in section 5.3. 505 

 

(a) 𝑓𝑛 

 

(b) 𝐷𝑛 

 

(c) 𝑡arr,α  

 

(d) 𝑌𝛼
0 

 

(e) 𝑣𝛼
0(0) 

 

(f) 𝐺𝛼  
Fig. 6. The uncertainty characterization of the direct inputs.  506 

 507 
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5.4.2 P-boxes of the intermediate parameters  508 

After the P-boxes of the direct input parameters are determined, the whole simulator works 509 
to propagate uncertainties from the direct inputs to indirect inputs, i.e. the intermediate  510 
parameters, and finally to the outputs. Each Monte Carlo simulation corresponds to one random 511 
pedestrian crowd, which leads to one set of indirect inputs. Due to both aleatory and epistemic 512 
uncertainties of the pedestrian crowd, it leads to the uncertainties of the indirect inputs. Fig. 7 513 
presents the corresponding P-boxes. Table 4 summarizes the mean and standard deviation of 514 
the parameters. The walking speeds of the crowds can have up to near 14% difference in mean 515 
and near 60% difference in standard deviation. The corresponding differences for step 516 
frequencies are near 6% for mean and near 79% for standard deviation. For the DLFs, the 517 
largest difference in mean occurs in the first DLF, i.e., around 12%; the differences in standard 518 
deviation are all over 75% for the first four DLFs. The differences in mean and standard 519 
deviation characterize the uncertainty spaces of the indirect inputs and may result in significant 520 
impacts on the crowd-induced loads. 521 

 

(a) 𝑣𝑠,𝛼  

 

(b) 𝑓𝑠,𝛼 

 

(c) 𝐷𝐿𝐹𝑧,𝛼,1  

 

(d) 𝐷𝐿𝐹𝑧,𝛼,2 
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(e) 𝐷𝐿𝐹𝑧,𝛼,3  

 

(f) 𝐷𝐿𝐹𝑧,𝛼,4 

Fig. 7. The P-boxes of the intermediate parameters.  522 

 523 

Table 4: mean and standard deviation (std) of the indirect inputs. 524 

Parameter Min. mean  Max. mean  ∆ [%] Min. std  Max. std  ∆ [%] 

𝑣𝑠,𝛼  [m/s] 1.2243 1.3947 13.92 0.1635 0.2617 60.06 

𝑓𝑠,𝛼  [Hz] 1.8322 1.9381 5.78 0.0987 0.1768 79.13 

𝐷𝐿𝐹𝑧 ,𝛼,1  0.3617 0.4051 12.00 0.0405 0.0725 79.01 

𝐷𝐿𝐹𝑧 ,𝛼,2  0.0895 0.0907 1.34 0.0011 0.0020 81.82 

𝐷𝐿𝐹𝑧 ,𝛼,3  0.0682 0.0702 2.93 0.0019 0.0034 78.95 

𝐷𝐿𝐹𝑧 ,𝛼,4  0.0606 0.0634 4.62 0.0026 0.0046 76.92 

 525 

5.4.3 P-boxes of outputs 526 

By following the workflow (Fig. 5), the uncertainties of the direct and indirect inputs are 527 
propagated to the final outputs in the double-loop process (Fig. 4). During the process, for each 528 
Monte Carlo sampling, the inner loop executes the optimization to determine the maximum and 529 
minimum of the peak acceleration. Totally, 1000 Monte Carlo simulations are performed. Fig. 530 
8 presents the P-box of the peak accelerations, which shows a clear representation of the 531 
uncertainty space of the peak acceleration responses of the footbridge. The lower border of the 532 
P-box represents the CDF of the minimum peak accelerations, which ranges from near 0.5 to 533 
1.5 m/s2. The upper boundary, i.e., the CDF of the maximum peak accelerations, is much widely 534 
distributed from near 0.5 to 3.0 m/s2. The significantly large uncertainty space of the peak 535 
accelerations results from the effects of both the footbridge dynamic model and the uncertain 536 
crowd-induced loads on the structural responses. According to (e.g., HiVoSS 2008), the lower 537 
and upper borders may correspond to significantly different comfort classes. Correspondingly, 538 
the failure probability of each comfort class is different (Table 5). For instance, the exceedance 539 
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probability of the medium acceleration limit for the lower and the upper borders are 43% and 540 
94%, respectively.    541 

 542 

Fig. 8. The P-box of the peak acceleration.  543 

 544 

Table 5: failure probability of each comfort class according to (HiVoSS 2008). 545 

comfort class comfort degree   acceleration limit [m/s2]  failure probability 

CL 1 maximum 0.50 100% for both borders 

CL 2 medium 1.00 43% for lower border 

94% for upper border 

CL 3 minimum 2.50 0% for lower border 

2% for upper border 

 546 

6. Conclusions 547 

This paper proposes a comprehensive framework to quantify and propagate the uncertainties 548 
from both the structure dynamic model and the crowd-induced load to the acceleration responses 549 
of footbridges. The social force model is proposed to characterize the crowd behaviour. By 550 
combining with a single pedestrian induced walking force model, the crowd behaviour is 551 
translated to the crowd-induced load. The structure dynamic model is constructed by decoupling 552 
the continuous model into several single degrees of freedom systems according to relevant 553 
modes in the vibration serviceability evaluation. Together with the crowd-induced load model, 554 
structural responses are calculated. Specifically, the interested peak acceleration is identified for 555 
each simulation.  556 

For the uncertainty analysis, a double-loop framework is formulated to investigate all the 557 
uncertain parameters and to perform uncertainty quantification and propagation in the form of 558 
P-box. Meanwhile, the uncertainty space of the peak structural responses is obtained by the 559 
Monte Carlo sampling and optimization in the outer loop and inner loop, respectively.  560 
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The feasibility and performance of the overall approach are demonstrated by an illustrative 561 
example, where the failure probability of each comfort class regarding the peak acceleration 562 
response is also evaluated. Results show that, random crowd behaviour (direct inputs) firstly 563 
result in large scatter in excitation parameters (indirect inputs), e.g., walking speeds, step 564 
frequencies, dynamic load factors, etc. These differences finally lead to significantly large 565 
uncertainty space of the peak accelerations of the structure (outputs). Results also indicate special 566 
attention should be paid on both the epistemic and aleatory uncertainties from the crowd 567 
behaviour in the vibration serviceability assessments of footbridges. Furthermore, the proposed 568 
uncertainty quantification framework may provide significant insights and improve the 569 
reliability for future vibration serviceability evaluations of footbridges by incorporating the 570 
crowd behaviour effects. 571 
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